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Chimera states have been recently found in a variety of different coupling schemes and geometries. In most
cases, the underlying coupling structure is considered to be static, while many realistic systems display significant
temporal changes in the pattern of connectivity. In this work we investigate a time-varying network made of two
coupled populations of Kuramoto oscillators, where the links between the two groups are considered to vary over
time. As a main result we find that the network may support stable, breathing, and alternating chimera states. We
also find that, when the rate of connectivity changes is fast, compared to the oscillator dynamics, the network
may be described by a low-dimensional system of equations. Unlike in the static heterogeneous case, the onset
of alternating chimera states is due to the presence of fluctuations, which may be induced either by the finite size
of the network or by large switching times.
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I. INTRODUCTION

The first evidence of chimera states dates back to 2002 [1],
when Kuramoto and Battogtokh, studying a system of identical
phase oscillators coupled in a nonlocal way, discovered the
onset of a counterintuitive behavior: the oscillators split
into two coexisting subpopulations, one coherent and one
incoherent. Since that first report, the phenomenon attracted
a lot of interest leading to the discovery of chimera states in
a variety of systems (phase oscillators [1–6], neurons [7,8],
chemical units [9], and chaotic units [10,11]). While chimera
states were initially observed only in systems with nonlocal
coupling (one-dimensional rings [1,2] and two-dimensional
systems [3,5,6]) and for pure phase dynamics, the results of
recent works pointed out the appearance of chimera states
also in systems with global coupling or with no negligible
amplitude dynamics [7,12–16].

A structure particularly relevant for our study is the one
formed by two coupled populations where each oscillator
is equally coupled to all the others in its group, and less
strongly to those in the other group [4]. Despite the symmetry
of the coupling structure, an asymmetric behavior—with
one population displaying synchronized oscillations and the
other exhibiting incoherence—emerges in this network. The
incoherent population may either show a constant level of
desynchronization (stable chimera) or an oscillating one
(breathing chimera). Notably, when the intrinsic frequencies
of oscillators are not homogeneous, an alternating chimera,
where the two populations alternate in the level of synchrony,
is observed [17]. This behavior mirrors unihemispheric sleep,
where sleep alternates between the two hemispheres with one
half of the brain awake with desynchronized neuronal activity
and the other sleeping and synchronized [18–20]. Alternating
chimera states have been also found in coupled populations
of forced oscillators [21], in time-delayed systems [22], and
in isotropic oscillatory media with nonlinear uniform global
coupling [23]. The onset of stable and breathing chimera states
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is not limited to two populations, but is found also in systems
formed by more than two coupled populations [24,25].

In recent works, the concept of chimera states has been
generalized to include other types of symmetry breaking so-
lutions and new terms have been coined: amplitude-mediated
chimera displaying temporal variations of the amplitude in
the incoherent population [12]; amplitude chimera, that is,
a chimera behavior in the oscillators amplitudes rather than
their phases [10,11]; chimera death [14], characterized by
coexistence of spatially coherent and incoherent oscillation
death; and chimera states with quiescent and synchronous
domains (QSCS), where synchronization coexists with spa-
tially patterned oscillation death [7,8]. In parallel to theoretical
investigations, experimental studies have demonstrated the
existence of chimera states in real systems. In [26] chimera
states have been revealed in a coupled map lattice made of
a liquid-crystal spatial light modulator; in [9] a system of
coupled Belousov-Zhabotinsky oscillators has shown chimera
behaviors such as phase-cluster states; and in [27] chimera
states have been observed in a set of metronomes placed on
two weakly coupled swings. An experimental evidence of
QSCS is reported in [8] for a system of electronic circuits
with neuronlike spiking dynamics.

