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Front propagation in channels with spatially modulated cross section

S. Martens,* J. Löber, and H. Engel
Institut für Theoretische Physik, Hardenbergstraße 36, EW 7-1, Technische Universität Berlin, 10623 Berlin, Germany

(Received 15 September 2014; published 2 February 2015)

Propagation of traveling fronts in a three-dimensional channel with spatially varying cross section is reduced
to an equivalent one-dimensional reaction-diffusion-advection equation with boundary-induced advection term.
Treating the advection term as a weak perturbation, an equation of motion for the front position is derived. We
analyze channels whose cross sections vary periodically with L along the propagation direction of the front. Taking
the Schlögl model as a representative example, we calculate analytically the nonlinear dependence of the front
velocity on the ratio L/l where l denotes the intrinsic front width. In agreement with finite-element simulations of
the three-dimensional reaction-diffusion dynamics, our theoretical results predicts boundary-induced propagation
failure for a finite range of L/l values. In particular, the existence of the upper bound of L/l can be completely
understood based on the linear eikonal equation. Last, we demonstrate that the front velocity is determined by
the suppressed diffusivity of the reactants for L � l.
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I. INTRODUCTION

Propagating fronts are building blocks of traveling wave
(TW) activity in dissipative spatially extended systems. Like
excitation pulses, periodic pulse trains, spirals, and scroll
waves are examples of nonlinear waves and represent fascinat-
ing self-organized spatiotemporal patterns in nonequilibrium
macroscopic systems. Traveling waves have been observed
in many physical [1], biological [2–4], and chemical sys-
tems [5,6]. Prominent examples of front propagation include
catalytic oxidation of carbon monoxide (CO) on platinum
single crystal surfaces [7–10], arrays of coupled chemical
reactors [11], and nematic liquid crystals [12].

Often the medium that supports front propagation exhibits
a complex shape and/or its size is limited like in biological
cells [13], nanoporous media [14], or zeolites [15]. In such a
system the interaction of the reactants with the boundaries of
the medium leads to nonintuitive confinement effects [16,17].
For example, phase separation in porous materials results in
layering, freezing, wetting, and other novel phase transitions
not found in the bulk system [18]. In particular, chemical
reactions [19,20] as well as molecular diffusion [21–23]
depend strongly on the shape of the domain. Recent studies
on the fundamental problem of particle transport through
microdomains exhibiting obstacles and/or small openings
showed that the shape of these confinements (periodicity,
size of the connecting openings) regulates the dynamics
of diffusing particles leading to transport properties which
significantly differ from free Brownian motion [24–28].

Even in systems ranging from the micro- to the macroscale
there is ongoing interest in studies of nonlinear wave propa-
gation under spatially confined conditions. Important issues
investigated in this context are the dependence of front
reflection on the shape of platinum surfaces in the catalytic
CO oxidation [29], reaction fronts in Poiseuille [30] and shear
flows [31], and three-dimensional (3D) traveling waves in the
human heart [32] to name a few. Some parts of the human heart
tissue, especially at the ventricles, are thick enough to support
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not only spiral waves but also 3D vortex structures, for exam-
ple, scroll waves and scroll rings. Hence, detailed knowledge
about the interaction of these self-organized spatiotemporal
patterns with boundaries [33,34] might be important for the
understanding of possible mechanisms responsible for atrial
tachycardia. In particular, there is experimental evidence that
spatial variations of the heart wall’s thickness play a significant
role in atrial fibrillation [35].

Nowadays, well-established techniques like microlithogra-
phy enable us to design the shape of catalytic domains as well
as to prescribe the boundary conditions [10]. This provides
an efficient method to study experimentally the impact of
confinement on front propagation and to control the local
dynamics of catalytic reactions.

In this paper, we address the problem of traveling front
(TF) propagation through a 3D channel with a periodically
modulated cross section. Aiming at deriving an equation
of motion for the front position in corrugated channels,
we apply asymptotic perturbation analysis in a geometric
parameter [27,36] and projection techniques [37–40] to the
problem. Our goal is to analyze how spatial variations of
the channel’s cross section affect front propagation and, in
particular, to determine the dependence of the propagation
velocity on the characteristic length scales in the system.
Furthermore, we focus on boundary-induced phenomena such
as propagation failure and effective diffusivity.

