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Slow poisoning and destruction of networks: Edge proximity and its implications
for biological and infrastructure networks
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We propose a network metric, edge proximity, P,, which demonstrates the importance of specific edges in a
network, hitherto not captured by existing network metrics. The effects of removing edges with high P, might
initially seem inconspicuous but are eventually shown to be very harmful for networks. Compared to existing
strategies, the removal of edges by P, leads to a remarkable increase in the diameter and average shortest path
length in undirected real and random networks till the first disconnection and well beyond. P, can be consistently
used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a
network. Targeting by P, causes notable efficiency loss in U.S. and European power grid networks. P, identifies
proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural
connections and important portions of the neural and brain networks, respectively. Energy flow interactions
identified by P, form the backbone of long food web chains. Finally, we scrutinize the potential of P, in edge

controllability dynamics of directed networks.
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Considerable research has been done on the importance of
various metrics in complex networks [1-4]. The importance of
nodes and remarkable effects of their targeted removal using
various network metrics like betweenness and degree is now
well known. In comparison, the role of edges has received
less attention [5-7]. In this context, one may ask if it is
possible to prognose situations where not even a single node is
pruned from the network for a long time and yet tremendous
damage is inflicted on it by selective targeting of specific
edges. Indeed, as we show here, such a process might initially
appear inconspicuous or even deceptively innocuous. Using
a simple metric, which we call edge proximity, we are able
to identify specific edges whose removal can slowly poison
networks and silently wreak havoc in them. Furthermore, we
show that P, can be used to design strategies to consistently
rupture networks into two nearly equal parts. Thus, this could
eventually be far more destructive than currently available
strategies for targeting network edges including those where
rapid disconnection can be achieved due to detachment of
small subgraphs from the parent network.

The most well-known edge-based measure, edge between-
ness, B,, attempts to capture the frequency of an edge lying
on the shortest paths between all pairs of vertices in a network
[5,6]. Edges with the highest B, are most likely to lie between
subgraphs, rather than inside them. Thus, targeting by node or
edge betweenness ensures rapid disconnection of networks by
a small number of deletions [8,9].

Herein, we introduce a new edge-based network metric,
edge proximity, P,. The P, of an edge, e € &, is the inverse of
the sum of its shortest distance d(e, f), with every other edge,
f € &,in aconnected network, G(V,£). )V and £ denote the set
of nodes and edges, respectively, in G. N' = |V| and M = |£]
are the total number of nodes and edges in G, respectively. P,
lends clues as to how close each edge is to every other edge in
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G through the shortest paths between them. Thus, for e € &,
M1
> e dlef)

The average shortest path length, Lg, is the average of all
the shortest path lengths between any pair of nodes in G and
is defined as

Pe )

1
Lo = N T X [§# d(s,1). )

The diameter of G is defined as,

D = max(d(s,t)), Vs,teV, s#t, 3)

d(s,t) being the shortest path from s to #. From the definition
of Lg and D it is clear that L; and D become infinite when G
becomes disconnected.

When edges are targeted by B,, the damage done to the
network in the form of increases in Lg and D might initially
seem to be greater. However, we observe here that P, helps in
identifying those crucial edges of undirected networks whose
deletion ensures the highest increase in Lg and D in G (or its
largest connected component, G') compared to other methods
of edge deletion. This appears to be true for both the first
disconnection and well beyond. In fact, when targeting by P,
no node is disconnected from the network for a very long time.
Here, we study the effect of various edge deletion strategies
on real-world undirected networks like the E.U. and U.S.
power grid network (PGN5s) and the protein-protein interaction
networks (PPINSs) of S. cerevisiae and E. coli till the first
disconnection. We also scrutinize the effect of these strategies,
long after the first disconnection (till only about 30% of the
edges remain in G’), on various models like the Erdos-Rényi
(ER) [10], Barabasi-Albert (BA) [11], and small-world (SW)
[12,13] networks. We also study a variety of directed biological
networks, namely, the macaque brain network, the C. elegans
neural network, and a number of food webs. We find that
in each case P, successfully provides meaningful biological
information.
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FIG. 1. (Color online) Construction of a directed line graph [16],
L(G), from a directed graph, G, to calculate the value of P, for all
edges. Edges in G [nodes in £(G)] shown in bold depict a set of driven
edges found by applying the maximum matching algorithm in £(G).

