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Most of the work on opinion dynamics models focuses on the case of two or three opinion types. We consider
the case of an arbitrary number of opinions in the mean field case of the naming game model in which it is
assumed the population is infinite and all individuals are neighbors. A particular challenge of the naming game
model is that the number of variables, which corresponds to the number of possible sets of opinions, grows
exponentially with the number of possible opinions. We present a method for generating mean field dynamical
equations for the general case of k opinions. We calculate the steady states in two important special cases in
arbitrarily high dimension: the case in which there exist zealots of only one type, and the case in which there
are an equal number of zealots for each opinion. We show that in these special cases a phase transition occurs
at critical values p. of the parameter p describing the fraction of zealots. In the former case, the critical value
determines the threshold value beyond which it is not possible for the opinion with no zealots to be held by
more nodes than the opinion with zealots, and this point remains fixed regardless of dimension. In the latter case,
the critical point p, is the threshold value beyond which a stalemate between all k opinions is guaranteed, and

we show that it decays precisely as a lognormal curve in k.
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I. INTRODUCTION

Opinions are influenced by exposure to different views;
for example, this forms the basic tenet of political election
and advertising campaigns [1], to name just two. Opinion
formation is a dynamic process, with new information leading
to changes in the beliefs of a society through both exogenous
(e.g., media-driven) and endogenous (e.g., peer-influence)
means. The field of opinion dynamics seeks to mathematically
understand the evolution of opinions in a society.

Increasingly, individuals are facing a large number of
discrete choices (“opinions”) from which to choose. One
common example is the choice of which of several social
media platforms to engage in, such as Facebook, Twitter,
and Google+ [2]. Another example is the several platforms
for portable computing to choose from, such as Apple iPad,
Amazon Kindle, and Samsung Galaxy Note. A third example
is the choice of operating system, such as Microsoft Windows,
Apple MAC O/S, and Linux (which itself has many choices,
such as Ubuntu, Fedora, and Mint). Note that, in these
examples, the possible choices are not necessarily mutually
exclusive; an individual may choose to affiliate with only one
opinion, or with multiple opinions. Some of these individuals
will be adaptive; that is, presented enough evidence to consider
another opinion, they would adopt it (e.g., a Linux Ubuntu
user also installing Microsoft Windows). However, some
individuals are zealots (e.g., fiercely loyal Apple fans) who
advocate a single opinion and refuse to consider any others. In
addition to the examples discussed above, zealotry accounts for
persistent disagreement in a wide variety of other disciplines,
such as in politics [3] or religion [4].

The challenge of modeling opinion dynamics mathemat-
ically has been tackled by the research community over
the last four decades. The work in Ref. [5] provides a
comprehensive review. Much of the recent research uses the
so-called sociophysics approach, which borrows fundamental
ideas from physics in studying the macrolevel (population)
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behaviors that emerge from various microlevel (individual)
interactions. In practice, there are a huge number of variants of
opinion dynamics models to consider. Each unique definition
of amicrolevel interaction process can lead to the emergence of
different regimes of behavior at the population level. Yet, after
a series of microlevel updates, we can ask several questions. Is
the network converging to consensus on a particular opinion?
If so, how quickly? If not, will one of the competing opinions
win a plurality? What aspects of network structure and initial
conditions affect the answers to the previous questions?

Virtually all the classical research in discrete opinion
dynamics has considered the answers to the above questions
in the context of a small number of competing opinions,
usually two, and where agents are adaptive, i.e., not zealots.
The phenomenon of zealotry has been formally studied only
recently [6-11]. Both Refs. [12,13] consider the “naming
game” model with competing zealots where there are two
opinions, each with a zealot backing. In 1995, the naming game
model was introduced as a method for agents to identify each
other with names or spatial descriptions [14]. More recently,
it has been adopted as a model describing the evolution of
language and of opinion dynamics in social networks. There
have been several studies that have considered the naming
game model (with two opinions) for opinion dynamics; for
example, see Refs. [15-18]. In this work, we focus on the
situation where there are a large number of opinions in the
presence of zealots. In particular, we generalize some of
the key results of Refs. [12,13] of zealotry in the binary
naming game, to arbitrary dimensions. More than two opinions
under cyclic dominance have been studied under the classical
rock-paper-scissors model, e.g., Ref. [19], the rock-paper-
scissors Spock-Lizard variant, e.g., Ref. [20], and a cyclic
Lotka-Volterra model [21].

