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Mean-field approximation for the Sznajd model in complex networks
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This paper studies the Sznajd model for opinion formation in a population connected through a general
network. A master equation describing the time evolution of opinions is presented and solved in a mean-field
approximation. Although quite simple, this approximation allows us to capture the most important features
regarding the steady states of the model. When spontaneous opinion changes are included, a discontinuous
transition from consensus to polarization can be found as the rate of spontaneous change is increased. In this
case we show that a hybrid mean-field approach including interactions between second nearest neighbors is
necessary to estimate correctly the critical point of the transition. The analytical prediction of the critical point is
also compared with numerical simulations in a wide variety of networks, in particular Barabási-Albert networks,
finding reasonable agreement despite the strong approximations involved. The same hybrid approach that made
it possible to deal with second-order neighbors could just as well be adapted to treat other problems such as
epidemic spreading or predator-prey systems.
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I. INTRODUCTION

The Sznajd model is a very simple opinion propagation
model with an outflowing dynamics that has been employed
to describe a wide variety of sociophysics situations in the
past decade [1]. In politics, for instance, this model is capable
of describing some scaling behavior observed in proportional
elections in Brazil [2] and other countries [3].

In this work we consider one of the versions of this model
in a complex network that we have named the complex
Sznajd model (CSM) [4]. In our version each node of
the network stands for a voter who is assigned an integer
σ (t) ∈ {0,1,2, . . . ,Nc} that represents its opinion in time t ;
in particular, σ = 0 stands for an undecided voter. So, once
a node X is chosen, the dynamics evolves according the
following set of rules [5].

(I) If node X already has an opinion [σ
X
(t) �= 0], another

node Y is picked up at random from the set �
X

of nearest
neighbors of X and rule II is applied; otherwise, nothing
happens.

(II a) If node Y is undecided, then it adopts the node X

opinion with probability p
X

= 1/q
X
, where q

X
is the degree of

node X.
(II b) If both nodes X and Y have the same opinion, node

X tries to convince each of its neighbors with probability
p

X
= 1/q

X
and node Y does the same with its own neighbors,

but now with probability p
Y

= 1/q
Y
.

(II c) If X and Y have different opinions, nothing happens.
Besides these conventional rules, we are also interested

in studying the role of a spontaneous opinion change in the
dynamics. In this case we consider an extra rule so that node
X can choose at random any non-null opinion with probability
ω or follow the previous rules with the complementary
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probability 1 − ω [5,6]. We finally define a Monte Carlo time
(MCT) as a sequence of N applications of those rules, as usual.

II. THE MASTER EQUATION FOR THE MODEL

From these rules it is possible to write down a master
equation for the time evolution of opinions. Let us define the
node i as the convinced node, one of its next-nearest neighbors
j ∈ �i as the convincing node, and ησ (i,t) as the probability
of i to have opinion σ at time t [7]. It is also important to
define the couple able to convince i as the pair (j,k), with k

belonging to the next-nearest neighborhood of j , the so-called
second-nearest neighborhood of i, denoted here by γi .

Since we are interested mainly in the analysis of the steady
states of the dynamics and due to the fact that all nodes
eventually get some opinion (at least in connected graphs),
not becoming undecided again, it is straightforward that
η∗

0 = 0 for any state we must consider. Therefore, to compute
a nontrivial steady state η∗

σ , it is enough to write down only
the master equation corresponding to a given candidate σ and
dismiss rule (II a).

In Eq. (1) we present the obtained master equation. It is easy
to understand the meaning of term I in this equation as follows:
Suppose that a node j ∈ �i , chosen in a given Monte Carlo step
with probability 1/N , picks up at random one of its neighbors
k ∈ �j with probability 1/q

j
and, if σi �= σ and σj = σk = σ

[with probability P (σi �= σ,σj = σk = σ )], the pair (j,k) may
finally convince i, changing its opinion from σi �= σ to σ , with
probability 1/q

j
. The plus token preceding it stresses the fact

that this possibility increases the voting intentions for σ :

�ησ (i)

