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We analyze the dynamics of a distribution circuit loaded with many induction motors and subjected to sudden
changes in voltage at the beginning of the circuit. As opposed to earlier work by Duclut et al. [Phys. Rev. E 87,
062802 (2013)], the motors are disordered, i.e., the mechanical torque applied to the motors varies in a random
manner along the circuit. In spite of the disorder, many of the qualitative features of a homogeneous circuit
persist, e.g., long-range motor-motor interactions mediated by circuit voltage and electrical power flows result
in coexistence of the spatially extended and propagating normal and stalled phases. We also observed a new
phenomenon absent in the case without inhomogeneity or disorder. Specifically, the transition front between
the normal and stalled phases becomes somewhat random, even when the front is moving very slowly or is
even stationary. Motors within the blurred domain appear in a normal or stalled state depending on the local
configuration of the disorder. We quantify the effects of the disorder and discuss the statistics of distribution
dynamics, e.g., the front position and width, total active and reactive consumption of the feeder, and maximum
clearing time.
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I. INTRODUCTION

The majority of transient and dynamical stability studies
in power systems focuses on high voltage transmission grids
where detailed models of the generators and transmission lines
are used. In contrast, these studies use crude aggregations
of individual small loads to model aggregate load dynamics.
Recent years have seen an increased emphasis on dynamical
load models [1,2] for several reasons. First, transmission
networks are being pushed harder and operated closer to
their dynamical stability limits, and the uncertainty introduced
by inaccurate linear dynamical load models presents an
unacceptable operating risk [3]. Second, collective nonlinear
dynamical load behaviors such as induction motor stalling
and fault-induced delayed voltage recovery (FIDVR) are being
excited by seemingly typical transmission grid behavior such
as normal fault clearing [4,5].

In FIDVR, a short-lived but significant perturbation created
by a transmission fault synchronizes the dynamical behavior
of a large fraction of individual induction motor loads, and
the ensuing collective dynamics induce a voltage collapselike
event that propagates to the transmission grid. Complicating
the situation further, the future will likely see the introduction
of many new “smart” consumer devices that include local
controllers making decisions based upon local measurements.
The actions of these independent and potentially stochastic
load controls will yield new dynamics. There are no tools
that can predict the collective effect of these dynamics and
the potential impact on transmission grids. The example of
FIDVR demonstrates the importance of understanding and
modeling emergent collective effects in distribution dynamics
for modeling of transmission grid dynamics. This work extends
a model of distribution dynamics [6,7] to study the impact of
inhomogeneity in distribution circuit loading on the FIDVR
dynamics mentioned above.

Diversity of distribution circuits makes detailed,
component-by-component modeling of the many configura-

tions very difficult. Even if modeling of the family of such
configurations were performed, it is not clear that the results
could be understood or displayed in way that enables intuitive
interpretation and understanding. Instead, we adopt the model
of [6] and [7] where the distribution circuit power flows and
load dynamics are represented as a continuum system and
model the spatiotemporal dynamics using partial differential
equations (PDEs). Similar approaches have been used to
model dynamical effects in transmission grids [8,9]. This PDE
approach reveals the nontrivial interplay of the dynamics of
loads via the spatial coupling provided by power flows over
the electrical network. In [7], this approach was used to reveal
the qualitative behavior of FIDVR dynamics in a uniformly
loaded distribution circuit, and in [10] this approach was used
to explore new equilibrium states of a distribution circuit
with a spatially uniform installation of actively controlled
photovoltaic inverters. In both of these cases, the structure of
the PDE reveals the important long-range interactions between
local load behavior (dynamic or static) mediated by the power
flows along the distribution circuit.

In this article, we extend the work of [7] by investigating the
effects of spatially inhomogeneous induction motor loading.
Variation in loading is expected to modify the behavior of
FIDVR dynamics, however, both the qualitative and quanti-
tative effects are not clear. Pockets of high or low induction
motor load could locally arrest or enhance the propagation
of a FIDVR event, but long-range effects are also possible.
We create realizations of circuit loadings using spatially
correlated Gaussian distribution of load parameters and study
the behavior of the FIDVR dynamics as a function of the
amplitude of the load disorder and the correlation length.
From these studies, we find that, at least for relatively low
amplitude and spatially short-correlated disorder, the effects
on FIDVR dynamics are local. This conclusion has important
implications for control, specifically, that a control scheme
for eliminating or correcting disruptive FIDVR events is not
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strongly dependent on the details of the induction motor
loading.