The paper is organized as follows: In Sec. II, we formulate
the reaction-diffusion (RD) equation in a 3D channel with
spatially modulated cross section. In Secs. II A and II B, we
derive an equation of motion for the traveling front using
multiple scale analysis. Additionally, we obtain analytical
expressions for the front velocity. In Sec. III, we compare
our theoretical results with numerical simulations for the
one-component Schlögl model. An analytical estimate for the
interval of propagation failure is presented in Sec. III A. In
Sec. IV, we demonstrate that the front velocity is determined
by the suppressed diffusivity of the reactants if the intrinsic
width of the front is much larger than the spatial variation of
the channel’s cross section. Finally, we conclude our results in
Sec. V.
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II. STATEMENT OF THE PROBLEM

We consider a RD system for the vector of n concentration
fields u = u(r,t) = (u1, . . . ,un)T whose spatial and temporal
evolution is modeled by a reaction-diffusion equation,

∂tu = D�u + R(u), (1)

in a channel filled with an excitable medium. Here r =
(x,y,z)T is the position vector, D = diag(D1, . . . ,Dn) is the
diagonal matrix of constant diffusion coefficients, � denotes
the Laplacian operator, and R(u) represents the nonlinear
reaction kinetics. The medium filling the channel is assumed
to be uniform, isotropic, and infinitely extended in the x

direction. In transverse directions, the channel is confined by
periodically modulated walls at y = ω±(x), with spatial period
L and plane walls located at z = 0 and z = H . A sketch of
the setup is depicted in Fig. 1. Because of the channel walls’
impermeability with respect to diffusion, the gradient of u
obeys no-flux boundary conditions (BCs) and reads

(∇u(r,t)) · n(r) = 0 , ∀r ∈ channel wall. (2)

Here n(r) denotes the outward-pointing normal vector at
the channel walls, viz. nz = (0,0, ± 1)T at z = 0,H and
n± = (∓ω′

±(x), ± 1,0)T at y = ω±(x). The prime denotes the
differentiation with respect to x.

Passing to dimensionless quantities, all lengths are mea-
sured in units of the widest cross section of the channel
ωmax, yielding r → ωmax r. The time is scaled in units of the
inverse characteristic kinetic constant of the slowest reaction,
t → t/kreac. Thus, the rescaled diffusion constants read D →
ω2

maxkreacD.

A. Asymptotic perturbation analysis

Below we perform asymptotic perturbation analysis in the
dimensionless geometric parameter

ε = (1 − δ)/L � 1, (3)

which characterizes the deviation of a corrugated boundary
ω±(x) from a flat one, i.e., ε = 0. δ denotes the ratio of the
bottleneck width ωmin to the maximal channel width ωmax ≡ 1,
i.e., δ = ωmin/ωmax, and L is the rescaled period length. The

ωmax

H

ωmin

L

Q(x)

ω+(x)

x

y
z ω-(x)

FIG. 1. (Color online) Sketch of a segment of a spatially modu-
lated 3D channel confining the excitable medium. The channel is
composed of periodically modulated boundaries at y = ω+(x) =
+ω(x) and y = ω−(x) = −ω(x), with spatial period L, and by
plane walls placed at z = 0 and z = H ; H represents the channel
height. Thus, the channel’s cross section Q(x) = H [ω+(x) − ω−(x)]
changes periodically in space. The quantities ωmin and ωmax denote
the bottleneck size and the maximum channel width, respectively.
The size of an unit cell is indicated with the dashed lines. The
concentration field u(r,t) of a front traveling from left to right is
color coded.

choice for the expansion parameter ε is motivated by previous
studies on Brownian motion in corrugated channels [27,36].
Upon rescaling the transverse coordinate y → ε y, the profile
functions become ω±(x) → ε h±(x) and the outward-pointing
normal vector at the perpendicular side walls is given by n± =
(∓εh′

±(x), ± 1,0)T . Thus, the no-flux BC Eq. (2) transforms
to

(∇u(r,t)) · n(r) = 0 = ∓ε2h′
±(x)∂xu ± ∂yu, (4)

at y = h±(x). Additionally, we scale the z coordinate by the
dimensionless channel height H , z → H z, leading to