There have been lots of studies on disconnection of
networks by malicious targeting. However, it is obvious that
significant damage would be caused to the network when each
disconnection causes the network to rupture into two nearly
equal parts rather than having a small chunk disconnected
from it. We demonstrate that P, can be remarkably successful
in consistently achieving this, compared to other methods of
edge removal.

An edge with higher P, should possess the potential to
reach many other edges in directed networks. Of late, there
has been considerable research on node controllability in
networks [14,15]. Switchboard dynamics (SBD) of edges has
also been recently proposed to study edge controllability of
directed networks and to identify the minimal set of driven
edges [16]. We conclude by examining the natural potential
that P, possesses in the context of controllability of directed
networks.

Figure 1 uses a toy example to illustrate the construction of
aline graph £(G) from G. The first step for creating £(G) is that
every node in £(G) represents an edge in the original graph
G. An edge is drawn between any two nodes in £(G) if the
corresponding edges in G share a common node. For directed
graphs, an edge in £(G) represents a directed path of length 2
in G. Each node of £(G) is an edge of G. Thus, P,,e € £ can
be obtained from closeness centrality of corresponding node
in £(G).

As is well known, the computational complexity of node
closenessis O(|V|log | V| + |£]). The number of nodes in £(G)
is |€]. The number of two-path lengths in G is the number of
edges in £(G). Therefore the computational complexity for
P, is O(E|log |E] + |€I*) and can be computed easily. All
networks were analyzed here using networkx [17].

The very same edge-based metric, X'(G), can be modeled
with nodes involved in definition, as X;(G), or without nodes
as A5(G). |X1(G) ~ X(G)| might not be very significant,
especially when G is large. The computation time for X,(G)
might be slightly longer than that for X (G).

We investigate a number of edge deletion strategies which
affect £Lg and D in G. The strategies adopted here consist
of independently deleting successive edges: (i) with max(P,),
(i1) with max(B,), (iii) connected to the node of the highest
degree in G [max(KC,)], and (iv) purely at random (R.).
To illustrate further, we construct four identical copies of
gV, &): {Gi(Vi,ENYi € {1,2,3,4}. We then remove the edge
with max(P,), max(B,), max(k,.), e € &,i € {1,2,3}, from
G1, G2, Gs, respectively. In case there is more than one edge
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FIG. 2. (Color online) Ds = D/D,, of the giant component, G’,
versus the fraction of edges deleted, m, using different types of edge
deletion strategies before first node disconnection in (a) E.U. and (b)
U.S. power grid network (PGN) and (c) E. coli and (d) S. cerevisiae
PPIN. D is the diameter of the original network. The increase in Dg
versus m is initially higher for B, but is eventually highest for P,.
Lg-versus-m curves show similar behavior.

with max(P,), max(B,), and max(k’,), we randomly choose
one among them. We recalculate the values of P,, B,, and
Ke, e € &,i € {1,2,3}, for Gy, G», and Gs, respectively. For all
real-world networks studied here, we repeat this removal and
recalculation process until the first node is disconnected. In G4
edges are always deleted randomly.

We test these strategies for PGNs of the European Union
[18] and United States [12] by recording change in Lg and D
till the first node disconnection. As shown in Fig. 2, deletion of
edges by B, has a strong effect on the increase in D (and Lg),
initially. Random edge deletion does not lead to a significant
increase in D (and Lg) of the PGNs. Similarly, targeting by
max(/C.) does not lead to a significant increase in D (and Lg),
at least for the U.S. PGN. The most striking increase in D (and
Lg) is, however, seen for successive deletions using max(7P,).
Thus P, identifies specific edges whose existence is crucial
for the network. Damage to these edges affects n, Lg, and D
significantly in PGNs.