= +
∑
j∈�i

∑
k∈�j

1

N
P (σi �= σ,σj = σk = σ )

1

qj

1

qj︸ ︷︷ ︸
I

+
∑
k∈γi

∑
j∈�i∩�k

1

N
P (σi �= σ,σj = σk = σ )

1

qk

1

qj︸ ︷︷ ︸
II
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−
Nc∑

σ ′=1(σ ′ �= σ )

∑
j∈�i

∑
k∈�j

1

N
P (σi=σ,σj=σk=σ ′)

1

qj

1

qj︸ ︷︷ ︸
III

−
Nc∑

σ ′=1(σ ′ �= σ )

∑
k∈γi

∑
j∈�i∩�k

1

N
P (σi=σ,σj=σk=σ ′)

1

qk

1

qj︸ ︷︷ ︸
IV

.

(1)

To understand now term II in (1), suppose that a node
k ∈ γi is chosen in a given Monte Carlo step (probability 1

N
)

and then picks up at random one of the mutual neighbors
of k itself and i (i.e., a node j ∈ �i∩�k) with probability
1/q

k
. Again, if σi �= σ and σj = σk = σ [with probability

P (σi �= σ,σj = σk = σ )], the pair (j,k) may convince i with
probability 1/q

j
(see Fig. 1 for further clarification).

Terms III and IV may be understood in the same way. They
stand for a decrease in the voting intentions for σ and must be
preceded by a minus token. It is also necessary to sum over all
possible candidates σ ′ �= σ .

We highlight that the terms II and IV in (1) are the main
difference between our approach and previous ones [8,9]. It is
easy to realize that these terms are related to transition rates
with a relatively low frequency and their absence does not
affect the qualitative description of the model. Nevertheless,
we show that the presence of the terms can greatly improve its
quantitative description, allowing us to take into account the
correlations present in the underlying network, which is crucial
in the case of the Sznajd model due to its second-neighbor
interactions.

III. THE MEAN-FIELD APPROACH

To perform the mean-field approximation we assume
no correlation of opinion probabilities, i.e., P (σi,σj ,σk) =
P (σi)P (σj )P (σk), and opinion homogeneity over the network,
namely, P (σi = σ ) = ησ , where ησ (t) is the probability of
any voter to have opinion σ at time t . In addition, we
replace all the local variables in Eq. (1) by their mean value
over all the network, namely, the mean degree of a node
(qi → 〈q〉), the mean degree of a nearest neighbor of a node
(qj → 〈qn〉), the mean degree of a second-nearest neighbor of
a node (qk → 〈q ′

n〉), and the mean number of second-nearest
neighbors of a node (q ′

i → 〈q ′〉). We also introduce a geometric
factor 〈l〉 to express the mean number of mutual neighbors
between i and k as the product 〈l〉〈q ′

n〉 [7].

i j k l

FIG. 1. (Color online) Node k may influence the opinion of i only
together with j through the formation of the convincing couple (j,k).
If k chooses the neighbor l, for instance, the convincing couple is
unable to change the opinion of i, which happens to be out of range.

We may also consider the time increment corresponding to
Eq. (1) as �t = 1/N so that, in the thermodynamic limit, the
master equation can be reduced to

�ησ

1/N
→ η̇σ = 1

α
ησ

⎛
⎝(1 − ησ )ησ −

∑
σ ′ �=σ

η2
σ ′

⎞
⎠ , (2)

where α ≡ 〈qn/〉(〈q〉 + 〈l〉〈q ′〉) is a geometric-dependent pa-
rameter and the overdot stands for the time derivative, as usual.
As a matter of fact, Eq. (2) constitutes a system of Nc − 1
coupled differential equations with fixed points satisfying both
the condition η̇σ = 0 and the normalization constraint in such
a way that

η∗
σ

(
η∗

σ −
Nc∑
r=1

(η∗
r )2

)
= 0, (3)

leading all of its non-null components to share a common value
since the quadratic term Q∗({η∗

σ }) ≡ ∑Nc

r=1(η∗
r )2 is constant.