ε2∂tu = D

(
ε2∂2

x u + ∂2
y u + ε2

H
2 ∂2

z u
)

+ ε2R(u). (5)

In the following, we shall omit the overbar in our notation.
Since Eqs. (4) and (5) are proportional to ε2, we solely

expand u in a series in even powers of ε, u(r,t) = u0(r,t) +
ε2 u1(r,t) + O(ε4). Substituting this ansatz into Eq. (5) and
observing the no-flux BCs Eq. (4), we obtain a hierarchic set of
coupled partial differential equations (PDEs). In leading order,
one has to solve D(∂2

y + (ε/H )2∂2
z )u0 = 0 supplemented with

no-flux BCs, 0 = ±∂yu0 at y = h±(x) and 0 = ±∂zu0 at
z = 0,1. Depending on the ratio of the transverse length
scales ε/H , different scenarios have to be discussed: For
RD processes either (i) on two-dimensional surfaces (H =
0) [7,8,10] or (ii) in very thin 3D channels (H � ε) like
microfluidic channels [41,42], the dynamics in the z direction
takes place on the fastest time scale and thus separates from
the relaxation dynamics in the y direction. Consequently, the
concentrations u can be simplified to be independent of z if the
nonlinear reaction kinetics R(u) is translational invariant in z.
For increased channel height, H 	 1, the dynamics in z is the
slowest and thus we presume that R(u) as well as the initial
preparation of the system u(r,0) are translational invariant in
z. Then, from the leading-order PDE one immediately gets
that the concentration profiles u0(r,t) = g(x,t) are flat in the
y and z directions. The unknown function g(x,t) has to be
determined from the second order O(ε2) balance given by

∂tu0 = D
(
∂2
x u0 + ∂2

y u1 + ∂2
z u0

) + R(u0). (6a)

Integrating the latter over the scaled cross section H (x) =
h+(x) − h−(x) and taking into account the no-flux BCs,

0 = ∓h′
±(x)∂xu0 ± ∂yu1,∀y = h±(x), (6b)

one obtains

∂tu0(x,t) = D∂2
x u0 + R(u0) + D

Q′(x)

Q(x)
∂xu0, (7)

with the rescaled channel’s cross section Q(x) =
H [ω+(x) − ω−(x)].

By applying asymptotic perturbation analysis in the small
parameter ε, the three-dimensional probem with spatially
dependent Neumann boundary conditions on the reactants,
Eq. (2), translates into a one-dimensional reaction-diffusion-
advection equation with a boundary-induced advection term,
Eq. (7). The advective velocity field v = Q′(x)/Q(x)ex re-
flects the periodicity of the channel modulation L, v(x + L) =
v(x), and has zero mean,

∫ L

0 dx v(x) = 0. Referring to Eq. (7),
a front propagating from left to right, ∂xu0 < 0, becomes decel-
erated where the channel expands, Q′(x) > 0, and accelerated
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if the channel contracts, Q′(x) < 0, respectively. For systems
where diffusion, advection, and reaction coefficients depend
periodically on space and time it has been shown [43] that the
profile of a traveling front and its velocity change periodically
in time—the TF solutions are called pulsating traveling fronts.
A lot of work has been done to proof the existence and stability
of these pulsating TFs [44–46].

B. Projection method: Multiple scale analysis

Next, we derive the equation of motion for the TW’s
position in response to the boundary-induced advection term,
D(v · ∇)u0 ∝ Q′(x), assuming weak spatial variations of the
cross section in propagation direction, i.e., max(|Q′(x)|) � ε.
Following Ref. [40], we can treat the advection term as a weak
perturbation to the 1D RD system for the leading order u0,

∂tu0(x,t) = D∂2
x u0 + R(u0). (8)

We presume that the RD system Eq. (8) possesses a stable TW
solution Uc. This solution is stationary in frame of reference
ξ = x − c0t comoving with the velocity c0,

0 = D∂2
ξ Uc + c0∂ξ Uc + R(Uc). (9)