The rest of the article is organized as follows. Section II
introduces the PDE model of distribution dynamics and load
inhomogeneity and briefly describes the numerical methods
used to integrate the PDE model. Section III presents the results
of numerically integrating the PDE model with different types
of load inhomogeneity, parametrized by the amplitude and
the correlation length of the disorder, on different dynamical
transients. Finally, Sec. IV provides some conclusions and
potential areas for future work.

II. TECHNICAL INTRODUCTION

A. Dynamics of an individual motor

We adopt the model of induction motor load and dynamics
from [11]. Here, we only describe the features of induction
motors that are important for the remainder of this article. The
real (P ) and reactive (Q) powers drawn by an induction motor
are

P = sRmv2

R2
m + s2X2

m

, (1)

Q = s2Xmv2

R2
m + s2X2

m

, (2)

where s = 1 − ω/ω0 is the slip of the motor’s rotational
frequency ω relative to the grid frequency ω0 (0 � s < 1);
v is the voltage at the motor terminals, and Xm and Rm are
internal reactance and resistance of the motor, respectively.
Typically, Rm/Xm = 0.1–0.5.

The real power load P creates an electric torque on the
induction motor shaft which is countered by a mechanical
load torque. Any imbalance between these torques results in
an angular acceleration of the motor’s rotational inertia M ,
i.e.,

M
d

dt
ω = P

ω0
− T0

(
ω

ω0

)α

. (3)

Here T0 is a reference mechanical torque and α is indicative
of different types of mechanical loads with α = 1 typical
of fan loads and α < 1 typical of air-conditioning or other
compressor loads. If α < αc � 1 and T0 are fixed, there exist
three steady solutions of Eqs. (1) and (3) when v is in a range
between two spinodal voltages v−

c and v+
c . Figure 1 displays

the mechanical torque (black curve) and the electrical torque
(colored curves) for different values of v. For a midrange
voltage of 0.86 (red triangles), the mechanical and electrical
torque curves intersect for three values of ω/ω0 defining three
steady solutions. For the high and low ω/ω0 solutions, the
torque balance for small deviations away from steady solution
push ω/ω0 back to the steady state. The opposite is true for the
midrange ω/ω0 solution making it unstable to small deviations.

From Fig. 1, it is clear that small changes in v in the vicinity
of v+

c and v−
c can lead to drastic and hysteretic changes in

ω resulting in large changes in the motor’s P and Q [via
Eqs. (1) and (2)]. These hysteretic changes will be coupled
back to the dynamics in Eq. (3) via the power flow equations
in Sec. II B [7]. This hysteresis and coupling can be affected
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FIG. 1. (Color online) Electric and mechanical torques as func-
tions of the mechanical frequency ω/ω0 for a range of motor terminal
voltages v, reference mechanical torque T0 = 0.32, and α = 0.1. For
the v = 0.86 electrical torque curve (red triangles), there are three
equilibrium solutions indicated by intersections with the mechanical
torque curve (black solid line). The solution with the highest ω/ω0 is
the “normal” stable solution with the induction motor rotating near
the grid frequency ω0. The “stalled state” with ω/ω0 � 0 is also stable
while the intermediate solution is unstable. For v > v+

c = 0.9 (light
blue line with plus signs), there is only one solution corresponding to
the normal state. For v < v−

c = 0.83 (green dashed line), there is only
one solution corresponding to the stalled state. The points (a,b,c,d)
correspond to the same labels in Fig. 2.

by inhomogeneity in loading, and these effects are explored in
the remainder of this article.

The effect of the hysteresis is cleanly displayed in Fig. 2
where the ω/ω0 for two stable steady states is plotted versus the
motor terminal voltage v. Starting in the high-voltage normal
state (say v ∼ 1), v can be slowly decreased along the dashed
red curve passing through state d. Further decreasing v to state
c, the “normal” state (i.e., the state with high ω/ω0, suddenly
disappears and the motor makes a transition to the “stalled”
state at a. Similarly, if we start from the low-voltage stalled
state (say, v ∼ 0.75 on the black curve) and v is increased
slowly through state a to b, the stalled state disappears and the
motor makes a transition to the normal state at d. For reference,
the states (a,b,c,d) are also marked in Fig. 1, and the same
hysteresis loop can be traced out there. The voltages v+

c and v−
c

depend on induction motor parameters, and disorder in these
parameters will result in neighboring segments of the circuit
making state transitions at different times. The discreteness of
the transitions and the large changes in ω/ω0, P , and Q will
significantly amplify even a small amount of disorder.