In this manuscript, “dimension” refers to the number of
different opinions, but in previous work, discussed next,
dimensionality refers to the dimension of the lattice on which
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the dynamics occur. A few previous works have considered
higher-dimensional analogs of some opinion dynamics mod-
els. For example, in the continuous-valued case, Ref. [22]
studies higher-dimensional analogs of the standard consensus
problem under linear update. The authors consider the time
to consensus as a function of dimension. Reference [23]
shows through detailed simulations that the chance of a
“vast-majority” consensus increases with dimension, but so
do the number of minority opinions. There is even less work
on higher-dimensional analogs in the discrete opinion case.
For example, Ref. [24] considers higher-dimensional versions
of the majority-rule model. The work in [25] also studies
the majority-rule model in higher-dimensional lattices, finding
deviations from predicted mean field behavior for d = 4 and
uses simulations to establish the approximate values of the
critical exponent for up to d = 7, showing that these values
agree well with mean field theory.

The rest of this paper is organized as follows. We first
begin in Sec. II by presenting the basic update mechanism
and present the concrete rule table for the case of the two
opinion naming game. The case of k opinions, k > 2, is a
straightforward extension. In Sec. III, we provide a derivation
of the general mean field equations for arbitrary k, which is
one of the contributions of this work. Section IV details our
primary contribution, which is the computation of steady states
and critical points in two important special cases for arbitrarily
high values of k. In Sec. V, we introduce a low-dimensional
model which is very similar to the naming game yet more
amenable to analysis.

II. MODEL, ASSUMPTIONS, PROBLEM FORMULATION

We study the naming game using the same interaction
model presented in Xie et al. [12] and using notation from
Ref. [13]. Consider the general situation of a discrete opinion
space with k opinions where individuals can hold multiple
opinions. Define O = {0,,, m =1, ...,k} as the set of all
possible opinions. Let 1,(¢) denote the set of opinions held by
node £ at time #, and let \V;(¢) denote its neighbors, i.e., with
whom it can communicate or interact directly at time ¢ [note
that in the mean field case that we study here, N,(¢) is the
set of all nodes in the graph]. At each discrete time step, an
agent, say i, is selected randomly and randomly selects one of
its neighbors, say j, with which to interact. Given node i is
selected at time ¢, the probability it chooses j is thus 1/|N;(2)].
Node i randomly chooses one opinion O,, from its set of
opinions [;(¢) with uniform probability 1/|/;(¢)| and chooses
it for discussion with j. If j already has O,, in its own set, then
both agree upon O,, and both of them discard the rest of the
opinions from their sets; otherwise, j adds O,, to its set. If the
initiator is a zealot, it does not change its opinion; similarly, if
the responder is a zealot, it does not change its opinion. The
interaction model for the general case is described by

Op

(I1.1) B (O, 0. if O, € I (1)
% (1;,1; U{0,}), if Oy, & 1; and j is not a zealot

(2)

ﬁﬁ (1;,1;), otherwise. 3)
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In particular, note that when a common opinion is found
between speaker and listener, it becomes the sole opinion
adopted by both.

The dynamics of the naming game model can be approxi-
mated in the mean field by a system of differential equations.
For example, in the two opinion case (i.e., the binary naming
game) in the equations below, x and y refer to the fraction
of nodes which have opinions A and B, respectively, and
z is the fraction of nodes which have both opinions A and
B. The zealotry parameters p and g describe the fraction
of zealots having opinions A and B, respectively. Note that
x +y+z =1, so the zealots are included in the variables
x and y. These equations describe the mean field evolution
over time of the naming game, and can be used to determine
the expected values of x, y, and z over time as described in
Sec. [II C:

x z(x—i—z—i-g)—y(x—p),

<
Il

' Z<y+z+%>—x(y—q),

z=1—x—y.

It is straightforward to calculate the steady states by setting
x" =y’ = 0, and there are two special cases in which the steady
state solutions can be expressed concisely:

(1) The case in which g = 0 and hence there are no zealots
representing opinion B. In this case, a phase transition occurs
as p is increased at a critical point p. & 0.1. In the subcritical
case where p < p, itis possible to have y > x in steady state.
In the supercritical case where p > p,, it is guaranteed that
x >y in steady state [9].

(2) The case in which p = ¢ and hence the number of
zealots representing opinions A and B are equal. A phase
transition also occurs in this case at a different critical point
pe = +/10 — 3. There is always a steady state solution in which
x = y,butwhen p < p, this solution is unstable and two other
stable solutions exist in which, respectively, x > yand x < y.
When p > p,, the only steady state solution is x = y, which
is stable [9].