Most of the works on chimera states assume that the
connection structure is static. However, in many systems
(for example, communication, ecological, social, and contact
networks) links are not always active and the connectivity
between units changes during time with a rate ranging from
slow to fast [28]. The dynamics of the systems interacting
through a network can be significantly affected by the link
activity. For this reason, the pattern of link activation is
explicitly taken into account as an element of the system
in the study of time-varying or temporal networks [28]. The
dynamics of time-varying networks are characterized by the
presence of two time scales (those of the dynamical process
and that of the link activation) and by the rule (which can
be either deterministic or stochastic) defining the connectivity
changes in time. In several works [29–31], to account for
sporadic intermittent interactions, time-dependent connections
are introduced by switching on or off, at a fixed frequency, a
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subset or the whole set of the edges of a network. For this
setting, an analytical approach for global synchronization is
derived in the limit of fast switching. In this paper we use
this framework to study the onset of chimera states in a time-
varying network. In particular, we consider a system made
of two coupled populations with strong, time-independent
links within each group and less strong interconnections
between them modeled by time-dependent edges. We found
that the system may exhibit stable, breathing, and alternating
chimera states. Alternating chimera states are found when the
fluctuations due to the stochastic switching of the connections
are not negligible.

The rest of this paper is organized as follows: Section II
introduces the model equations and network structure and
presents a bifurcation diagram. Section III discusses a low-
dimensional set of reduced equations to illustrate the mecha-
nism of switching. Section IV addresses questions related to
the size of the populations. Finally, we summarize the results
in Sec. V.

II. A SYSTEM OF TWO COUPLED POPULATIONS
WITH TIME-VARYING INTERACTIONS

We study a pair of oscillator populations [32,33], and
consider the coupling between groups changing as a function
of time. Each population σ (with σ = 1,2) consists of
Nσ identical phase oscillators. Within each population the
oscillators are globally coupled with links fixed in time and of
weight μ, while the coupling between the two populations
is time varying. The inter-population links are randomly
switched on or off at fixed equally spaced time intervals of
length τ . During each time interval, every possible connection
between two nodes in different groups is turned on, with
probability pswitch and weight equal to one, independently of
the other links, and independently of whether or not it has been
turned on during the previous time interval. This leads to an
interpopulation connectivity which is a time-varying matrix
given by a random sequence of Erdős-Rényi graphs with
average in-degree pswitchNσ . The system of two interacting
populations is described by

d

dt
θσ
i = ω +

2∑
σ

′=1

1

Nσ ′

Nσ ′∑
j=1

Kσσ ′
ij (t) sin

(
θσ ′
j − θσ

i − α
)
, (1)

where θσ
i is the phase of oscillator i in population σ ,

ω is the intrinsic frequency (equal for all the oscillators,
fixed without loss of generality at ω = 1), α is the phase
lag, and K11

ij (t) = K22
ij (t) = μ > 0 ∀t . K12(t) = [K21(t)]T are

stochastic matrices whose elements are defined as K12
ij (t) =

K21
ji (t) = sij (q) for (q − 1)τ < t < qτ with

sij (q) =
{

1, with probability pswitch,

0, with probability 1 − pswitch,
(2)

where q ∈ N+ defines the number of switching intervals, each
of length τ .

To monitor coherence in each population, two separate
Kuramoto order parameters are considered:

rσ (t) = |〈eιθi (t)〉σ |, (3)
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FIG. 1. (Color online) Bifurcation map with respect to the
switching probability pswitch and to the length of the switching interval
τ . The population size is N = 100, the coupling strength within
each group is fixed to μ = 0.6, the oscillators frequency ω = 1,
and the phase lag α = 1.5. The regions are labeled according to
the behavior observed: S synchronization; SC stable chimera; BC
breathing chimera; and AC alternating chimera.

with σ = 1,2 and ι = √−1. 〈·〉σ denotes the average over all
elements in population σ .

To illustrate the effect of the switching of the interpop-
ulation links, we discuss the behavior of a network with
N1 = N2 = N = 100 oscillators by varying the values of the
parameters ruling the switching, that is, the probability pswitch