In this case the fixed points are stable only when η∗
σ = 1 for

a specific opinion σ and any other possible configuration is
unstable.

The same qualitative result may be obtained if we consider
only two possible different probabilities: ησ , associated with
opinion σ , and ησ ′ , related to all other opinions. In other terms,
we consider the approximation ησ ′ = (1 − ησ )/(Nc − 1) and
the (Nc − 1)-dimensional system is now collapsed in a one-
dimensional space, i.e., we choose to analyze the probability
of one particular opinion σ and consider all the other opinions
sharing the same probability. Within this simplified approach,
the system of equations expressed in (2), now projected in a
one-dimensional space, can be written as

η̇σ = Nc

α(Nc − 1)
ησ (1 − ησ )

(
ησ − 1

Nc

)
. (4)

This procedure can be also interpreted as focusing only on
two of the expected steady states of the model, namely, an
absorbing ferromagneticlike state {η∗

σ = 1,η∗
σ ′ = 0} and an

equiprobable paramagneticlike state {η∗
σ = η∗

σ ′ = 1/Nc}.
The fixed points of (4) are η∗

σ = 0,1,1/Nc, where η∗
σ = 0,1

are stable fixed points and η∗
σ = 1/Nc is unstable. In this case

we may identify three different configurations as steady states
of the original system: a stable configuration representing con-
sensus with opinion σ , {η∗

σ = 1,η∗
σ ′ = 0}, as observed numeri-

cally, and two configurations representing polarization, {η∗
σ =

η∗
σ ′ = 1/Nc} and {η∗

σ = 0,η∗
σ ′ = 1/(Nc − 1)}, not found in

numerical simulations, which can be demonstrated as unstable
configurations according to calculations by Timpanaro and
Prado in [10]. Therefore, in a mean-field approximation, the
CSM always evolves to a steady state of consensus as observed
in the original Sznajd model [6]:

η̇σ = (1 − ω)

[
1

α
ησ

(
ησ −

Nc∑
r=1

η2
r

)]

+ω

[
(1 − ησ )

1

Nc

− ησ

(
1 − 1

Nc

)]
. (5)

We call attention to the fact that, despite the huge con-
traction performed, the simplified version retains what we
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consider to be the core of the multidimensional version,
the structure of the fixed points (the absence of opinions,
consensus, and polarization), which happens also in the study
of the system with spontaneous opinion change, as will be
seen in the following. For the model with spontaneous opinion
change, the master equation is completely analogous to Eq. (2),
as we show in Eq. (5). In this case the terms related to
the conventional dynamics are preceded by a factor 1 − ω,
whereas the other terms are preceded by a factor ω, which
stands for the probability that the chosen voter changes its
opinion spontaneously. In particular, ω(1 − ησ )(1/Nc) stands
for the probability that a voter supporting a candidate other
than σ changes its opinion, choosing it among Nc candidates,
and −ωησ (1 − 1/Nc) stands for the probability that a voter
supporting σ changes its mind, choosing another one.

Within the approximation η∗
σ ′ = (1 − ησ )/(Nc − 1), the

fixed points for the model with spontaneous opinion change
are

η∗
σ ≡ η = 1

Nc

,

η∗
σ ≡ η± = 1

2
±

√
1

4
− α

Nc − 1

Nc

ω

1 − ω
(6)

and their stability depends on ω as follows: η+ is stable
in ω � ωt , whereas η is unstable in ω � ω and η− is
unstable in ω � ω � ωt , where ω = [1 + αNc]−1 and ωt =
[1 + 4α(Nc − 1)/Nc]−1, as shown in Fig. 2. In this case
the fixed point can also be interpreted as three different
configurations of the system, namely, an ordered configura-
tion representing consensus with opinion σ , {η∗

σ = η+ ,η∗
σ ′ =

(1 − η+)/(Nc − 1)}, and the disordered configurations {η∗
σ =

η−,η∗
σ ′ = (1 − η−)/(Nc − 1)} and {η∗

σ = η∗
σ ′ = 1/Nc} repre-

senting polarization.
Although the fixed points shown above [Eq. (6)] were

obtained through the ησ ′ = (1 − ησ )/(Nc − 1) approximation,
we highlight that they are also solutions of Eq. (5) (see
Fig. 2). It can also be shown that the stability properties of
the approximated fixed points {η∗