The eigenvalues of the linear operator

L = D∂2
ξ + c0∂ξ + DR(Uc) (10)

determine the stability of the TW, where DR(Uc) denotes the
Jacobian matrix of R evaluated at Uc. Since we presume that
Uc(ξ ) is stable, the eigenvalue of L with the largest real part is
λ0 = 0 and the Goldstone mode W(ξ ) = U′

c(ξ ), also called
the propagator mode, is the corresponding eigenfunction.
Because L is in general not self-adjoint, the eigenfunction
W†(ξ ) of the adjoint operator L† to eigenvalue zero, the so-
called response function, is not identical to W(ξ ). Expanding
Eq. (7) with u0 = Uc(ξ ) + εũ up to O(ε) yields the PDE
∂t ũ = Lũ + v(ξ + c0t) · ∇Uc. Its solution ũ can be expressed
in terms of eigenfunctions wi of L as ũ = ∑

i ai(t)wi(ξ ) with
expansion coefficients ai ∼ ∫ t

t0
dt̃eλi (t−t̃)b(t̃) and b a functional

of D(v · ∇)u0 involving eigenfunctions of L†; for details see
the Supplemental Material in Ref. [40]. By multiple-scale
theory for small perturbations of order ε [38,40,47], the
following equation of motion (EOM) for the position φ(t)
of the TW in the presence of the boundary-induced advection
term is obtained

φ̇(t) =c0 − 1

Kc

∫ ∞

−∞
dξ W†(ξ )TD

Q′[ξ + φ(t)]

Q[ξ + φ(t)]
U′

c(ξ ), (11)

with constant Kc = ∫ ∞
−∞ dξ W†(ξ )T U′

c(ξ ) and initial condi-
tion φ(t0) = φ0. For monotonically decreasing front solutions,
we define its position φ as the point of steepest slope, while
for pulse solutions it is the point of maximum amplitude of an
arbitrary component. The EOM (11) only takes into account
the contribution of the perturbationD(v · ∇)u0 projected on the
response function W†(ξ )T affecting the TW’s position. Such
EOM must be seen as the first two terms of an asymptotic
series [48].

Since the integrand in Eq. (11) does not explicitly depend
on time, the mean time Tc the TW needs to travel one period

L is given by

Tc =
∫ L

0
dφ

1

c0 − 
(φ)
, (12)

and thus the average propagation velocity c reads

c = L

Tc

= L
/ ∫ L

0
dφ

1

c0 − 
(φ)
, (13)

with substitute 
(φ) = ∫ ∞
−∞ dξ W†T DQ′(ξ+φ)

Q(ξ+φ) U′
c/Kc.

III. SCHLÖGL MODEL

In what follows, we limit our consideration to a single-
component system, u = u, with bistable reaction kinetics. The
associated RD equation reads

∂tu = Du�u − u(u − a)(u − 1), 0 < a < 1, (14)

in dimensionless form. The parameter a is related to the
local excitation threshold of the medium while the two
stable states are given by u = 0 and u = 1, respectively. This
model was introduced by Zeldovich and Frank-Kamenetskii
to model flame propagation in 1938 [49] and then applied
by Schlögl to the description of a first-order nonequilibrium
phase transition [50]. Traveling front solutions to Eq. (14)
obey the Dirichlet boundary conditions limξ→−∞ u = 1
and limξ→∞ u = 0, respectively, and fulfill the condition
limξ→±∞ ∂n

ξ u = 0,∀n � 1.
In channels with nonmodulated cross section, Q(x) =

const, Eq. (14) possesses a stable TF solution whose profile,

u(r,t) = Uc(ξ ) = 1

1 + eξ/
√

2 Du

, (15)

and corresponding propagation velocity,

c0 =
√

Du

2
(1 − 2 a), (16)

are known analytically. The width of the traveling front,

l =
√

32 Du, (17)

defines the intrinsic length scale [50]. It is noteworthy that the
front velocity depends on the excitation threshold a while the
front profile and, consequently, the front width are independent
of a. This is a peculiarity of the Schlögl model. We emphasize
that the front width l depends solely on the diffusion constant
Du in our scaling. Therefore, we can adjust the latter by means
of the diffusion coefficient in the simulations. Furthermore,
one can prove that the response function W †(ξ ) reads

W †(ξ ) = ec0 ξ/DuU ′
c(ξ ), (18)

and thus the constant Kc is given by

Kc =
∫ ∞

−∞
dξ W † U ′

c = π

3

√
2

Du

a(1 − a)(1 − 2a)

sin(2aπ )
. (19)