and the length τ of the time intervals. The bifurcation diagram,
shown in Fig. 1, reveals the onset of different types of chimera
states in a large region of the parameter space (pswitch,τ ). The
region labeled as S is characterized by synchronization of
both populations, r1 = r2 � 1. All the other regions indicate
coexistence of synchronization with a chimera state. These are
illustrated in Fig. 2, where the evolution of the two Kuramoto
order parameters is reported for selected values of pswitch with
τ fixed to τ = 0.1. Stable chimeras are found in the region SC
(cf. Fig. 1) and are characterized by one coherent population,
showing synchronized oscillations and an order parameter
close to one [population 2 in Fig. 2(a)] and one desynchronized
(population 1). The phase coherence for the desynchronized
population remains approximately constant. For breathing
chimeras (region BC in Fig. 1), instead, the phase coherence
of the desynchronized population is not constant, but pulsates
[Fig. 2(b)]. Alternating chimera states appear in the region AC.
These chimeras are characterized by alternating synchrony
between the two populations [Fig. 2(c)]. While one population
is nearly synchronized, the other displays a pulsating order
parameter; the oscillators in the desynchronized population
may then gain synchrony at the expense of the oscillators
in the other population which lose synchrony. The behavior
is found to alternate with either regular or irregular periods
as a function of the value of pswitch and τ . To gain further
insights about the alternating behavior of the Kuramoto order
parameters, the average period of alternation 〈Tp〉 has been
characterized. Figure 3 shows a typical scenario obtained for
pswitch = 0.2, that is, a value for which any point (pswitch,τ )
in Fig. 1 belongs to the AC region. The average period of
alternation 〈Tp〉 exhibits a nonmonotonic behavior, with a
first part where it slightly decreases as a function of τ . In
this interval, the period of alternation is quite regular and
distributed according to a Gaussian. Further increasing of τ
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FIG. 2. (Color online) Time series of the two order parameters r1(t) (blue solid line) and r2(t) (red dotted line) for τ = 0.1 and different
values of the switching probability pswitch: (a) pswitch = 0.38; (b) pswitch = 0.33; and (c) pswitch = 0.25. Other parameters as in Fig. 1.

leads to an irregular behavior characterized by larger values of
the average and a distribution of Tp which now spans several
orders of magnitude (cf. inset for τ = 13.7). After a peak
around τ ≈ 13, the distribution remains long tailed but 〈Tp〉
becomes smaller. Very long periods of alternation are still
probable in this region, but occur more rarely.

The presence of coexisting states makes the system be-
havior dependent on initial conditions. However, we have
found that the appearance of chimera states in system (1)
does not require particular initial conditions, whereas in other
structures [1] the chimera states are observed starting from
initial conditions close to the final state. Figure 1, for instance,
has been obtained by assuming for each point of the diagram
the same initial condition, generated by drawing values from
a uniform random distribution in [0,2π ].

Our findings reveal that, when the two populations are cou-
pled with time-varying links, stable, breathing, and alternating
chimeras are all observed for identical oscillators. Comparing
this result with the analysis of patterns considering connec-
tivity fixed in time, reported in [4] and [17], we note that,
if the intrinsic frequencies are homogeneous, only stable and
breathing chimeras appear [4], while the onset of alternating
chimeras requires heterogeneity of the oscillators [17].
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FIG. 3. Average period of alternation 〈Tp〉 as a function of the
switching period τ for a population size of N = 100 and pswitch = 0.2.
The other parameters are fixed as in Fig. 1. The insets show the
distribution of the periods of alternation for selected values of τ . The
error bars correspond to the standard deviation of Tp .

III. REDUCED EQUATIONS

In the thermodynamic limit of infinite system size, N →
∞, many high-dimensional systems show low-dimensional
dynamics. These systems may be reduced to a small set of
ordinary differential equations for the study of the macroscopic
evolution. This has been recently demonstrated for a system
of globally coupled Kuramoto oscillators, which is reduced
to a single first-order ordinary differential equation [34], and
then generalized to assortative networks [35], time-varying
topologies [36], and arbitrary number of communities [37,38].
In this section we write down a low-dimensional model for
Eqs. (1) and show that this is able to explain the occurrence of
stable and breathing chimeras in our system. The mechanism
underlying the onset of alternating chimera states will be
discussed in Sec. IV.