B. Continuum model of distribution dynamics

The derivation of the continuous form of the DistFlow
equations is described in [6]. Here, we only summarize the
results that are important to the rest of this article. The
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FIG. 2. (Color online) Hysteretic behavior of an induction motor
stable steady states in Fig. 1 as the voltage v at its terminals is varied.
The dashed red (solid black) curves indicate the path of equilibrium
states as the voltage v is decreased (increased) starting from the
high-voltage normal (low-voltage stalled) state. The vertical lines at
the spinodal voltages v±

c indicated the abrupt hysteretic transitions
between states. v±

c correspond to the same labels in the legend of
Fig. 1. The points (a,b,c,d) correspond to the states where the motor
must make transitions from normal to stalled (c → a) and from stalled
to normal (b → d).

evolution of the real (ρ) and reactive (φ) line flows is caused
by loads or line losses, i.e,

∂zρ = −p − r
ρ2 + φ2

v2
, (4)

∂zφ = −q − x
ρ2 + φ2

v2
. (5)

Here z is the coordinate along the distribution circuit, r and
x are the per-unit-length resistance and reactance densities of
the lines (assumed independent of z), and p(z) and q(z) are the
local densities of real and reactive powers consumed by the
density of the spatially continuous distribution of motors [6]
at the position z ∈ [0; L]. The power flows ρ and φ are related
to the voltage at the same position according to [6]

∂zv = − rρ + xφ

v
. (6)

The load densities p(z) and q(z) in Eqs. (4) and (5) are
related to ω(z) and v(z) through the density versions of
Eqs. (1)–(3),

μ
d

dt
ω = p

ω0
− τ0

(
ω

ω0

)α

, (7)

p = srmv2

r2
m + s2x2

m

, (8)

q = s2xm

r2
m + s2x2

m

v2, (9)

where the conversion to continuous form consists of replacing
Xm,Rm and P,Q,T0,M by the respective densities xm, rm and
p, q, τ0, and μ. The new boundary conditions are

v(0) = v0, ρ(L) = φ(L) = 0. (10)

Eqs. (4)–(10) form our PDE model of a distribution feeder
loaded with induction motors.

C. Model of disorder

Analysis in [7] assumed that all of the induction motor
parameters τ0 are constant, i.e., the circuit is uniformly loaded
with identical induction motors all serving identical loads.
However, loading in distribution circuits is inhomogeneous
and variable depending on, e.g., the time of day or envi-
ronmental conditions. We relax the assumption of uniform
loading by introducing load inhomogeneity by making τ0 a
random Gaussian variable centered on τ̄0 (i.e., τ̄0 = E[τ0(z)]).
Deviations from the mean δ(z) = τ0(z) − τ̄0 are statisti-
cally homogeneous with the covariance, E[δ(z1)δ(z2)] =
(τ0	)2 exp(−|z1 − z2|/zd ). The amplitude of the disorder, as
well as the correlation scale of the disorder are assumed
small, 	 � 1, zd/L � 1, where L stands for the length of
the feeder. The Gaussian model is the simplest and most
natural spatially smooth and two parametric (amplitude and
correlation length) model of the disorder. To implement the
Gaussian finite correlated model of the inhomogeneity or
disorder in the simulations of Eqs. (4)–(10), one sets up the
spatial step size which is much smaller than the disorder’s
correlation length, zd . The spatial step used in the simulation
was 2.5 × 10−4 vs 5 × 10−3 used for the minimum value of
the correlation length.

Note that the motor shaft angle-dependent torque in
reciprocating compressors is an effect that can lead to a higher
likelihood of stalling as compared to a scroll-type compressor
for the same average mechanical torque. The model of the
individual motors we are using does not capture this effect
and our use of DistFlow power flow equations precludes any
representation electrical voltage phase. Although we believe
(in accordance with what is described above) that the spatial
disorder in the motor mechanical torques to arise from simple
differences in motor types and loading, the disorder could
also represent relative phase of the motor shaft angle and the
voltage phase.