A. Challenge of high dimensionality

Extending the binary naming game model to higher dimen-
sions leads to an exponential blowup in the dimensionality of
the opinion space, primarily because of the undecideds, i.e.,
those holding multiple opinions. To see this, note that for k&
unique opinions, the “decideds” can only be of k unique types,
but the undecideds may have any subset of the k opinions that
has cardinality greater than or equal to 2. Thus, when there are k
possible distinct opinions, the total number of possible unique
opinion states (decided plus undecided) is 2F — 1. For example,
if the number of opinions is k = 4, the possible opinion states
are A, B,C, D, AB, AC, AD, BC, BD,CD, ABC, ABD,
ACD, BCD, and ABC D where the first four are decideds
and the remaining are undecideds. Explicitly deriving the
governing system of mean field equations and then computing
the resulting steady state values for all possible states for even
moderate k is tedious at best. One significant contribution of
this paper is to provide general mean field equations for all k.
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TABLE I. Steady states for the fraction of nodes with opinions
A, B, and C obtained via a direct implementation of the opinion
dynamics process described at the beginning of Sec. II on real-world
networks compared to the mean field case and to Erd6s-Rényi random
graphs of the same edge density. Z refers to the portion of undecided
nodes, that is, nodes with opinion sets containing more than one
opinion. The intent is to measure the effect of network topology on
the naming game process in the specific case of real-world social
networks, and although the real-world networks differ significantly
in structure from both the Erdés-Rényi random graphs and the mean
field case, the broad agreement is striking.

Mean System

Network degree size A B C zZ

Mean field 50000 50000 0.879 0.032 0.032 0.057
Brightkite 7.35 58000 0.832 0.068 0.068 0.032
Erd8s-Rényi 7.35 58000 0.815 0.058 0.058 0.069
Gowalla 9.6 196000 0.839 0.064 0.064 0.033
Erdgs-Rényi 9.6 196000 0.83 0.049 0.049 0.072
Facebook 25.6 63000 0.847 0.052 0.052 0.049
Erdgs-Rényi 25.6 63000 0.864 0.037 0.037 0.062

However, since the number of variables is exponential, it still
quickly becomes computationally intractable to find the steady
states and critical points from these mean field equations. We
address this challenge in Sec. V.

B. Mean field analysis

To simplify analysis, we make the mean field assumption
that each node can interact with every other node. We refer
to this as mean field analysis, and it is equivalent to assuming
that the underlying graph is complete. To assess the validity
of the mean field assumption, we ran the process with k = 3
and 3% zealots of each type on several different online social
networks in comparison to the mean field case and Erdés-Rényi
random graphs. In order to compute the steady states on these
networks with respect to the naming game process, we ran the
process for a total of 200n time steps, where n is the number of
nodes in the system, and averaged over 10 realizations. In the
table below, A, B, and C refer to the fraction of the network
following the three decided opinions, with Z representing all
other nodes. We see a remarkable similarity in steady state
achieved in real world networks (which have a heterogeneous
degree distribution) compared to the mean field case and to
Erd6s-Rényi random graphs with the same number of nodes
and edges (which have a homogeneous degree distribution). It
is reasonable to conjecture that results which hold in the mean
field case may also hold more generally on a large number
of social networks. Since p. > 3% for k = 3, we expect that,
depending upon initial conditions, different steady state results
are possible with the mean field approach. Table I presents the
steady state in which A dominates.

III. GENERAL MEAN FIELD EQUATIONS

Previously, we defined the naming game model with
zealots, and below in Sec. III A we introduce mean field
equations for the three-opinion case, which demonstrates how
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unwieldy it is to explicitly write these equations when k > 2.
In Sec. III B, we address this problem by providing a method
for quickly deriving mean field equations for general k.

A. Three-opinion case

A natural generalization of the binary naming game is to
consider the case in which there are three opinions rather than
two. Instead of three variables, this results in seven:

(1) The decideds with a single opinion: x,y,w.

(2) The undecideds with two opinions: Zyy,Zxw,Zyw-

(3) The undecideds with three opinions: zyy,.

For convenience, define

Zx = Zay t Zaw> 2y = Zxy T Zyws 2w = Zxw T Lyw-

Finally, we define p, g, r, as the zealot fractions backing
the three opinions modeled by x, y, and w. We can then derive
the following mean field equations:

x/:Zx<x+Zx+§> _(y+w+zyw)(-x_p)

1
+ gzxyw(zx + 2P + szyw + Szx)a

/ q
y:@@+@+5>—u+w+@w@—m

1
+ gzxyw(zy +2q + 2nyw + SZ),),

r
w/=Zw<w+Zw+§)—(X+Y+ny)(?U—r)

1
+ gzxyw(zw +2r+ zzxyw + SZw),

/ 11
ny = <X + sz + gzxyw)(y - q)

2 3

44p+gq 1
— Zxy T_x_y_z_izw s

1 1
+ (y + ~ 3y + _nyw)(x - P)

1 1
Z;w = <-x + EZ)( + §nyw>(w - r)

1 1
+ <w + 2w+ _nyw>(x - p)

2 3
44p+r 1
_wa(T_x_y_Z_ EZy),
1 1 1 1
Zivw = (w + EZx + gzxyw)(y —q)+ <y+ EZy + gnyw>
4+q+r 1
x(u)—r)—zyw<—2 —x—y—z—zzx),

T =~ + Y +w' + 2, + 20, + 25,

The last equation follows from the identity x + y + w + zy, +
Zyw T Zyw + Lxyw = 1.
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B. General case