We first introduce a nonswitching system, obtained from
Eq. (1) by considering a time-averaged connectivity:

d

dt
θσ
i = ω +

2∑
σ

′=1

〈
Kσσ ′

ij

〉
Nσ ′

Nσ ′∑
j=1

sin
(
θσ ′
j − θσ

i − α
)
, (4)

with

〈Kσσ ′ 〉 =
{
μ, if σ = σ ′,
pswitch, if σ �= σ ′.

(5)

Under the assumption that the switching period is small,
that is, the changes of the network topology operate on a time
scale faster than the node dynamics, it is to be expected that the
behavior of the switching system in Eq. (1) is close to that of
the averaged system. This is also confirmed by several works
investigating the effects of an increasing switching frequency
in temporal networks [29–31,39].

By applying the Ott-Antonsen ansatz [34] to Eq. (4), the
dynamics of the averaged system is then described in terms of
the oscillator density distribution f σ (θ ). Omitting a detailed
derivation, one obtains the following set of reduced equations:

ρ̇σ = 1 − ρ2
σ

2

2∑
σ ′=1

〈Kσσ ′ 〉ρσ ′ sin(φσ ′ − φσ + β), (6a)

φ̇σ = ω − 1 + ρ2
σ

2ρσ

2∑
σ ′=1

〈Kσσ ′ 〉ρσ ′ cos(φσ ′ − φσ + β), (6b)
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FIG. 4. (Color online) Bifurcation diagram of system (7) with
respect to parameter pswitch. Solid (dashed line) curves indicate stable
(unstable) fixed points. Green shading refers to a stable limit cycle.
Points A, B, and C mark the saddle-node, Hopf, and homoclinic
bifurcation, respectively. Parameters: μ = 0.6 and α = 1.5.

where we used β = π/2 − α. Defining the phase difference
between the two populations ψ = φ1 − φ2 yields the following
equations:

ρ̇1 = 1 − ρ2
1

2
[μρ1 cos α + pswitchρ2 cos(−ψ − α)], (7a)

ρ̇2 = 1 − ρ2
2

2
[μρ2 cos α + pswitchρ1 cos(ψ − α)], (7b)

ψ̇ = −1 + ρ2
1

2

[
μ sin α + pswitch

ρ2

ρ1
sin(ψ + α)

]

+ 1 + ρ2
2

2

[
μ sin α + pswitch

ρ1

ρ2
sin(−ψ + α)

]
. (7c)

System (7) is studied with respect to the parameter pswitch ∈
[0,0.5]. Beyond the trivial equilibrium point (1,1,0), which
represents global synchronization of the network, the system
may have four further equilibria and two additional invariant
limit cycles depending on pswitch as discussed below. Due to
symmetry with respect to coordinates change (ρ1,ρ2,ψ) →
(ρ2,ρ1,−ψ), it suffices to study only the equilibria on one of
the planes ρ1 = 1 or ρ2 = 1.

Figure 4 depicts the bifurcation diagram of system (7)
for ρ1 = 1. Starting from pswitch = 0.5 and decreasing this
parameter, we find a saddle-node bifurcation (point A in
Fig. 4), a Hopf bifurcation (point B in Fig. 4), and a homoclinic
bifurcation (point C in Fig. 4). The different regions in
the bifurcation diagram correspond to the onset of different
types of chimera states. For pswitch ∈ [B,A] the system (7)
has three stable equilibrium points, which correspond to
global synchronization or stable chimeras in one of the two
populations. For pswitch ∈ [C,B] the system (7) has one stable
equilibrium and—due to the symmetry mentioned above—two
stable limit cycles, which give rise to a coexistence of global
synchronization and breathing chimera states. The period of
these limit cycles increases for decreasing pswitch (see Fig. 5)
meaning that the period of the breathing chimera becomes
longer as pswitch approaches the homoclinic bifurcation point.
At the homoclinic bifurcation point C the limit cycles of
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FIG. 5. (Color online) Period T of the limit cycle present in
system (7) in dependence on pswitch. Point B marks the Hopf
bifurcation. The inset shows the limit cycle in the [ρ1, sin(ψ)] plane.
The color gradient corresponds to the pswitch values (dark: larger,
bright: smaller). Parameters: μ = 0.6 and α = 1.5.

system (7) collide and annihilate in a homoclinic bifurcation
so that for pswitch ∈ [0,C] only the trivial equilibrium (1,1,0)
persists.