For the profiles of the perpendicular side walls we chose a
sinusoidally modulated boundary function,

ω+(x)=
{

1
2 , for x < 0,

1
4

[
1 + δ + (1 − δ) cos

(
2πx
L

)]
, for x � 0,

(20)
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FIG. 2. (Color online) Average front velocity c in units of the
propagation velocity c0 as a function of the ratio of period length
L to front width l for a sinusoidally modulated channel; see Fig. 1.
The projection method (lines), Eq. (13), yields excellent agreement
with the numerical results (markers); particularly, it reproduces the
interval of propagation failure c = 0 for intermediate values of L/l;
however, it fails for small ratios L/l � 1. The remaining parameter
values are set to L = 5 and a = 0.4.

for the upper wall and set the lower boundary to ω−(x) = 0.
The chosen boundary profile can be seen as the first harmonic
of a Fourier series of an arbitrary periodic boundary profile.

Next, we compare our analytic estimate for the average
front velocity c, Eq. (13), with numerical results. Therefore,
Eq. (14) supplemented with the Neumann BC Eq. (2) is solved
numerically using the finite-element method (FEM) [51]. In
our simulations, the front is initialized with Uc(x − xstart) at
xstart = min(−4 l, − L) and simulated until it reaches xend =
max(10 L,ceil(10 l/L)L). The data for the average front
velocity c are determined from a linear fit to a position versus
time plot after subtracting transients.

In Fig. 2, we depict the average front velocity c in units of c0

as a function of the ratio of period length L to front width l. One
observes a nonlinear dependence of c on the ratio L/l: If the
spatial period is much larger than the intrinsic front width, L 	
l, the front velocity approaches c0. In this limit, the front is well
approximated by a step function, and all isoconcentration lines
collapse onto a single curve. Furthermore, one can assume that
its velocity instantaneously adapts when traveling through the
corrugated channel. Then the average front velocity is correctly
predicted by the harmonic mean velocity [39],

charm = L
/ ∫ L

0

dx

c0 + DuQ′(x)/Q(x)
, (21)

which tends to c0 for L/l → ∞. With decreasing ratio L/l,
i.e., either increasing the diffusion constant Du or decreasing
the period length L, the average propagation velocity lessens
until it attains its minimum value. Decreasing L further, L � l,
the value of c grows and finally saturates at a value smaller
than c0.

It turns out that both the minimum value of c and the
saturation value depend crucially on the bottleneck width δ.
In general, we find that the average front velocity diminishes
with shrinking bottleneck width δ for a given ratio L/l. In

L/l

c
/
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proj. method
L = 0.5
L = 1
L = 5

FIG. 3. (Color online) Numerical results for propagation velocity
c versus L/l for various period lengths L = 0.5 (squares), L = 1
(circles), and L = 5 (diamonds). The corresponding values for the
expansion parameter ε are ε = 1.2,0.6, and ε = 0.12. The analytical
prediction based on Eq. (13) is represented by the dashed line and
the predicted interval of propagation failure is indicated by the light
red block. The remaining parameter values are set to a = 0.4 and
δ = 0.4.

particular, we identify a finite interval of L/l values where
propagation failure occurs, i.e., the initially traveling front
becomes quenched [52] and c goes to zero. One observes that
the lower bound of L/l values, where the propagation failure
interval begins, shrinks with decreasing bottleneck width δ

while the upper bound, where the propagation failure interval
ends, becomes larger for smaller bottlenecks. Consequently,
the width of the propagation failure interval grows with
decreasing value of δ. Lowering the excitation threshold while
keeping the channel parameters L and δ constant facilitates
the traveling front to transit through the corrugated medium.
Thus the interval of propagation failure disappears for a → 0
(not shown explicitly).

Additionally, we compare our numerical results (markers)
with the analytical prediction (lines), Eq. (13), in Fig. 2. It
is noteworthy that the analytic result matches satisfactorily
with the numerics for all bottleneck widths δ. Moreover, it
reproduces correctly the interval of propagation failure for
intermediate values of L/l; however, it fails for small ratios
L/l � 1.