Suppose that there are k opinions, with the fraction of
individuals holding opinion i denoted by x; fori = 1,2, ... k.
More generally, zs is the fraction of nodes whose opinion
set is S. Note that, in this notation, x; = z;. For convenience,
we also define 7; as the probability that a random opinion
from the opinion set of a random node is i. In other words,
T; is the probability that opinion i is transmitted. 7; is the
sum over all ﬁz s where the set S contains i. In symbols,

T = Z{i}gsg{l,z,...,k} ﬁZs-

Similarly, C; is the probability that a randomly chosen
node’s opinion set contains i. C; is the sum over all zg where the
set S contains i, or C; = Z{i}gsg{l,z,...,k} zs. These variables
make it much easier to define general mean field equations for
any number of opinions k, shown in Egs. (4)—(6):

Xy = 2(Ti — xi)(Ci — x4iy) + (Ti — xpxgy

+x00(Ci = x) — Y Tj(xy — pi), “)
J#L

2y = TiGxgy — pj) + Tj(xiy — pi)
2
— (I =z )24y — 22,
- Z{i,j}[%(ci —zi) + Cj — 2ip )]s )

IS

2

75 = Z Tizsvi; — (1 — zs)zs — 225
i

|S]

1
— 2z EBC,-,.—ZS) : (6)
j=1

C. Numerical methods

For each choice of k, the set of solutions to system (4)—(6)
comprise the steady state solutions of the naming game process
with k opinions. However, because the number of variables in
the system increases exponentially in k, it is computationally
difficult to solve this system. Another method of finding
steady state solutions is to simply run the process until it
has essentially converged to a steady state from particular
initial conditions. That is, we estimate lim,_, o, z5(¢) for each
set S through direct simulation. By “direct simulation,” we
mean a direct implementation of the opinion dynamics process
described at the beginning of Sec. II. By definition, we can
write

(zs(®)) = (zs() + (zs(t — 1)) — (zs5(r — 1)).
Thus,

(zs®) = (zs(t — D) + 25(0).

By iterating this equation for all variables we may calculate
the expected value of each variable at each step of the
process. We terminate the process when |z(#)| < 10~ for
every variable zg. This yields a more accurate estimation of
steady state solutions compared to direct simulation of the
process, as illustrated in Fig. 1 where we see there is still
some amount of variance in the curves due to the stochastic
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FIG. 1. (Color online) The fraction of followers for each of three
opinions: A, B, and C, with system size n = 1 000 000. Initially, A
has 60% of the followers, B and C both have 20%, and there are no
initial undecideds. The solid line indicates expected value obtained
from Egs. (4)—(6) and the dots indicate direct simulation. Note that
direct simulation yields a less accurate approximation of steady states
due to minor fluctuations in the stochastic process. The x axis is scaled
by n In(n) and not by n as might seem more natural, due to the mixing
time of the process, which appears to be of order n In() in both the
subcritical and supercritical regimes.

nature of the process. These minor fluctuations persist even
after reaching steady state.

However, this method will not find all steady state solutions
because the solution found depends on the initial point. In
particular, note that if two variables describing decideds x; and
x; are initially equal and p; = p;, then by symmetry they will
remain equal in expected value. In an actual run of the process,
however, the symmetry will almost surely be broken and the
process may converge to a steady state in which x; # x;.

IV. PHASE TRANSITION IN HIGHER DIMENSIONS

As stated in Sec. I A, the primary challenge of extending
the model to higher dimensions is the exponentially increasing
number of variables. Although we have provided a means for
explicitly writing the mean field equations in any dimension,
the large number of variables makes it intractable to analyze
these equations in higher dimensions. Here, we reduce the
number of variables by “gluing” most of them together in
certain special instances, reducing the total number of variables
from 2¢ — 1 to 2k. Note that the analysis in this section
utilizes the mean field equations of Sec. IIIB, and so we
make the mean field assumption that all nodes are neighbors,
and ignore fluctuations. We consider the thermodynamic limit,
corresponding to an infinite number of nodes.

A. Zealots of only one type

The first case we consider is that in which there are only
zealots corresponding to a single opinion. Without loss of
generality, we may assume that p := p; is nonzero and p; = 0
foralli > 2.
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In the subcritical regime, simulations show that if we only
have zealots with opinion 1, there are k stable steady states.
There is always one steady state in which all nodes hold
opinion 1, and there are k — 1 additional steady states in
which one of the other opinions gains the largest number of
followers, opinion 1 holds a lower number of followers, and
all the remaining end up with no followers at all. In Fig. 2,
we show this behavior occurring in simulation of the process.
In this special case, there exists a critical value p. beyond
which all nodes will eventually have only opinion 1. That
is, there exists only one stable steady state and in that state
x1y = land x;; = Ofori # 1.InFig. 3, we show this behavior
occurring in simulation of the process. Moreover, Figs. 2 and 3
together show that the critical point occurs somewhere around
pe = 0.1. Although these figures only show the case of k = 4,
we observe similar behavior for k = 3 and 5.