D. Numerical simulation approach

Eqs. (4)–(10) are integrated using the following iterative
procedure (see [7] for details). For given current values of
p and q, the discretized versions of Eqs. (4)–(6) are solved
by a shooting method, i.e., using the fixed v0 from Eq. (10),
ρ(0) and φ(0) are adjusted until the spatial integration of the
time-independent equations accurately recreates the boundary
conditions in Eq. (10) at z = L. Using this voltage profile,
the motors’ ω are updated using a time-discretized version of
Eq. (7). Using the new values of ω, the parameters s, p, and q

are updated using Eqs. (8) and (9) and the process repeats. In
the simulations we assume that α = 0.1, xm = 0.4, rm = 0.15,
r = 0.5, x = 0.5, L = 0.5, μ = 0.1, w0 = 1, and τ̄0 = 0.9.
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III. NUMERICAL EXPERIMENTS: RESULTS

Equations (4)–(10) are studied numerically under a range
of conditions:

(S) Steady-state conditions-A constant v0 = 1 is applied.
(A) Stalling front dynamics-Starting from the previous

steady-state conditions, v0 is suddenly lowered by a range of
	v’s and the dynamics of the motor stalling front is studied.

(B) Restoration front dynamics-Starting from a fully
stalled condition (i.e., v0 < 1 and all motors on the low-voltage
branch of Fig. 2), v0 is suddenly raised to 1.0, and the dynamics
of the motor restoration front is studied.

(C) Fault-clearing dynamics—A fault-clearing perturba-
tion is emulated by combining case A and case B. Starting
from the steady-state condition from S, v0 is lowered by 	v for
time τcl to create a stalling front. After τcl, v0 is subsequently
restored to 1.0, and the restoration is studied. Our goal is
to determine how the disorder in τ0 affects the maximum
fault-clearing time, i.e., the longest the fault can stay on while
all of the motors on the circuit recover to the high-voltage
branch in Fig. 2.

In each study, statistics are gathered over many samples of
the distribution of motor and feeder disorder, i.e., 	 and zd .
For each simulated sample in cases A and B, the following data
is analyzed: (1) the active and reactive power flows at z = 0,
ρ(0) and φ(0) and (2) the position of the front zf and the
width of the front, zw. For case C, the maximum fault-clearing
time τcl is found that still allows the circuit to recover to a
fully normal state. The goal of these studies is to quantify the
effect of disorder effect on statistics of these data. Aimed to
test sensitivity of the results to the parameters of the disorder,
	 and zd were varied in our numerical experiments.

A. Case S—“Normal” steady-state solution

In real systems, motor stalling is observed to occur in as
little time as 50 ms to as long as a few hundred milliseconds.
Typical fault-clearing times can span a similar range of time
scales depending on the design of the system. For example,
we estimate that a typical stalling time of a 0.75 KW three-
phase, wye-connected, squirrel cage four-pole induction motor
with the moment of inertia M = 0.05 kg/m2 is ≈50–100 ms
(see, e.g., Appendix B of [12] for description of parameters of
practical induction motors.) Therefore for a feeder containing
these type of motors, the dimensionless unit of time, used
throughout the article, roughly corresponds to 100 ms. We
expect the induction motor and collective dynamics to reach
an equilibrium in a fraction of a second to a few seconds.
This is shorter than the typical time for other discrete actions
to occur (e.g., the disconnection of induction motors through
their own thermal protective devices). Therefore, we expect
our model to be valid over 30 ms to 3 s time scales.

The dynamic simulations described in Sec. II D are used
to find the initial steady profile using two simulation steps.
Dynamic simulation is required because the state of the motors
(see Fig. 2) is not known a priori. Disorder is initially ignored
(	 = 0), v0 is set to 1.0, ω is set to ω0, and the steady
(time-independent) solution of Eqs. (4)–(10) is found by
integrating in time until the solution becomes stationary. This
stationary solution is used as an initial condition for the next

FIG. 3. (Color online) Steady-state profile along the feeder for
all motors in the “normal” state for a sample of disorder drawn from
the 	 = 0.0157 and zd = 0.015 for v0 = 1. Notice, that while the
disorder is clearly seen in active and reactive density consumptions
p and q, its effect on ω, the flows ρ and φ, and the voltage v is
significantly reduced.

simulation. Using the same τ̄0, disorder is reintroduced, and
Eqs. (4)–(10) are again integrated until the solution becomes
stationary. Figure 3 shows a typical “normal” solution for a
sample of disorder drawn from a distribution with τ̄0 = 0.9,
	 = 0.0157, and zd = 0.015.