In Fig. 3, we illustrate a peculiarity of the projection
method. The EOM for a TW under the boundary-induced
perturbation Eq. (11) is determined by the convolution integral

(φ) with kernel W †(ξ )U ′

c(ξ ) = ec0ξ/DuU ′
c(ξ )2. The latter

consists of the response function W †(ξ ) and the Goldstone
mode U ′

c both being localized around ξ = 0 and decay
exponentially to zero if |ξ | > l for traveling fronts. On the
other hand, the advection field v(x) changes periodically with
period L. Therefore, the dynamics of the front position φ̇(t)
and, consequently, the analytic result for the average front
velocity c depend solely on the ratio of L to l for a given set of
δ and a values. This is shown in Fig. 3 where we present the
propagation velocity c/c0 for various period lengths, viz., L =
0.5 (squares), L = 1 (circles), and L = 5 (diamonds). The
value of Du is adjusted accordingly. It turns out that the analytic
prediction based on project method, Eq. (13), agrees well with
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the numerics for L = 5. With decreasing period length the
range of applicability diminishes. This is in compliance with
the assumptions made to derive Eq. (13): Both the asymptotic
perturbation analysis, Sec. II A, and the multiple scale analysis,
Sec. II B, require that the channel’s cross-section changing rate
max(|Q′(x)|) ∝ ε is small. According to Eq. (3), the value of
ε is inversely proportional to the period length L and thus the
analytical prediction fails, e.g., for L = 0.5 (ε = 1.2).

Moreover, we observe that the range of L/l values
where propagation failure occurs shrinks with decreasing
period length L. Remarkably, the lower bound seems to be
independent of L.

A. Propagation failure: Eikonal approach

Next we present a qualitative explanation for the appearance
of propagation failure for L 	 l. If the intrinsic front width
is much shorter than the spatial period, any front propagating
through the channel geometry can be well approximated by
a single time-dependent curve γ (s,t) tracing out a chosen
isoconcentration line parameterized by s. A plane front γ =
(c0 t,y)T has constant velocity at all points in the forward,
normal direction. A curved boundary distorts the plane wave
geometry due to the requirement that the edge of the wave
front must propagate so the TW always meets the boundary
orthogonally. Consequently, the normal velocity varies locally
across the front.

When a front attempts to turn around a curved boundary,
the entire front becomes curved and is well described by a
circular arc with radius rc touching orthogonally the boundary
ω+(x), see inset of Fig. 4. The associated curvature at x∗ is

0 0.2 0.4 0.6 0.8
0

4

6

8

10

12

2

FIG. 4. (Color online) Dependence of the upper bound (L/l)up

on the bottleneck width δ. The L/l values for which the eikonal
approach, Eqs. (23) and (24), predicts propagation failure are
indicated by the colored areas (L = 2, stripped area; L = 5, filled
area). Above the colored areas front propagation is possible. The
upper bound (L/l)up agrees excellently with the numerical results
(L = 2, diamonds; L = 5, squares) for narrow channels δ � 1 but
fails for channels with wide openings. In simulations, no propagation
failure was found for δ � 0.5. The numerical errors are of the size
of the markers. Inset: Sketch of a circular isoconcentration line with
radius rc touching orthogonally the top boundary ω+(x) at x∗.

given by

κ(x∗) = 1

rc

= 1

ω+(x∗)

ω′
+(x∗)√

1 + ω′+(x∗)2
� ω′

+(x∗)

ω+(x∗)
. (22)

Comparing Eqs. (11) and (22), one notices that the EOM for
TWs resembles the linear eikonal equation [53,54]

φ̇(t) � c0 − Du κ(φ), (23)

in the limit l � L and W †(ξ )U ′
c(ξ ) → δ(ξ ), respectively.

Note that the linear eikonal equation is derived from the
reaction-diffusion system in the sharp interface limit of
vanishing front width l. According to Eq. (23), standing
fronts exist and thus propagation failure occurs if the local
curvature is equal to κ(φ) = c0/Du. Grindrod et al. [55]
demonstrated that stationary circular TW solutions are stable
against deformations if the stability condition