σ = η+,η∗
σ ′ = (1 − η+)/Nc}

and {η∗
σ = η∗

σ ′ = 1/Nc} are compatible with a complete
multidimensional mean-field analysis (see the Appendix). In

4.00
ω

0

1

ησ

Numerical
Analytical

Fully Connected Network

Nc = 10
N = 106

ωt

η

η−

η
+

1
Nc

ω

ω = 0.091(5)

ωt = 0.218(5)

FIG. 2. (Color online) Bifurcation diagram for the CSM. Mean-
field results are shown by solid (stable) or dashed (unstable) lines,
depending upon their stability, whereas numerical results taken in a
fully connected network are represented by symbols. The error bars
in the numerical results are smaller than the symbols.

0 0.6ω
0

1

Ψ

Nc = 10
Nc = 2

BA Network

N = 106

FIG. 3. (Color online) Order parameter for the CSM. Mean-field
results are shown by solid lines whereas numerical results taken in a
BA network are shown by symbols. The error bars in the numerical
results are smaller than the symbols.

addition, the predicted stability of these solutions for ω <

ω < ωt defines an interval of bistability, actually observed in
all simulations performed.

As would be expected, we can identify some limitations
in the applicability of the assumption of equal sharing of
remaining votes; for example, the predicted configuration
of polarization {η∗

σ = η−,η∗
σ ′ = (1 − η−)/Nc} in ω < ω was

never found numerically and a complete multidimensional
analysis reveals its instability. Nevertheless, the approximated
approach is fairly successful once all the others solutions
provided by it are also exact solutions of the complete
multidimensional system, as shown in the Appendix, with
stability analysis failing only in that case.

IV. CRITICAL BEHAVIOR OF THE MODEL

It is also convenient to define an order parameter

	 = Nc

Nc − 1

(
max

σ
{ησ } − 1

Nc

)
, (7)

where ωt plays the role of a transition temperature between
the phases corresponding to consensus and polarization. In
other words, the system can undergo a discontinuous phase
transition, depending on the rate of spontaneous opinion
change, as shown in Figs. 3 and 4. In the particular case Nc = 2
the order parameter is a continuous function on ω, meaning
that ωt (Nc = 2) plays the role of a critical point according the
phase diagram shown in Fig. 5.

Considering ensembles with 100 network samples of size
N = 106 voters, we performed Monte Carlo simulations in a
wide variety of networks to confirm the analytical predictions.
The existence of a discontinuous phase transition was verified
in all the cases and the numerical transition point shows
acceptable agreement with the one predicted analytically in
most of them (see Table I).

In the case of Barabási-Albert networks the transition point
computed numerically is ωt = 0.335(3), whereas the mean-
field prediction is ωt = 0.255(3). The simple mean-field value
found before by Vannucchi and Prado was ωt = 0.099 [8],
in stark contrast with our results, showing that the present
terms considered in the master equation are indeed mainly
responsible for the improvements in the results (see Table I
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FIG. 4. (Color online) Typical time series for the model in a BA
network near its transition point ω ≈ ωt . In this case the system can
alternate between polarization and consensus, even interchanging the
majority opinion.

for further comparisons). For Nc = 2 the mean-field approach
still describes qualitatively well the behavior of the system
exhibiting a continuous phase transition with numerical and
analytical transition points respectively equal to ωt = 0.485(3)
and ωt = 0.375(1).