We also calculate the efficiency, n, which is the average of
the inverse of all shortest path lengths between any pair of
nodes in G [19]:
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FIG. 3. (Color online) Loss of efficiency 1, = 1/no versus frac-
tion of edges deleted, m, for different strategies of (a) E.U. and (b)
U.S. power grid networks, where 1 is the efficiency of the original
network.
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FIG. 4. (Color online) Dgs of giant component, G’, versus m for (a, b) ER [10], (c, d) BA [11], and (e, f) SW [12] till G’ has only 30% of
the original edges of G. (a, ¢, ) N = 1000; (b, d, f) N = 500. Data were averaged over 50 and 20 realizations for N' = 500 and A/ = 1000,
respectively. Standard error is negligible. For ER the probability of edge creation is 0.02. For BA, my = 2 in (c) and m, = 3 in (d). For SW,
initially every node has five and four neighbors, respectively, and the probability of edge rewiring is 0.3 and 0.2, respectively, in (e) and (f). Ds
increases with clustering. Therefore, P, would be important in most real-world networks.

Both E.U. and U.S. PGNs become disconnected by a small
number of random edge deletions with insignificant loss of 7,
as shown in Fig. 3. Notably, connectedness is still maintained
for both E.U. and U.S. PGNs when targeted by max(/C,).
However, maximum loss of 5 (and increase in D and Lg)
is observed when edges are targeted by max(P,). Of course,
loss of n in the E.U. PGN is comparable for max(XC,) and
max(P,) strategies. However, it is not comparable for the U.S.
PGN. Thus, in general, max(P,) edges could be very different
from max(/C,) edges.

We keep deleting edges even after the first node disconnec-
tion, until G’ contains only 30% of the edges of G, as shown in
Fig. 4 for BA, ER, and SW networks. Further edge deletions
are not conducted because in very small graphs P, loses its
meaning, as every edge is usually quite close to most other
edges. Ds fluctuates most in ER networks due to the larger
number of disconnections. Effects due to P, are higher in
networks with higher clustering. Thus P, should be important
for many real-world networks.

Great harm can be caused to a network if it can be broken
into two nearly equal parts at each disconnection rather than
having a small part disconnected from it. As demonstrated in
Fig. 5, for BA, ER, and SW networks, targeting by P, can
be a remarkably successful way to consistently achieve this
outcome.

Npis 7

FIG. 5. (Color online) Ratio of the size of the two biggest
components, Rgcc, of G after each disconnection in BA, ER, and
SW networks. Np;s is the number of disconnections till G’ has only
30% of the edges of G. Values are the same as those for /' = 500 in
Fig. 4.

For all biological networks studied here, we scrutinise the
biological significance of edges with the highest P, and B,.
For this purpose, we calculate

Q— Q)

Z(Q) = o @

Q € {P..B.}. (&)

n(Q) is the mean and o (Q), the standard deviation of the Q
distribution. For consistency, we restrict ourselves to the top
2% of edges with Z(Q) > 1.

First, we observe the effect of edge deletion in G’ of
yeast [20] and E. coli [21] PPINs till first disconnection. As
shown in Figs. 2(c) and 2(d), removal of interactions by P,
increases Lg and D of PPINs the most. In the E. coli PPIN,
an essential protein, 60kDa chaperonin is consistently present
at one end of Z(P,) > 1 edges. This 60kDa protein exhibits
a specific stress-dependent coexpression with its connected
proteins via these Z(P,) > 1 edges [22], like date hubs [23].

Tropic interactions and energy flow directions in food
web networks (FWNs) are represented by directed edges
from prey to predators [24]. The cascade of extinction and
role of keystone species are well documented depending
on the species- or node-based approach of FWNs [25,26].
Tropic interactions or the edge-based approach might be
beneficial for identifying important interactions in the FWN.
Herein, we analyze three coral reef FWNs, of Cayman Island,
Cuba, and Jamaica [27], and four FWNs in South Florida
ecosystems [28,29]. B, and P, identify different sets of
edges for these FWNs. The root interactions of the dominator
tree of corresponding FWNs [25,30] are considered to be
important interactions of primary consumers with producers
or interactions with the outside environment. These are located
at the initial positions in long food chains. Removal of
these interactions may lead to secondary extinction of many
species [25] or may stop the sending of input energy into
the FWN from the outer environment [28,29]. P, seems to
identify these root interactions correctly. Z(P,) > 1 edges
include such interactions as primary consumers interacting
with planktonic bacteria, phytoplanton, or macrophytes and
the environmental input to primary producers and epiphytes.
B, identifies other interactions between keystone species such
as Diadema, bivalves, vertebrate detritus, mesoinvertebrates,
etc. [6,31-36], successfully. Thus, many food chains possess
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TABLEI 7P, helpsinidentifying driven edges of G(V,€) in Fig. 1.
& and {&} denote all possible sets of driven edges and edge sets of
feedback loops, respectively. We observe thate € 8; for some 5; e,
i€Z,if P, >0andif & ¢ {E). But & ¢ &', because, &, € {Er)
and is self-controllable.