ω′′
+(x∗) /∈ [0,ω′

+(x∗)2/(ω+(x∗)(1 + ω′
+(x∗)2)2)] (24)

holds at any x∗ ∈ [0,L].
In order to determine the upper bound of L/l, one has to,

first, find the roots of 0 = c0 − Duκ(x∗) and, second, check
if the stability condition Eq. (24) is not satisfied at x∗. The
dependence of the upper bound (L/l)up on the bottleneck
width δ is depicted in Fig. 4. Moreover, we compare the
analytic predictions based on the linear eikonal approach
(colored area) with the numerically obtained values for (L/l)up

using FEM simulations (markers). Obviously, the agreement
is excellent for small bottlenecks but fails for large values of δ.
In channels with wide openings δ → 1 traveling waves have to
curve only close to edge of the wave front. Consequently, the
isoconcentration lines γ (s,t) are almost planar, i.e., the front
travels with almost constant velocity in the x direction, and
propagation failure does not occur.

IV. DIFFUSION LIMITED REGIME: CONFINED
BROWNIAN MOTION

In Figs. 2 and 3, we have shown that the average propagation
velocity saturates at a value which is smaller than c0 if the
front width is much larger than the period of the channel,
L/l → 0. We emphasize that the projection method fails
in this limit and predicts c = c0 regardless of the value of
L and δ. In contrast, the numerics show that the saturation
value lessens with decreasing bottleneck width δ, cf. Fig. 2,
and with shrinking period L, see Fig. 3; in other words,
with growing value of ε = (1 − δ)/L. If the intrinsic width
l = √

32Du is much larger than the periodicity of the channel
L, the front is extended over many periods and boundary
interactions play a subordinate role. Then the diffusion of
reactants in propagation direction under spatially confined
conditions is the predominant process for wave propagation
and the problem can be approximated by an effective one-
dimensional description introducing an effective diffusion
constant Deff ,

∂tu(r,t) = Deff∂
2
x u + R(u). (25)

Experimental [21,22] and theoretical studies [24,25] on par-
ticle transport in microdomains with obstacles [56,57] and/or
small openings revealed that Brownian motion in such systems
exhibits nonintuitive features like a significant suppression of
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particle diffusivity [23,27,58]. Numerous research activities in
this topic led to the development of an approximate description
of the diffusion problem: the Fick-Jacobs approach [59,60].
The latter provides a powerful tool to describe particle
transport through corrugated channel geometries and its
accuracy has been intensively studied for diffusing particles
in two- [25,26] and three-dimensional channels [61]. The
Fick-Jacobs approach predicts that the effective diffusion
constant in longitudinal direction is solely determined by the
variation of the cross section Q(x) and can be calculated
according to the Lifson-Jackson formula [62]

DFJ
eff = Du

〈Q(x)〉x 〈1/Q(x)〉x (26)

with period average 〈·〉x = L−1
∫ L

0 · dx. For the exemplarily
chosen channel geometry, Eq. (20), the value of Deff is given
by

DFJ
eff = Du

2
√

δ

1 + δ
. (27)

Similarly to the derivation of the reaction-diffusion-advection
equation for u0, see Sec. II A, the Fick-Jacobs approach
is valid solely for weakly modulated channel geometries,
i.e., max|Q′(x)| ∝ ε � 1. For moderate to strong corrugated
boundaries, higher-order correction terms have to be consid-
ered [36], yielding

Dε
eff = Du

4 L
√

δ

π (1 − δ2)
asinh

[
π (1 − δ)

2L

]
. (28)

For the studied Schlögl model, the average propagation
velocity in units of the free velocity might be approximated

well by c/c0 �
√

D
FJ,ε
eff /Du, cf. Eq. (16).

In Fig. 5, we present the impact of the bottleneck width δ on
the propagation velocity c in units of c0 for two different period
lengths, viz., L = 1 and L = 5. In the numerics, the ratio L/l

is set to L/l = 0.1 and the diffusion coefficient Du is adjusted
accordingly. One notices that the analytic estimate using DFJ

eff ,

δ

c
/

c
0

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

L = 1
L = 5

Deff/Du

DFJ
eff /Du

FIG. 5. (Color online) Average front velocity c versus bottleneck
width δ for different values of a = 0.2 (blank markers) and a = 0.4
(filled markers). The ratio L/l is set to L/l = 0.1 and the diffusion
coefficient Du is adjusted accordingly, viz., Du = 3.125 (L = 1) and
Du = 78.125 (L = 5).