In order to estimate the value of p., the critical value of p; at
which x(1; = 11is the only stable steady state, we assume that in
steady state x(3; = x4y = - -+ = xyy = 0. That is, we assume
that if any opinion aside from opinion 1 “wins” and is nonzero
in steady state, then it is opinion 2. Since all opinions aside
from opinion 1 are interchangeable, this assumption loses no
generality. Note that in this case it is clear that zg = 0 if the
opinion set S contains any opinion that is not 1 or 2. It follows
that the only nonzero variables in the system in steady state are
X{1y, X2}, and z(1 2. In other words, we are reduced to the case
of two variables, and hence the value of p. remains the same as
k varies. To sum up, in the case where there are only zealots of
one type, the fraction of zealots required to guarantee that the
opinion with zealots wins out is approximately 0.1 regardless
of the number of opinions k. Moreover, the possible steady
states can be calculated by solving the equations in Sec. II, with
the two decided opinions which do not die corresponding to
the variables x and y, and the single undecided opinion which

0.8 : : , :
0.7} &
.'.
0.6
9
[ e .
205f « + Opinion 1 (with zealots) |
o e o Opinion 2
« 0.4 -
° e ¢ Opinion 3
20.3} e o QOpinion 4
S
[« %
0.2
0.1 pun
]
0.0 2
0 1 2 3 4 5

Timesteps/n In(n)

FIG. 2. (Color online) The naming game with zealots of only one
type fork = 4 and p = 0.09, with initial conditions that strongly favor
an opinion without zealots. In steady state, an opinion without zealots
dominates due to the initial conditions which favor that opinion.
Note that all but two opinions are eliminated, consistent with the
assumption made in Sec. IV A in order to calculate critical points for
all k.
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FIG. 3. (Color online) The naming game with zealots of only one
type fork = 4 and p = 0.11, with initial conditions that strongly favor
an opinion without zealots. In steady state, the opinion with zealots
dominates despite initial conditions which are unfavorable for that
opinion, and all others opinions are eliminated. This is consistent
with the assumption made in Sec. IV A in order to calculate critical
points for all k.

does not die out corresponds to the variable z. Alternatively,
we may argue as follows.

We wish to show that the critical point does not change as
the number of opinions is increased. The critical point p, will
be the value of p at which the variable x(;; is guaranteed to
achieve full consensus. That is, in the supercritical regime we
are guaranteed to achieve the absorbing steady state in which
xq1y = 1 and all other variables are equal to 0. Our approach
is to consider the “worst case” initial conditions most likely to
achieve a nonabsorbing steady state in which consensus is not
achieved. More specifically, since we only need one variable
other than x(; to be nonzero in order to be in the subcritical
regime, we will try to find the initial conditions most likely to
result in a nonzero x(y;. This loses no generality, because of
the following:

(1) There is symmetry amongst the variables
X21,X(3), - - - .X(ry which represent decideds and have no
zealots,

(2) If a variable representing undecideds is nonzero in
steady state, one of the variables x(,x(3), ..., X must be
nonzero in steady state as well.

To see that condition 2 holds, suppose xi, i,...i;} 0
and x(;,; = 0. It is straightforward to verify from the mean
field equations in Sec. III B that inl} > 0, contradicting the
assumption that we are in steady state. Therefore, if any
variable representing undecideds in nonzero in steady state,
there must be nonzero variables representing decideds as well.
So, it suffices to find the worst case conditions which make it
least likely that x(p; = O in steady state. It is intuitively clear
that these initial conditions are x;1; = p, xpy = 1 — p, and all
other variables equal to 0. But with these initial conditions,
only the variables x(jj, x(2), and xy; 2y will ever be nonzero,
so it proceeds exactly as in the two-opinion case. If we were
to find the value of p at which we first observe consensus
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with these “worst case” initial conditions, we would therefore
find the same critical point as in the two-opinion case. This
shows that as the number of opinions increases, the critical
point remains stationary.

B. Equal zealots for all opinions

Next, we consider the case in which there are an equal
fraction of zealots representing all opinions. That is, we
take p = p; = p» = p3 = --- = pr. Simulations show that
in steady state, the variables describing decideds take on at
most two distinct values. There will be one variable, say xi,
which has a higher value, and the remaining variables will
all have the same value which is lower. See Fig. 4 for a plot
of a particular simulation with random initial conditions and
k = 5. We observe similar behavior for k =3 and 4. Also
note that in the supercritical regime, there is one distinct value
among the variables describing decideds by definition. Hence,
in the supercritical regime it is trivially the case that there are
at most two distinct values among the variables describing
decideds. Furthermore, note that a small number of distinct
values among the variables describing decideds in steady state
implies a small number of distinct values among the remaining
variables. For example, if x5, = x3; in steady state, it must
be the case that x; ») = x{1,3 in steady state. By applying this
logic across all variables, it is straightforward to determine
that there are at most 2n distinct values amongst all variables
in steady state. We can make use of this fact by “gluing”
together any variables which appear to have the same value in
steady state in order to reduce the total number of variables
which must be considered. We refer to this gluing process as
“identifying” two variables, that is, giving two variables the
same identity. For example, we may identify the two variables
x and y as a single variable z.