As clearly seen in Fig. 3 the effect of the disorder in τ0 has
little effect on ω but significantly larger effects on p and q.
This is obviously the consequence of the structural properties
of Eqs. (4)–(6). The relatively large effects of disorder on p and
q is significantly diminished for ρ and φ because of the integral
relationship between these variables in Eqs. (4) and (5). The
additional integral relationship in Eq. (6) further reduces the
effect of disorder on v. It is important to note that the relatively
small impact of disorder in Fig. 3 is a result of ω and v being
large enough to be far from v−

c , i.e., transition point for high-
voltage to low-voltage branch in Fig. 2. During the dynamic
simulations, this transition region will often reside within the
circuit and the relatively small disorder in τ0 will be magnified
by the step change in p, q, and ω across this transition.

B. Case A—Stalling front dynamics

Starting from a steady-state condition solved using case S,
v0 is suddenly lowered by a range of 	v’s to initiate a front
of motor stalling. Figure 4 displays the typical dynamics via a
time series of snapshots of v, ρ, φ, ω, p, and q. The reduction
of v0 from 1 to 0.9 at t = 0 lowers v all along the circuit. The
lower voltage reduces the electrical torque on all the motors
and the disorder in the mechanical torques causes neighboring
motors to decelerate at different rates creating a significant
amount of disorder in ω even before any of the motors crosses
the transition from a normal to a stalled state (see Fig. 4 at
t = 0.3). At t = 0.5, motors near the end of the line begin to
stall, however, they all begin this transition at slightly different
times because of the initial variability in their deceleration
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FIG. 4. (Color online) Typical sequence of snapshots of the dy-
namics for “Case A—Stalling front” for 	 = 0.0157 and zd = 0.005.
The color of the lines is the same as in Fig. 3. As the stalling front
passes from z = L to lower z, the disorder in τ0 interacts with the
state transition in Fig. 2 to amplify the disorder in τ0.

rates. The rapid deceleration during this transition significantly
amplifies the disorder ω caused by the disorder in τ0. The
disorder also appears in q because of the large difference in q

on either side of the transition. At t = 1, the motors near the
end of the circuit have completed their stalling transition and
are all near ω = 0 which suppresses the impact of the disorder
in τ0. The disorder in τ0 is only amplified near the stalling front
where significant dynamics are still occurring. At t = 5, the
dynamics have essentially ceased. The disorder in τ0 causes
each motor to have slightly different v−

c (see Fig. 2), and we
believe that this variation in the transition threshold causes the
majority of the residual disorder in ω and q.

The same reduction in v0 is applied to 100 samples of
several different ensembles of disorder, i.e., different values
of 	 and zd . For each ensemble, the steady-state values of
ρ(0), φ(0), and zf are collected and binned into histograms.
Gaussians are fit to these histograms, and the results are
plotted in Fig. 5. We first consider the behavior of zf , i.e.,
the probability distribution P(zf ). For each sample the value
of zf is found via the average between the left-most point
in the “stalled” state and the right-most one in the “normal”
throughout the feeder. For a given correlation length zd of the
τ0 disorder, the width of P(zf ) grows as 	 grows (see the
difference in the solid and dashed traces of the same color in
Fig. 5). In fact, for each zd , the width of P(zf ) approximately
doubles for a doubling in 	.

This effect appears to be local. Specifically, if 	 was zero,
the front would stop in the same place z0

f for each sample. With
variability in τ0, i.e., 	 �= 0, the front might stall slightly earlier
(zf > z0

f ) if it encounters a small cluster of low τ0 motors at
slightly larger zf . Or, it may stall slightly later (zf < z0

f ) if
there is a small cluster of high τ0 motors near z0

f with a cluster
of low τ0 motors at smaller z. The finite correlation length zd

ensures that such clusters will exist. These correlations could

FIG. 5. (Color online) Gaussian fits to the probability density
distribution functions over ρ(0), φ(0), and zf after reaching steady
state for Case A—Stalling front dynamics. Statistics are collected
over 100 samples, each disorder ensemble parametrized by 	 and
zd . The vertical dashed line indicates the position of the front for no
disorder, i.e., 	 = 0 and zd = 0.