Eq. (27), agrees excellently with our simulation results for
large period lengths L = 5 (circles) and small values of ε,
ε ∈ [0,0.2], respectively. For smaller periods, L = 1 (squares),
higher-order corrections to the effective diffusion coefficient
Eq. (28) are necessary in order to ensure a good agreement
between numerics and analytics. The corresponding value
for the expansion parameter ε, Eq. (3), ranges from zero to
unity. Remarkably, the saturation value for the front velocity
in units of its free value c0 is independent of the value for the
excitation threshold a and thus solely determined by the spatial
variations of the channel cross section Q(x); to summarize,
c � √

0.5Deff(Q(x))(1 − 2a) for l 	 L.
Interestingly, in the limit L � l the propagation of travel-

ing fronts through channels with spatially modulated cross
sections can be well treated by a one-dimensional RD
equation [Eq. (25)] which neglects the impact of the spatial
variations on the reactants’ microscopic dynamics. However,
the influence of boundary modulation on diffusive transport
of material is hidden in an artificially introduced effective
diffusion coefficient Deff . To estimate the value of Deff detailed
information about the shape of the cross section is needed [63].

V. CONCLUSION

We have investigated the propagation of reaction-diffusion
waves confined to a channel with walls impermeable to
diffusion. The channel’s cross section changes periodically
on the length scale L in propagation direction. For weak mod-
ulations of the channel’s cross section, the space-dependent
no-flux boundary conditions can be mapped on a boundary-
induced advection term. The latter is proportional to the
spatial variation of the cross section Q(x). Using projection
method, we derive an equation of motion for the position of
a traveling wave as function of time in the presence of the
boundary-induced advection term. From the latter, we obtain
an analytical expression for the average propagation velocity c

of the wave traveling through periodically modulated channels.
Exemplarily, we study the impact of a sinusoidally mod-

ulated cross section on the propagation of traveling front
solutions in the one-component Schlögl model. It turns out
that the propagation velocity exhibits a nonlinear dependence
on the ratio of the spatial period L to the intrinsic width of the
front l: If the period is much larger than the intrinsic width,
L 	 l, a Schlögl front travels at the harmonic mean velocity
which tends to the value for nonmodulated channels c0. With
decreasing ratio L/l, the average propagation velocity lessens,
attains its minimum value, and starts to grow again until it
saturates finally at a value below the velocity in the straight
channel for L � l.

Beyond a critical bottleneck width, propagation failure
occurs, i.e., the initially traveling front becomes quenched
inside the corrugated channel and hence the minimal propaga-
tion velocity vanishes identically. With decreasing bottleneck
width, the lower and upper bound for propagation failure shift
to smaller and larger values for L/l, respectively. While the
shift is almost independent of L for the lower bound, the
upper bound grows with L. Moreover, we have demonstrated
that the existence of propagation failure and, in particular, the
dependence of the upper bound of L/l can be completely
understood based on the linear eikonal equation.
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In the case of very small periods, L/l � 1, the front
velocity is determined solely by the shape of the cross
section. In this limit, front propagation is dominated by
the diffusive motion of the reactants in spatial confinement.
The spatially dependent no-flux boundary conditions on the
reactants translate into a one-dimensional reaction-diffusion
system with an effective diffusion coefficient Deff as it is
demonstrated by the excellent agreement with simulation
results. Thereby, the influence of the spatial confinement on
the microscopic dynamics is hidden in the value of Deff and
Luther’s law is recovered.

Altogether, over a large range of spatial periods and
bottleneck values, the analytical result for the averaged
propagation velocity in the corrugated channel (including
propagation failure) agrees remarkably well with numerical
results obtained in FEM simulations. Since the applicability
of our perturbation analysis is based on a small channel’s cross-
section changing rate, max(|Q′(x)|) ∝ ε, deviations from the
analytical predictions are expected to grow for geometries

with short-scale spatial modulations and narrow openings.
Our results might be interesting for control purposes: In this
case, a desired protocol of movement for a traveling wave,
φ(t), is realized by a space-dependent cross section to be
derived solving the integral equation Eq. (11) for the unknown
Q(x), compare Ref. [40]. For periodically varying cross
sections, Q(x) = Q(x + L), accessible control parameters
include the spatial period, the modulation amplitude, and the
bottleneck width. Results in this direction will be presented in
a forthcoming paper.
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