We find that the reduced equations (7) are effectively able
to predict the behavior of the switching system for small τ and
pswitch ∈ [C,0.5]. Outside this region, alternating chimeras, not
predicted by the reduced model, are found. As we will show in
the next section, the discrepancy between the prediction and
the behavior observed in Fig. 1 is not due to a failure of the
reduced model, but reflects a difference between a finite and
an infinite network.

System (7) has been numerically simulated for several
values of pswitch and the results have been reported in Fig. 6,
showing its phase portrait and the time evolution of ρ1 and ρ2.
To better illustrate the coexistence of multiple attractors, three
different initial conditions are considered in Figs. 6(a)–6(c).
Figure 6(a), obtained for pswitch = 0.38, shows the coexistence
of the equilibrium point (1,1,0) (synchronization of the two
populations), and the two symmetrical equilibrium points in
which either ρ1 = 1 or ρ2 = 1 (stable chimeras). Figure 6(b),
obtained for pswitch = 0.33, shows an example of coexistence
of the trivial equilibrium point (1,1,0), and stable limit
cycles (breathing chimeras). Finally, Fig. 6(c) represents an
example of the phase portrait obtained for a value of pswitch

(pswitch = 0.25) smaller than the homoclinic bifurcation point
C, where only the equilibrium (1,1,0) exists. The comparison
between the behavior of the reduced model (7) and that
of the switching system (1) shows that, for small τ and
pswitch ∈ [C,0.5], the trajectory of the switching system is
close to that of the averaged reduced model. For instance,
for pswitch = 0.38 the phase portrait and the trajectories of
the averaged reduced model, shown in Figs. 6(a) and 6(d),
are in agreement with the stable chimera displayed by the
switching system in Fig. 2(a). An agreement is also found in
the case of breathing chimera states, observed in the reduced
model for pswitch ∈ [C,B]. For example, for pswitch = 0.33 the
state of the switching system [Fig. 2(b)] is a breathing chimera
which is reproduced by the averaged reduced model [Figs. 6(b)
and 6(e)].
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FIG. 6. (Color online) (a)–(c) Phase portrait of Eqs. (7) and (d)–(f) time evolution of ρ1 (blue solid line) and ρ2 (red dotted line) with
parameters: (a) and (d) pswitch = 0.38; (b) and (e) pswitch = 0.33; and (c) and (f) pswitch = 0.25. Other parameters as in Fig. 4.

IV. ONSET OF ALTERNATING CHIMERAS

In this section we discuss the behavior in the region
of parameter pswitch ∈ [0,C]. In this region the reduced
model predicts that only global synchronization is possible.
However, alternating chimera states are observed even for
small switching intervals as shown in Fig. 1. The discrepancy
is due to the finite size of the network under consideration,
which counts N = 100 oscillators in each population.

To show that the model accurately predicts the absence of
chimera states in this region in the thermodynamic limit, we
have carried out simulations at increasing values of the network
size and identified the region where alternating chimera states
appear. We notice that this region depends on τ , but as
predicted by the reduced model the one corresponding to small
τ tends to shrink when the network size increases (Fig. 7). For
large N alternating chimera states are still found for larger
values of τ (cf. the inset of Fig. 7). We thus conjecture that the
onset of chimera states is due to fluctuations and that the causes
of these fluctuations are the finite size of the network and the
large switching periods. In line with this, we have seen that:
(i) when noise is added to the reduced model, an alternating
behavior may be observed; and (ii) fluctuations increase when
τ is increased or N decreased.