create nonlocal effects of disorder, however, we do not believe
this is the case. In Figs. 4 and 5, the zf are distant from the
end of circuit compared to zd . The relatively small zd and
the smoothing discussed in Sec. III A drastically reduce any
residual effect of the disorder in τ0 on the voltage profile with
the result that the average position of zf is nearly the same
in all cases. However, at the larger zd , there does appear to
be a slight shift toward larger zf , although this result is not
definitive.
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FIG. 6. (Color online) Probability distribution functions over
ρ(0), φ(0), and zf observed for the 	 = 0.0079 and zd = 0.005
ensemble after reaching steady state following Case A—Stalling front
dynamics for different values of v0.

The general trend is the same for the other two variables
ρ(0) and φ(0). However, this is expected because the final
location of the stalled front has a major influence over the
motor loads which in turn create both ρ(0) and φ(0).

Additional numerical experiments shed more light on the
effects of disorder in τ0 on the properties of the stalled front. In
Fig. 6, simulations are performed for a fixed disorder ensemble
(	 = 0.0079 and zd = 0.005), but the reduction in v0 is varied.
As expected, for smaller v0 the front stalls closer to the end of
the circuit. However, the width of P(zf ) is larger than when
the front stalls at smaller z (i.e., for larger reductions in v0).
The cause of this larger width is twofold. First, the slope of
v(z) is smaller for z ∼ L making the position of the front much
more susceptible to disorder. Second, being closer to the end
of the circuit provides less smoothing of v, and the correlation
length zd is more effective at causing variations in v near to
the nominal location of stalling. The effects on P(ρ(0)) and
P(φ(0)) in Fig. 6 can be inferred from P(zf ) and Eqs. (4)
and (5).

C. Case B—Restoration front dynamics

Figure 7 shows the snapshots of the dynamics for a
restoration front. At t = 1.1, v0 = 0.8 and has been held at
this low value long enough so that all of the motors on circuit

FIG. 7. (Color online) Typical sequence of snapshots of the
dynamics for “Case B—Restoration front” for 	 = 0.0157 and
zd = 0.005. The color of the lines is the same as in Fig. 3. As the
restoration front passes from z = 0 into the circuit, the disorder in
τ0 interacts with the state transition in Fig. 2 to amplify the disorder
in τ0.

have stalled. The disorder in τ0 has little effect because all of
the motors are stalled and are far from v+

c , i.e., the transition to
the normal state. Immediately following t = 1.1, v0 is raised
back to 1.0 launching a recovery front into the circuit from
z = 0. The effect of the disorder is very similar to the stalling
front. Specifically, at t = 1.5, the motors beyond the front are
just beginning to accelerate creating moderate disorder in ω

because of the different rates of acceleration. Within the front,
this disorder is amplified during the rapid dynamical transition
from the stalled to the normal state. For locations behind the
front, i.e,. small z, the disorder has a limited effect on ω because
the accelerations have mostly ceased. This behavior persists
through the simulation up to t = 6 when the front is nearly
stationary. At these long times, the effect of the disorder is
again local and static, i.e., disorder in τ0 drives disorder in v+

c

for each motor, which manifests as randomness in the motor
state near the stall restoration front.

The probability distribution P(zf ) for the steady state zf

is shown in Fig. 8. The effect of disorder on P(zf ) is very
similar to Case A–Stalling front dynamics. At fixed zd , the
width of P(zf ) approximately doubles when the amplitude
of the disorder 	 doubles. Following a similar argument as
in Sec. III B, we conclude that the effect of the disorder is
primarily local and somewhat contingent on zd , i.e., pockets
of motors with high and low τ0 that catch the restoration front
early or allow it to propagate a bit further before becoming
stationary. Figure 8 does not show P(ρ(0)) or P(φ(0)), but their
relationship to P(zf ) is very similar to the relationship in Fig. 5.