0.6 T T T T

Portion of followers
o
w

0.0

Timesteps/n In(n)

FIG. 4. (Color online) The naming game with equal zealots of all
opinions, random initial conditions, k = 5, and p = 0.05. In steady
state, it appears that the decideds for a single opinion dominate
while the remaining decideds tie at a lower value, consistent with
the assumption made in Sec. IV B in order to calculate critical points
for all k.
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For the sake of analysis, we hypothesize that the observation
that the variables x{1y,xy2), - - - , X&) only take on two distinct
values in any stable steady state is true. It then becomes
possible to quickly and accurately calculate the stable steady
states observed in simulations and estimate the critical value p.
for any fixed k. We refer to the variable which attains the higher
value as x and identify all other variables which attain the
lower value as x. For example, if x{;, attains the higher value
we would have x 1= x(;y and X :=xpp) = x3) = ... = X
We also identify zs and z; as zs if sets S and § are the same
size and both have the same status as to whether or not they
contain x. That is, Z; 34 and Zj; 3 are identified as Z)
since both contain the dominant variable 1 and are of size 3.

In symbols, z5 and z; are identified with each other if S| =
|.§'| and 8,cs = 8yesr Where §4 = 1 if A is true and §4 =0
otherwise. This results in the following system of 2k variables.
Note that by definition z; = x and Z; = X:

x' = 2Ty —x)(Cy —x) + (Tx — x)x +x(Cx — x)

— (1 =T — p),
V' =2T: — X)(Cx — %) + (Tz — HF + ¥(Cz — %)
—(1 = To)(x — p),

2 =T Zio1 + G — DTrzioy — (1 — 2z — 227

1
—Zi{T[Cx + @ — 1)]C)‘c} fori > 2,
i

7 =iTeZi — (1 —7)% — 272 —7,C;  fori > 2,

o

k
11 /k—2\_ k—2
:)’-i-;lf[(i_l)zl'-i-(i_z)z,},

k
k—2\_ k—2
C ZY+Z<i_1>Zi+<i_2>Zi-

Since there are only a linear number of variables, it is possible
to quickly solve these equations through numerical integration.
In this special case there exists a critical point p.. If p > p,,
a stalemate is achieved among all k opinions, and if p < p,,
then a single opinion dominates. To calculate the critical point
it is necessary to find the lowest possible value of p for which
any set of initial conditions will result in a stalemate: a“k-way
tie” between all k opinions. In this context, a k-way tie is
equivalent to x = X. For any given p, if there exist any initial
conditions for which x # X in steady state, then p is a lower
bound on p.. Note that the initial condition which maximizes
x will not result in x = X in steady state so long as p < p,.
Therefore, to find an upper bound on the critical point we begin
with the initial conditionx = 1 — (k — 1)p and X = p. This is
the initial condition that maximizes x. If in steady state x = %,
then a stalemate has occurred and hence p, < p. We may use
these upper and lower bounds to efficiently approximate p,

=1
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FIG. 5. (Color online) Critical value p. of p above which a
stalemate is guaranteed, plotted against a fitted lognormal curve up
to k = 20. The residual sum of squares is 2.05 x 1075,

for each value of k to an arbitrary level of accuracy. In Fig. 5,
these critical points are plotted against the number of opinions
k, along with a fitted lognormal curve, for 1 < k < 20. Recall
that a lognormal distribution is a two-parameter distribution

defined as f(x) = m}/z?

standard deviation.

In Fig. 6, we show a similar plot up to k = 100. The
parameters for the lognormal curve in Fig. 5 are u = 6.05
and o = 3.73, and the parameters for the lognormal curve in
Fig. 6 are the same as in Fig. 5. In both cases, the residual sum
of squares is less than 3 x 107°. This is a strong indication
that the decay of the critical points is truly lognormal.

Inx—p .
e 22, where u is the mean and o the

107 Critical points up to k = 100
— Critical points
e o Lognormal fit
%]
<
o
Q
g
£
-2 )
10100 10! 102

Number of opinions

FIG. 6. (Color online) Critical points plotted against a fitted
lognormal curve up to k = 100. Note that the lognormal curve plotted
here has the same parameters and is normalized as the lognormal
curve in Fig. 5. The residual sum of squares is 2.34 x 1075,
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C. Verification of critical points

In order to calculate the critical point in Fig. 6 it was
necessary to assume without proof that many of the variables
would be equal in steady state. Here, we will verify that the
critical points are correct in lower-dimensional cases. Given
the calculated critical point p., we verify that p, + € is greater
than the true critical point and p. — € is less than the true
critical point, where € = 0.001. In order to verify that p. + €
is greater than the true critical point, we calculate the steady
state with p = p. + € and observe that the variables describing
decideds all differ by less than 10~°. In order to verify that
pe — € 1is less than the true critical point, we calculate the
steady state with p = p. — € and observe that the variables
describing decideds can differ by more than 0.1. We performed
this verification process for k = 2, 3, 4, 5, 6, and 7.