It is important to stress that the parameter 〈l〉 is usually
much smaller than unity, showing that the transition rate related
to this factor is rare, as mentioned earlier (see Table II).
Similar approaches, in previous works, usually omit this
transition rate either because the Sznajd model is always
analyzed in a fully connected network [9,11] or because of
the presumed smallness of the term [8]. However, if we ignore

0 50
Nc

0

0.5

ω

Numerical
Mean-field
Guide line
ω

BA Network

DISORDERED
PHASE

ORDERED
PHASE

N = 106

BISTABILITY

0 1000Time (MCT)0

125

V
ot

es
 (×

 1
03 )

0 1000Time (MCT)0

80

V
ot

es
 (×

 1
04 )

FIG. 5. (Color online) Phase diagram for the CSM in a BA
network. Typical time series for each phase are shown in the bottom
row of insets: the ordered phase on the left and the disordered phase
on the right. The error bars in the numerical results are smaller than
the symbols.

TABLE I. Comparison between the mean-field and numerical
results of the transition point ωt for the main networks studied. For
complex networks, m is the minimum degree of a node in a Barabási-
Albert (BA) network and s is the rewiring probability of an edge in a
Watts-Strogatz (WS) network.

Network Transition point

(Nc = 10) Mean-field results Numerical

(N = 106) Simple Higher order results

BA (m = 5) 0.070(5) 0.255(5) 0.335(5)
WS (s = 0.01) 0.22(1) 0.33(1) 0.215(5)
square lattice 0.217 0.328 0.215(5)
cubic lattice 0.217 0.337 0.285(5)
hypercubic lattice (d = 4) 0.217 0.342 0.355(5)
hypercubic lattice (d = 6) 0.217 0.347 0.355(5)
Bethe lattice (z = 3) 0.217 0.316 0.350(5)
fully connected 0.217 0.217 0.218(5)
hypercubic lattice (d → ∞) 0.217 0.357
Bethe lattice (z → ∞) 0.217 0.357

those interactions completely, the transition point found in the
mean-field approach does not show acceptable agreement with
the one computed numerically.

Moreover, heuristic arguments on hypercubic lattices allow
us to claim other related results such as 〈l〉 = 0 and 〈l〉〈q ′〉 ∝
〈q〉 in the limit of high dimensions, leading to α = 1

2 and ωt =
[1 + 2(Nc − 1)/Nc]−1. It is easy to evaluate those parameters
on a Bethe lattice and confirm our expectations as we highlight
in Table II. We can also compare our expectations with
simulations in a fully connected network, but the results are
slightly different, mainly because of the complete absence
of a second-nearest neighborhood in this case that does not
allow any transitions related to terms II and IV in the master
equation.

TABLE II. Summary of the geometric-dependent parameters of
the model for the main networks studied. For complex networks the
results are averages taken over ensembles with 100 network samples
of size N = 106 nodes where m is the minimum degree of a node
in BA networks and s is the rewiring probability of an edge in WS
networks.

Geometric parameter

Network 〈q〉 〈qn〉 〈q ′〉 〈l〉 α

BA 9.99 37(1) 335(5) 0.1064(1) 0.813(8)
(m = 5)
WS 4.00(1) 4.00(1) 8.00(1) 0.38(1) 0.57(1)
(s = 0.01)
linear lattice 2 2 2 0.50 0.67
square lattice 4 4 8 0.38 0.57
cubic lattice 6 6 18 0.28 0.55

hypercubic lattice 2d 2d 2d2 2d−1
2d2

2d

4d−1

Bethe lattice z z z(z − 1) 1
z

z

2z−1

fully connected N − 1 N − 1 0 0 1
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TABLE III. Comparison between the transition point of the
complex Sznajd model and the threshold percolation qc of models
such as isotropic percolation and the contact process in some of the
networks studied. For the contact process we can define the threshold
percolation as qc = 1/(1 + λc), where λc is the usual transition point
of the model related to its infection rate.