D. Case C—Fault clearing

The dynamics of fault clearing is more complex than just a
stalling front or a restoration front. In fault clearing, the circuit
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FIG. 8. (Color online) Gaussian fits to the probability density
distribution function over zf after reaching steady state for Case
B—Restoration front dynamics. Statistics are collected over 100
samples, each disorder ensemble parametrized by 	 and zd . The
vertical dashed line indicates the position of the front for no disorder,
i.e., 	 = 0 and zd = 0.

starts out in a steady state with v0 = 1 and all of the motors in
the normal state (see Fig. 2). At t = 0, the v0 is reduced to 0.9
and held low for time τ . After τ , v0 is restored to 1.0 and the
dynamics are simulated until the motors reach a steady state.
A bisection search in τ is used to find τcl, i.e., the maximum
clearing time where the motors at the end of the circuit will
just recover. The circuit is considered “restored” even if there
are just a few locations (∼1–3) with stalled motors. The
search is carried out for 100 realizations of four disorder
ensembles.

The distributions of τcl, i.e., P(τcl) are plotted in Fig. 9.
In general, an increase in the amplitude of the disorder 	

results in a shift of P(τcl) to shorter τcl, while an increase in
the correlation length zd of the disorder results in significant
broadening of P(τcl). The complexity of the fault-clearing
dynamics becomes evident by comparing the maximum
clearing times in Fig. 9 with the snapshots of a stalling front in
Fig. 4. The τcl are on the order of 0.3 to 0.5 in Fig. 9. Inspection
of Fig. 4 at these times shows that the stalling front has not
yet reached a steady state. In fact, none of the motors has
even reached ω/ω0 ∼ 0. Before attempting to understand the
effects of disorder on τcl, we first give a qualitative description
of the fault-clearing dynamics.

A qualitative understanding of boundary between a
“stalled” circuit, i.e., the occurrence of a FIVDR event, and a
“recovered” circuit is gained by inspecting the snapshots of the
dynamics in Fig. 4. This simulation corresponds to disorder
parametrized by 	 = 0.0157 and zd = 0.005, which is the
same as the green curve in the upper plot of Fig. 9. Consider
the t = 0.5 snapshot in Fig. 4. The motors near the end of
the circuit have v ∼ 0.75 and ω/ω0 ∼ 0.3. If v0 was restored
to 1.0 at this time, the end of the line would at best have
v ∼ 0.85. In reality, it would be lower because the reactive
power consumption of the motors would increase at the higher
voltage. However, mapping the state v ∼ 0.85 and ω/ω0 ∼ 0.3

FIG. 9. (Color online) Histograms and respective Gaussian fits
for the probability density distribution function of the maximum
clearing time, τcl, measured under experiments C for four different
ensembles and for the case of no disorder (vertical red lines).

onto the torque plot of Fig. 1, we find that the electrical torque
falls below the mechanical torque. Therefore, even after the
fault is cleared and v0 is restored to 1.0, the motors at the
end of the circuit will continue to decelerate. As they slow,
their reactive power increases somewhat [see Eq. (5)], which
has a tendency to suppress the voltage further. The result is
that, at t = 0.5, the motors near the end of the circuit will
continue to decelerate to near ω/ω0 ∼ 0 even after the fault is
cleared—a conclusion consistent with the clearing time plots in
Fig. 9.

At t = 0.3 in Fig. 4, the situation is very different. The
motors near the end of the circuit have only decelerated to
ω/ω0 ∼ 0.6 and the local voltage is v ∼ 0.8. If the fault
was cleared at t = 0.3, the voltage at the end of the circuit
jumped up to about 0.9. Mapping the post-fault clearing state
ω/ω0 ∼ 0.6 and v ∼ 0.9 onto the torque curves in Fig. 1, we
find that the electrical torque is safely above the mechanical
torque, and even the motors at the end of the circuit begin
to accelerate after the fault is cleared. At higher ω/ω0, their
reactive power consumption decreases, which reinforces the
increase in voltage and the overall recovery.

From this qualitative description, we expect that the effect
of disorder is primarily felt in the initial deceleration of the
motor while the fault is applied rather than during the post-fault
recovery period. The spatially correlated disorder will result
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Case A Case B

FIG. 10. (Color online) Histograms and respective probability
density distribution functions for the width of the burry regions, zw ,
shown for the final state of the respective ensembles (see the legend)
in experiments A and B.

in clumps of motors with higher than average t0. These motors
will decelerate faster than an average motor pushing them
to lower values of electrical torque along a constant v curve
in Fig. 1. The tendency is for these motors to experience a
decelerating net torque after fault clearing. The implication is
that average maximum clearing times τcl become shorter and
more broadly distributed.