V. A LOW-DIMENSIONAL OPINION DYNAMICS MODEL
SIMILAR TO THE NAMING GAME WITH ZEALOTS

Although we have studied the naming game model with
zealots in two special cases, the methods used do not extend
to the general case. However, simulations show that variables
describing undecideds seem to “converge” more quickly than
variables describing decideds in the sense that their derivatives
quickly become small. One way to greatly simplify the
naming game model is to assume that the variables describing
undecideds converge instantaneously at each time step. That
is, for each variable zg where |S| > 1 we define zg as the
solution to z; = 0, which makes zs a deterministic function
of the random variables described by the decideds. Another
way of stating this assumption is that the variables describing
undecideds are on a different time scale, having sufficient time
to converge to steady state before any change occurs in the
variables describing decideds. We begin with the case k = 2
for intuition and then proceed to the general case.

Note that the model described in Sec. II is two dimensional
due to the the restriction x + y +z = 1. By setting y = 1 —
X — z, the system depends only on the variables x and z. We
define a function f(x) as the unique positive solution to z’ = 0.
The uniqueness of the positive solution to z’ = 0 can be easily
shown as follows:

2
+x(=2-p+q)+p=0,

1 1
f(X) = _EL(X) + E\/ L(x)2 — 4Q()C),

where L and Q are defined as follows:

/ —p+q+2
z =zz+z[2x+L}+2x2

- 2
L(x)=2x+ %,

O(x) =2x +x(=2— p+4q) + p.

It is straightforward to show that —%L(x) —
%\/L(x)2 — 4Q(x) is nonpositive. Since a negative solution to
the equation 7z’ = 0 is inadmissible, we need focus only on the
positive root, which we denote by f(x). That is, f(x) is that
function of x having the property that if z took the value f(x),
then z’ would equal 0. Since at steady state, 7’ is indeed 0, a
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FIG. 7. (Color online) Simplified versus original process with
k =2, p=gq = 0.05, and initial condition x = 0.3 compared to the
original process with p = g = 0.05 and initial conditions x = 0.3
and z = f(x).

reasonable approximation it to set z = f(x), and examine the
resulting lower-dimensional approximation of the true model.

Fixing z = f(x) yields a one-dimensional approximation
of the original model. The one-dimensional process has the
following mean field equation:

X z(x+z+§>—y(x—p)

f(x)[x FF)+ ﬂ — [l =x — fE)x — p).

We may compare this simple system to the larger system of
two variables introduced in the previous section. We observe
an excellent agreement in the trajectory of the variable x if
both the original and reduced dimension systems start with
the initial condition z = f(x), as shown in Fig. 7. This is true
regardless of p, g, and the initial choice of x. However, if
initially z # f(x), then the processes may be quite different,
although they necessarily have the same steady states. This is
demonstrated in Fig. 8 in which initially z = 0.0.

Based on the appearance of the curve, we conjecture that
for a short time frame the z variable is converging to the
deterministic function f, at which point both processes look
similar. This intuition can be confirmed by delaying the start
of the one-dimensional process until some time #y. As fy is
increased, the curves look more and more similar as shown in
Figs. 9 and 10.

The k = 3 opinion case yields a similar two-dimensional
approximation, by setting z\,, = 2, = 2y, = Zy,, = 0. The k
variables in this process correspond to the variables xy;), with
all other variables zg depending on them in a deterministic
way. Specifically, we numerically determine the value of the
variable zg as the solution to z; = 0 according to Eqgs. (4)—(6).
For convenience, we define zg as the solution to zi; = 0. In
mean field analysis, it does not matter how we define a process
which corresponds to these equations since it depends only
on the system of derivatives. For concreteness, a process may
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FIG. 8. (Color online) Simplified versus original process with
k =2, p=g¢q = 0.05, and initial condition x = 0.3 compared to the
original process with p = ¢ = 0.05 and initial conditions x = 0.3
and z = 0.0.

be defined as follows: at each time step we choose a random
node and a random neighbor, and transmit a random opinion
of the first node to its neighbor. At this point, we utilize the
interaction rules of the naming game with zealots model as
usual. However, after the rules have been applied to determine
the net opinion sets of the chosen nodes, each node whose
opinion set contains more than one opinion must randomly
choose a new opinion set with the set S chosen proportional to
Zs. Hence, in the mean field, the variables x; are still updated
in exactly the same manner as in the naming game with zealots
model, but all other variables are deterministic functions of the
X; ’s.