Transition point

Site Bond Contact Complex
Network percolation percolation process Sznajd

square lattice 0.407 0.500 0.378 0.215(1)
cubic lattice 0.688 0.706 0.432 0.285(1)
hypercubic lattice (d = 4) 0.803 0.840 0.456 0.355(1)
Bethe lattice (z = 3) 0.500 0.500 0.350(5)

It is also worth making further comparisons with other
opinion formation models well known in the statistical physics
literature. For example, the majority-vote model exhibits
a similar phase transition between a ferromagnetic phase
(ordered) and a paramagnetic phase (disordered), even without
any spontaneous opinion change, with the critical parameter
given by ωt = 0.135 in a pair mean-field approximation on
square lattices (denoted here by the same notation as that used
before for the sake of clarity) [12]. Other models describing
spreading diseases and prey-predator biological populations
can also be put in the same context of comparisons and
display a phase transition between an active state and an
absorbing state on square lattices with the pair mean-field
critical parameter respectively equal to ωt = 0.379 [13,14] and
ωt = 0.235 [15], showing results closer to the Sznajd model
than the majority-vote model. More comparisons with other
important models are made in Table III [16].

We would like to stress that a modified version of the Sznajd
model proposed by Timpanaro and Prado in [17] can also
exhibit an active phase similar to the spreading disease models
aforementioned. In this particular version a scheme of cyclic
interacting opinions is imposed on the rules of the model and it
is possible to observe the coexistence of different opinions in
a stationary state even when ω = 0 (a topological metastable
configuration resembling a limit cycle) [17]. In our simulations
we observed such an active phase only for a very specific set
of networks, even considering the usual rules of the model and
in the case of a Bethe lattice with coordination number z = 3
a continuous transition from it to polarization takes place at
ωt = 0.350(5) (see Table I).

V. CONCLUSIONS

In summary, we studied a variation of the Sznajd model
on a general network. We proposed a master equation to
describe the evolution of opinions in the model and studied its
steady states in a mean-field approximation. We also studied
the role of a spontaneous opinion change, which changes the
opinion of a voter at random in the dynamics. In this case,
we found the possibility of a discontinuous phase transition
between a state in which a single candidate has the majority of
votes (consensus) and another state in which the votes are
well distributed among all the candidates (polarization) as

the rate of spontaneous opinion change increases. In addition,
Monte Carlo simulations in a wide variety of networks were
performed and confirm the existence of a discontinuous phase
transition showing acceptable agreement with the mean-field
results.

Our approach also allows us to take into account the
influence of correlations present in the underlying network
and to estimate the transition point of the phase transition
with much more accuracy than analytical calculations per-
formed by Vannucchi and Prado in previous works [8]. We
believe the particular way we introduced the correlations
in the mean-field approximation, by numerical evaluation
of the parameters network, may be extended to other systems
where second-order interactions are important, without all the
extra work of a complete pair approximation.
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APPENDIX: DETAILED DISCUSSION OF THE EXACT
FIXED POINTS OF THE MASTER EQUATION

After the mean-field approximation, the master equation
associated with the CSM can be written as a system of Nc − 1
coupled differential equations according to

�̇η = �f (�η,α,t), (A1)

Nc∑
r=1

ηr = 1, (A2)

where α is the parameter related to the underlying network
considered and �f (�η,α,t) is a vector function of the opinion
probability vector �η(t) with components given by

fσ = 1 − ω

α
ησ

(
ησ −

Nc∑
r=1

η2
r

)

+ω

[
(1 − ησ )

1

Nc

− ησ

(
1 − 1

Nc

)]
, (A3)

constrained to the normalization condition (A2). The fixed
points are the solutions of �̇η = �f (�η,α,t) = 0, which leads
to a system of coupled quadratic algebraic equations for the
opinion probabilities η∗

σ described by

(η∗
σ )2 −

(
αω

1 − ω
+

Nc∑
r=1

(η∗
r )2

)
η∗

σ + αω

1 − ω

1

Nc

= 0. (A4)

Due to the fact that Q∗(�η∗) = ∑Nc

r=1(η∗
r )2 is a constant for any

configuration of fixed points, we have only two possible values
for the components of them, namely,

η∗
σ = 1

2

(
αω

1 − ω
+ Q∗

)

± 1

2

√(
αω

1 − ω
+ Q∗

)2

− 4α

Nc

ω

1 − ω
, (A5)
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limited by the normalization constraint
∑Nc

r=1 η∗
r = 1. Inter-

estingly, we stress that the solutions obtained through the
assumption of equal sharing of remaining votes, i.e., ησ ′ =
(1 − ησ )/(Nc − 1), are also fixed points in the multidimen-
sional system. The stability is obtained through the analysis of
eigenvalues λ related to∣∣∣∣∂ �f

∂ �η − λI

∣∣∣∣ = 0 (A6)

or explicitly∣∣∣∣∣∣∣∣∣∣

D1 − λ A12 A13 · · · A1Nc

A21 D2 − λ A23 · · · A2Nc

A31 A32 D3 − λ · · · A3Nc

...
...