E. Width of the blurry region

An interesting consequence of the disorder is seen in Fig. 10
where the probability density distribution function of the
blurry region width, zw, is shown for different values of the
disorder amplitude 	 and correlation length, zd . We observe,
in particular, that zw increases with increase in 	 (when zd

is fixed) and decrease in zd (when 	 is fixed). We postpone
detailed discussions and explanations of this phenomenon for
future publications.

IV. CONCLUSIONS AND PATH FORWARD

Loading on electrical distribution circuits is far from uni-
form and is often clumped into load pockets distributed along
the circuit. To better represent the effect of these conditions
on the distribution grid dynamics of induction motor loads,
we have introduced an electrical load model that includes
spatially correlated load disorder. To investigate the effects of
this new loading, we have performed numerical simulation of
the dynamics of a radial distribution circuit using this model of
load disorder and explored the effect of disorder on the critical
clearing time to avoid a FIDVR event. Although the effects of
disorder do bring new and important qualitative behaviors, by
and large, the main qualitative picture of the front propagation
phenomena observed in the spatially homogeneous case [7]
remains the same but with some differences in the more
complex dynamics of fault clearing. Specifically,

(1) For both stalling and restoration dynamics, the fronts
propagate in time, slow down, and eventually stop in a partially
stalled state (for the right combinations of circuit length and
voltage perturbation).

(2) For relatively small disorder, there is a threshold, i.e.,
a reasonably well defined maximum clearing time τcl, that
separates the final circuit states into fully restored (τ < τcl)
and only partially restored (τ > τcl).

(3) However, as the disorder becomes larger in amplitude
with longer correlation lengths, the distribution of maximum
clearing times becomes quite broad.

The broad distribution of maximum clearing times is likely
related to new qualitative effects that emerge from the presence
of disorder. Specifically, Figs. 4 and 7 both show that a group of
motors with a distribution of mechanical torques undergoing
acceleration or deceleration acquire a wide distribution of
motor rotational frequencies. This effect is particularly evident
in Fig. 4 at t = 0.5. Motors with higher mechanical torque
undergoing deceleration during a fault reach lower rotational
frequencies and are in a more precarious situation. After fault
clearing, they may not recover to a normal rotational rate near
grid frequency. Instead they may experience a net decelerating
torque and stall. The effect of this local stalling on surrounding
motors is still an unresolved question.

There are many ways that this work could be extended and
improved, including the following:

(1) Improving the load models by including spatially
distributed constant impedance, constant current, or constant
power loads and investigating the effects of these combined
loads on the induction motor dynamics.

(2) The exploration of analytical approximations to the
maximum fault-clearing time based on the qualitative descrip-
tion of post-fault recovery in Sec. III D.

(3) Extension of the model to distribution circuits with
multiple branches and/or multiple circuits emanating from a
single substation.

(4) The development of new controls to arrest a FIDVR
event before it becomes established, possibly using distributed
control of reactive power generation by customer-owned
inverters [13].

We would also like to stress that validation of the detailed re-
sults provided by our model are difficult, and still unavailable,
for several reasons; foremost is the lack of the appropriate
data. Over the last several years, researchers and electrical
utilities have dramatically improved the instrumentation of
electrical grids, including the distribution circuits [14,15]
where some aspects of the dynamics explored here have been
captured. However, these measurements have typically been
at a single location along a distribution circuit, whereas the
model developed in the article explores spatially distributed
and collective dynamical effects. To gain a full understanding
of the dynamics that lead to FIDVR, we believe it is crucial
for instrumentation to be installed at multiple locations
along many distribution circuits. The current instrumentation
only monitors voltage and load. Instrumentation should be
expanded to include power flows along the circuit. These
expanded measurement configurations will help to disentangle
individual motor dynamics from the collective dynamics
of the entire distribution circuit. Finally, we conclude the
article by briefly mentioning a related modeling work. A
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more complicated model that includes angular dependent
mechanical torque and full electromagnetic modeling of the
induction motors [16] has been developed. Similar to the
current work, this model also shows the wavelike nature of
the collective dynamics and partial stalling of a circuit with
an interface between a normally running and a stalled motor.
Although observed in two different models, we emphasize that
this interface between stalled and normally running circuit
sections has yet to be observed in utility data. To do so
requires the expanded measurement configurations discussed
above.
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