In the region pswitch ∈ [0,C], due to the homoclinic bifurca-
tion, the structure of the phase portrait of the reduced model is
such that the trajectory, starting in a neighborhood of the only
stable equilibrium point (1,1,0), experiences a large excursion
before returning to the equilibrium [Figs. 6(c) and 6(f)]. In
the presence of fluctuations this may lead to a series of pulses
in the evolution of the variables ρ1 and ρ2. To confirm this,

simulations of the model (7) subject to an additive noise term
are carried out. In particular, we have considered a stochastic
term added to the averaged reduced system as follows:

ρ̇1 = 1 − ρ2
1

2
[μρ1 cos α + pswitchρ2 cos(−ψ − α)] + ξ (t),

(8a)

FIG. 7. (Color online) Extent of the region of alternating chimera
as a function of the network size for two values of τ . Region I
corresponds to τ = 0.1 and region II to τ = 10. Other parameters as
in Fig. 1. The inset shows the range of pswitch that allows for alternating
chimeras as a function of τ for two different values of N (N = 256
and N = 1024).
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FIG. 8. (Color online) (a) Phase portrait of Eqs. (8) and (b) time
evolution of ρ1 (blue solid line) and ρ2 (red dotted line) with pswitch =
0.25, D = 0.004. Other parameters as in Fig. 1.

ρ̇2 = 1 − ρ2
2

2
[μρ2 cos α + pswitchρ1 cos(ψ − α)] − ξ (t),

(8b)

ψ̇ = −1 + ρ2
1

2

[
μ sin α + pswitch

ρ2

ρ1
sin(ψ + α)

]

+ 1 + ρ2
2

2

[
μ sin α + pswitch

ρ1

ρ2
sin(−ψ + α)

]
, (8c)

where ξ (t) is a Gaussian white noise satisfying 〈ξ (t)ξ (t ′)〉 =
Dδ(t − t ′) with noise intensity D.

We have numerically verified that a small level of noise in
Eqs. (8) leads to alternating chimera states analogous to those
observed in the switching system. For instance, the alternating
chimera state of Fig. 2(c) is also identified in the averaged
reduced model (8) for pswitch = 0.25 and D = 0.004 (Fig. 8).

To study the dependence of the fluctuations on τ and N ,
we have performed numerical simulations while monitoring
the standard deviation σR of the Kuramoto order parameter in
Eq. (3) for the desynchronized population of a stable chimera
state in dependence on τ at different values of N . The results
(not reported) show that fluctuations indeed increase with τ

and decrease with N . The consequence is that, increasing τ for
large size networks, the range of pswitch allowing for alternating
chimeras increases, as shown in the inset of Fig. 7.

V. CONCLUSIONS

In this work we have considered a pair of two populations
of identical oscillators with time-varying interpopulation links.

In the case of fixed connectivity, such a network exhibits
stable or breathing chimeras, while alternating chimeras may
be observed only if a degree of heterogeneity in the distribution
of oscillator intrinsic frequencies is introduced. When the
interpopulation links change over time, we have found that
the network may support all the three chimera states even in
the case of identical oscillators.

The switching between the different network topologies,
which result from the stochastic rule used to establish
interpopulation links, induces fluctuations in the system. We
have found that such fluctuations are averaged out in the
thermodynamic limit and under the assumption of small
switching intervals. In this case, the dynamics of the system can
be qualitatively represented by a low-dimensional averaged
system that accurately predicts the stable and breathing
chimeras. However, fluctuations are fundamental to explain
the onset of alternating chimera states and can be incorporated
in the low-dimensional model with the addition of a stochastic
term. Since fluctuations increase for decreasing values of N

and increasing of τ , alternating chimera states are likely to
occur not only in small networks, but also in arbitrary large
structures in the presence of large switching time intervals.

Our findings can be generalized for more than two pop-
ulations coupled in a ring configuration with time-varying
interpopulation links. We have evidence that this gives rise
to traveling incoherent domains and other spatio-temporal
patterns of coherence and incoherence.

Finally, we notice that our results may be related to
stochastic resonance or, more in general, to noise-induced
phenomena in bistable or excitable systems [40,41]. In our
system, the internal noise plays a fundamental role in eliciting
the alternating chimera state. We have observed that, depend-
ing on the noise level, fluctuations may either regularize the
alternating behavior or lead to a very long-tailed distribution
of the residence times.
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Rev. Lett. 106, 234102 (2011).

[11] I. Omelchenko, B. Riemenschneider, P. Hövel, Y. Maistrenko,
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