...
. . .

...
ANc1 ANc2 ANc3 · · · DNc

− λ

∣∣∣∣∣∣∣∣∣∣
= 0, (A7)

with

Di = 1 − ω

α

(
2ηi(1 − ηi) −

Nc∑
r=1

η2
r

)
− ω (A8)

and

Aij = −2

(
1 − ω

α

)
ηiηj . (A9)

We may now consider all the particular cases of our interest
in the following.

Fixed point η∗
σ = η∗

σ ′ = η̄ = 1/Nc

Given

D =
(

1 − ω

α

)
Nc − 2

N2
c

− ω (A10)

and

A = −
(

1 − ω

α

)
2

N2
c

, (A11)

we have the stability ruled by

[D − λ + (Nc − 1)A](D − λ − A)Nc−1 = 0. (A12)

The first determinant factor leads to a negative eigenvalue

λ = −
(

1 − ω

α

)
1

Nc

− ω < 0, (A13)

while the second gives us

λ = 1 − (1 + αNc)ω

αNc

(A14)

and thus the system is stable if ω > ω̄ = (1 + αNc)−1.

Fixed points η∗
σ = η± and η∗

σ ′ = (1 − η±)/(Nc − 1)

Now we analyze the stability of the other inhomogeneous
fixed point, in which one opinion has probability

η∗
σ = η± = 1

2
±

√
1

4
− αω

1 − ω

Nc − 1

Nc

and the others have η∗
σ ′ = (1 − η±)/(Nc − 1). We may define

Dσ = 2(Nc − 1)

Nc

ω − 1 − (Nc − 2)η±
α(Nc − 1)

(1 − ω), (A15)

Dσ ′ =
(

2

Nc(Nc − 1)

)
ω

+
(

(Nc−3) − (Nc−2)(Nc+1)η±
α(Nc − 1)2

)
(1 − ω), (A16)

Aσσ ′ = −
(

2η±
α

)(
1 − η±
Nc − 1

)
(1 − ω) = −2ω

Nc

, (A17)

and

Aσ ′σ ′ = 2

Nc(Nc − 1)
ω + 2(η± − 1)

α(Nc − 1)2
(1 − ω). (A18)

Therefore, the stability is now obtained by solving

[(Dσ − λ)(Dσ ′ − λ) − (Nc − 1)A2
σσ ′

+ (Nc − 2)(Dσ − λ)Aσ ′σ ′](Dσ ′ − λ − Aσ ′σ ′)Nc−2 = 0,

(A19)

resulting in a quadratic equation for λ with solutions

λ± = ω −
(

1 − ω

α

)(
1

Nc − 1
− Nc − 2

Nc − 1
η±

)
± ω. (A20)

It can be seen that λ− < 0 always and λ+ < 0 if

4αω

1 − ω
(Nc − 1) − Nc < ±(Nc − 2)

√
1 − 4αω

1 − ω

Nc − 1

Nc

.