Edge P, B,
(12) € &, 0.3472 0.08333
(1,5) € &, 0.3461 0.08333
(5.6) € &, 0.2857 0.1167
2.6) €&, 0.2812 0.15
(32)e&, 0.2249 0.1667
(6,3) € &, 0.1875 0.1333
(5.4) 0.0 0.0667
2.3) 0.0 0.0667
(6,4) 0.0 0.1

Z(B,) > 1 edges and their removal might hamper many tropic
interactions [31].

There has been significant research on detecting emergent
behavioral patterns from networks of interconnected neurons.
Functional and structural aspects of neural networks are rather
well studied in the case of the C. elegans network. The
connectivity data have been obtained from reconstruction
of electron microscopy [37]. To detect functionally and
structurally important synapses, we analyze the network using
P, and B,. Z(B,) > 1 identifies RME, AIB, RIA, RIF, AIM,
and AEV synapses. These are ring motors and interneurons
associated with thermotaxis and backward movement [38—40].
However, Z(P,) > 1 identifies various synapses of AVEL
which are solely associated with backward movement of C.
elegans [38].

We also study the brain network of monkeys formed
from connectivity data on macaque brain (CoCoMac data
sets), where neural fibers connecting different portions of the
brain are represented by directed edges [41]. Analyzing all
neural connections by B, and P,, we find that two rather
different frypes of edges in hierarchical information processing

PHYSICAL REVIEW E 91, 022807 (2015)

pathways are identified by these two metrics. Z(B,) > 1
identifies interactions which are essentially localized in the
intermediate regions of the brain like the prefrontal cortex [42].
Interestingly, Z(P,) > 1 corresponds to various connections
from cortex to thalamus, frontal lobe, and temporal lobe, which
are the starting interactions of longer information processing
pathways from the cortex to other regions of the brain [42].

Finally, under SBD of edge controllability, each node is
conceived as acting similarly to a small switchboard-like
device [16]. Nodes map the input signals of the inbound
edges to the outbound edges. Figure 1 depicts an example
akin to Ref. [16]. The maximum matching algorithm is used
for the line graph, £(G), constructed from the original network
G = G(V,&) for identifying all possible sets of driven edges,
E = {El-/ :i € Z4}, in G under SBD; Si' C £. We calculate
P, and B,, e € £, in Fig. 1. Intuitively, edges with a higher
P, could be driven edges for edge controllability under SBD.
This is consistent with Table I, where P, > 0 for 5; eé&.
6’; = {(2,6),(3,2),(6,3)} also shows P, > 0, thus raising the
question whether 5; € £'. However, 5; € &, where {£/)
denotes all sets of edges participating in feedback loops of G.
Thus, Ei, eléfliel, = 5; ¢ 5’,becauseif€£ € {Ef},é'l-/
is self-controllable. Again, either of (5,4), (2,3), or (6,4) isnota
good driven edge because each of these edges can only control
itself. We observe that P, = 0 for them. This proof-of-concept
example illustrates the potential utility of P, to act as an
index of edge control centrality of individual edges under
SBD.

Even though infrastructure and biological networks have
been examined in depth in this paper, P, would play a
prominent role in most real-world and random networks,
especially large ones. For very small networks, P, becomes
irrelevant because almost all edges are then mutually close.
The slow poisoning effect due to P, increases with clustering
in undirected graphs. Therefore, P, would be important in a
wide variety of real-world networks. As with almost any other
network metric, its importance would be rather limited in very
dense graphs.
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