506}
5 — Original x
B9%2 — Original y
2 0.4} Approximated X |/
o .
B Approximated y
50.3 |
o

0.2

0.1

086 05 10 15 20 25 30 35
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FIG. 9. (Color online) The original process is run with x = 0.3,
y = 0.7, and z = 0.0. The simplified process is run starting at time
0.15n In(n) with initial conditions equal to the values of the original
process at that time.
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FIG. 10. (Color online) The original process is run with x = 0.3,
y = 0.7, and z = 0.0. The simplified process is run starting at time
0.3n In(n) with initial conditions equal to the values of the original
process at that time.

VI. CONCLUSION

In this paper, we analyzed a generalized version of the
binary naming game with zealots by considering an arbitrary
number of opinions. We were able to numerically calculate
critical points in two special cases: the case in which there are
zealots of only one type, and the case in which there are an
equal fraction of zealots of each type. The primary challenge
was in the exponential number of variables in the system
for general k, with 2F — 1 different variables corresponding
to the nonempty subsets of {1,2,3,...,k}. We observed in
simulations that in these two special cases there were not very
many distinct variables in steady state, with many variables
being equal to each other in value. This led to the hypothesis
that many variables could be “glued” together in order to obtain
a smaller system.

Recall that in the first special case, in which there are
only zealots of one type, we defined the critical point as
the threshold value beyond which the opinion with zealots
will always “win” by having more proponents than any other
opinion regardless of initial conditions. We reduced the system
from 2% — 1 variables to only 3. The critical point, therefore,
does not depend on k and is always approximately 0.1. That
is, it is necessary for 10% of the nodes in the system to be
zealots in support of a single opinion in order to guarantee that
this opinion is held by more nodes than any other in steady
state.

In the second special case, in which there are an equal
fraction of zealots for each opinion, the critical point is
the threshold value beyond which a stalemate is guaranteed
between all k opinions. We reduced the system of 2¢ — 1
variables to a system of 2k variables. This system can be solved
numerically even for very large k, and we determined that
the critical points appeared to decay precisely as a lognormal
curve in k. This slow decay indicates that as the number
of opinions increases, it still requires a massive fraction of
zealots in order to achieve a stalemate, which shows that there
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will almost certainly be a dominant variable in any real-world
situation which is well described by naming game dynamics
and in which there are an equal fraction of zealots of each
type. We presented strong evidence that the critical points
decay precisely as a lognormal curve in the special case in
which there is an equal fraction of zealots of each type. To
do this, we first found the best fit of a lognormal curve to the
critical points from k = 1 to 20 with respect to the residual
sum of squares error, and then plotted this curve against the
larger collection of critical points from £ =1 to 100. We
found that the residual sum of squares error remained on
the order of 1075, It is not clear at present why the curve
of critical points would show precisely lognormal decay. The
lognormal distribution may arise as the limiting distribution
of a product of random variables, which can often explain its
appearance as a probability distribution [26]. However, critical
points are certainly not probability distributions arising from
a process, so this cannot explain the appearance of lognormal
decay. Moreover, although we presented strong evidence,
we did not rigorously prove that the decay is precisely
lognormal. It may be possible to prove analytically that the
decay is precisely lognormal by first assuming that the critical
points assume a general lognormal form and then solving
for the undetermined parameters. We leave this for future
work.

It is unlikely that in any real-world scenario the number
of zealots corresponding to each opinion would be precisely
equal. For this reason, it is desirable to show that the result
we have given in this paper is stable. That is, if the fraction
of zealots of each type is slightly perturbed, will there still
be a critical point at which a stalemate (or near stalemate) is
guaranteed and will the critical point be in nearly the same
location? Note that since such a perturbation takes us out of
the special case in which there is only a single parameter
p to vary, it is not immediately clear how to extend the
definition of “critical point.” Moreover, a perfect stalemate
will almost certainly no longer occur. A possible approach
is to set some zealotry parameters to p 4 € and others to
p — € so that there is still only one parameter p to vary.
An additional benefit of this approach is that the methods
presented in this paper may be applied to it. In fact, the general
method of “gluing” together variables allows efficient steady
state analysis in any case in which the zealotry parameters
take on only a finite number of different values. Concretely,
suppose there are two values p; and p, representing the
fractions of zealots for different opinions, which could be
considered an extension of the case in which the fraction
of zealots for each opinion is p. By setting pj =p —€
and p, = p + €, we may study the effects of perturbation
on steady states and still remain in a numerically tractable
case.

Finally, we presented a model which behaves similarly
to the naming game but has only k random variables. This
model may be easier to study analytically, and makes the
assumption that all variables corresponding to undecideds
converge instantaneously at each time step. In the context of
this paper, this gives evidence that the naming game with
zealots is fundamentally low dimensional in the sense that
there are only k stable steady states, all of which are accounted
for in our analysis.
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