(A21)

Of course, since η± are real, [4αω/(1 − ω)](Nc − 1)�Nc and
the above inequality is satisfied for η+. In the case of η−,
λ+ < 0 implies

Nc

(
1 − 4αω

1 − ω

Nc − 1

Nc

)
> (Nc − 2)

√
1 − 4αω

1 − ω

Nc − 1

Nc

,

(A22)

now with both sides being positive. We then obtain

4(Nc − 1)

N2
c

[1 − (1 + αNc)ω] > 0 (A23)

and λ+ < 0 for η− if ω < ω̄ = (1 + αNc)−1. Related to the
second factor of Eq. (A19), we still have

λ =
(

1 − ω

α

)(
1 − Ncη±
Nc − 1

)
. (A24)

This last result, earlier hidden by the ησ ′ = (1 − ησ )/(Nc − 1)
approximation, further implies that η± are stable only if they
are greater than 1/Nc, a condition not fulfilled by η− when
ω < ω̄ = (1 + αNc)−1, explaining therefore its instability.
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[16] T. Tomé and M. J. de Oliveira, Stochastic Dynamics and

Irreversibility (Springer, Heidelberg, 2015).
[17] A. M. Timpanaro and C. P. C. Prado, Phys. Rev. E 84, 027101

(2011).

022813-7

http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/PhysRevE.60.1067
http://dx.doi.org/10.1103/PhysRevE.60.1067
http://dx.doi.org/10.1103/PhysRevE.60.1067
http://dx.doi.org/10.1103/PhysRevE.60.1067
http://dx.doi.org/10.1142/S0129183104005577
http://dx.doi.org/10.1142/S0129183104005577
http://dx.doi.org/10.1142/S0129183104005577
http://dx.doi.org/10.1142/S0129183104005577
http://dx.doi.org/10.1140/e10051-002-0013-y
http://dx.doi.org/10.1140/e10051-002-0013-y
http://dx.doi.org/10.1140/e10051-002-0013-y
http://dx.doi.org/10.1140/e10051-002-0013-y
http://dx.doi.org/10.1142/S0129183109014102
http://dx.doi.org/10.1142/S0129183109014102
http://dx.doi.org/10.1142/S0129183109014102
http://dx.doi.org/10.1142/S0129183109014102
http://dx.doi.org/10.1142/S0129183100000936
http://dx.doi.org/10.1142/S0129183100000936
http://dx.doi.org/10.1142/S0129183100000936
http://dx.doi.org/10.1142/S0129183100000936
http://www.teses.usp.br
http://dx.doi.org/10.1103/PhysRevE.80.021119
http://dx.doi.org/10.1103/PhysRevE.80.021119
http://dx.doi.org/10.1103/PhysRevE.80.021119
http://dx.doi.org/10.1103/PhysRevE.80.021119
http://dx.doi.org/10.1103/PhysRevE.86.046109
http://dx.doi.org/10.1103/PhysRevE.86.046109
http://dx.doi.org/10.1103/PhysRevE.86.046109
http://dx.doi.org/10.1103/PhysRevE.86.046109
http://dx.doi.org/10.1140/epjb/e2003-00278-0
http://dx.doi.org/10.1140/epjb/e2003-00278-0
http://dx.doi.org/10.1140/epjb/e2003-00278-0
http://dx.doi.org/10.1140/epjb/e2003-00278-0
http://dx.doi.org/10.1007/BF01060069
http://dx.doi.org/10.1007/BF01060069
http://dx.doi.org/10.1007/BF01060069
http://dx.doi.org/10.1007/BF01060069
http://dx.doi.org/10.1016/j.physa.2009.10.039
http://dx.doi.org/10.1016/j.physa.2009.10.039
http://dx.doi.org/10.1016/j.physa.2009.10.039
http://dx.doi.org/10.1016/j.physa.2009.10.039
http://dx.doi.org/10.1103/PhysRevE.87.012709
http://dx.doi.org/10.1103/PhysRevE.87.012709
http://dx.doi.org/10.1103/PhysRevE.87.012709
http://dx.doi.org/10.1103/PhysRevE.87.012709
http://dx.doi.org/10.1590/S0103-97332008000100017
http://dx.doi.org/10.1590/S0103-97332008000100017
http://dx.doi.org/10.1590/S0103-97332008000100017
http://dx.doi.org/10.1590/S0103-97332008000100017
http://dx.doi.org/10.1103/PhysRevE.84.027101
http://dx.doi.org/10.1103/PhysRevE.84.027101
http://dx.doi.org/10.1103/PhysRevE.84.027101
http://dx.doi.org/10.1103/PhysRevE.84.027101



