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Forest-fire model as a supercritical dynamic model in financial systems
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Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme
events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has
suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different
theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We
build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows
a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events
in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a
benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude
of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.
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Large-scale cascading failures have garnered attention in
many complex systems, such as power grids and commu-
nication networks [1–4], because once they happen, their
impact can be unexpectedly catastrophic. A case in point
is the crippling blow to the world economy preceded by
the failure of an investment bank, Lehman Brothers, and
the subsequent financial meltdown with the evaporation of
more than $10 trillion from the global equity market [5]. In
the past, such an extreme event was treated as an integral part of
self-organized criticality (SOC) [6–8], which is characterized
by a power-law distribution. Partly due to the scarcity of
extreme events, few suspected the possibility that some of them
could systematically deviate from a power-law distribution.
Recently, however, researchers have begun to consider extreme
events as supercritical phenomena, characterizing extreme
events as distinguishable by their sizes from the rest of the
statistical population [9,10]. The objective of our work is to
shed additional light on such supercritical behavior by studying
financial meltdown.

We build our model of financial crisis on the existing
forest fire (FF) model introduced by Drossel and Schwabl
[11–13], because it captures two essential features in finan-
cial meltdown. First, its nonconservative ingredient naturally
mimics financial meltdown, where asset prices tend not to
be conserved. When an asset market collapses, traders have
difficulty pricing assets, as was the case in the collapse of
the mortgage-backed securities market on the eve of the 2008
financial crisis. The assets that were previously considered
liquid become illiquid, causing chronic problems for banks
with speculative bets on these assets. The upshot is that an
important quantity, the value of assets, will not be conserved
over time. Second, there exists a separation of two time scales.
It takes a long time for banks to build up a fat bubble,
which is represented by a percolation cluster consisting of
counterparties of vulnerable banks that make speculative bets
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on risky assets. In contrast, the meltdown of this cluster takes
place very quickly as trees burn up in a short time.

Here we model the FF dynamics in scale-free networks,
which are employed to capture entangled counterparty rela-
tionships among banks worldwide. For example, on the eve of
the 2008 financial crisis, Lehman alone was counterparty to
almost a million derivatives contracts and a huge borrower
in the repo market, and its countless derivative and repo
contracts connected the bank to numerous counterparties all
over the world [14]. Our analysis shows a nontrivial scaling
feature indicating supercritical behavior, which is independent
of system size. Prior research on the FF model did not detect
this supercritical behavior [11,15–17]. We are able to detect
it because it becomes more pronounced and conspicuous in
scale-free networks, where the percolation threshold vanishes
when the degree exponent is between two and three.

I. MODEL

Building on Ref. [11], we model the contagion of financial
crisis through an interbanking network of size N , which
is represented by a scale-free network with the degree
distribution Pd (k) ∼ k−γ [18,19]. It is known to be ubiquitous,
and empirical research suggests that an interbanking network
can be approximated by a scale-free network [20,21]. In
the interbanking network, each node represents a bank or
banklike firm, whereas a link between two nodes represents
a counterparty relationship. A bank may lend money to its
counterpart bank or invest in its financial products or assets.
When one bank defaults on some debt, this event can leave its
counterpart creditors or investors dangerously short of funds.
To shed some meaningful light on the dynamics of such a
complex system, our model focuses only on cascading bank
failures in the interbanking network. Defaults of nonfinancial
firms or individuals are treated as external shocks to the system.

The dynamics of the FF model in the interbanking network
is defined as follows: Each node can be in one of the two states:
vulnerable or healthy, which corresponds to a tree-occupied
state or an empty state. In the vulnerable state, the node
has insufficient cash reserves and is susceptible to financial
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FIG. 1. (Color online) (a) A schematic illustration of the model. (i) Empty (filled) nodes represent healthy (vulnerable) banks. (ii) A
randomly chosen healthy bank becomes vulnerable by taking excessive risks, and a cluster develops composed of four connected vulnerable
banks. (iii) One of the banks in the cluster is exposed to a random shock (represented as lightning), the exposed bank fails, and a cascade of
bank failures is triggered throughout the entire cluster. (iv) Those failed nodes become healthy. The number of failed banks in (iii) is avalanche
size. (b) A typical sequence of the avalanche sizes in a network with 105 banks. Most avalanches are small, but a large-scale financial meltdown
does occur as shown at time step 600. (c) The cluster size distribution of interconnected vulnerable banks at an onset of a large-scale financial
meltdown. There exists a giant cluster (arrow), where complex transactional relationships among banks in vulnerable state will serve as a
channel for financial crisis contagion.

shock. In the healthy state, the bank has enough cash or
liquid assets on hand to meet depositors’ (or creditors’)
demands and is resilient to financial shocks. Initially all
nodes are healthy, and the following steps are repeated:
(i) a randomly chosen node becomes vulnerable and (ii) a
randomly chosen node experiences a shock with a probability
of 1/θ . If the chosen node is vulnerable, the whole cluster
of vulnerable nodes containing the chosen node fails, and all
the failed nodes become healthy. This approach to modeling
of financial contagion differs from typical epidemic models,
where healthy individuals are susceptible to infection from
infected individuals. Actually such contact processes are
supposed to exist but are ignored in the FF model because their
time scale is too short compared with that of growing trees.
We call the number of nodes in the failed cluster the avalanche
size. The probability distribution of avalanche sizes, which is
denoted as Ps(s), is our primary interest [Fig. 1(a) and 1(b)].

II. IMPLICATIONS FOR FINANCIAL SYSTEMS

The parameter θ controls the average duration between
two successive external shocks (two successive instances
of lightening in the context of forest fire), which may be
interpreted as the availability of liquidity in a financial system.
In the model the extreme events result from bursting of bubbles,
seeds of which are sown by economic expansion with few
shocks for a long period, which corresponds to the case when
θ is large. That is, as banks do not experience defaults on their
loans, more and more banks get involved in transactions of
risky assets with many other counterparties, building up an
extremely fat bubble. Historically, the fragility of the financial
system has been increased by long periods of easy access
to money, during which defaults on loans were infrequent
[22,23].

After the expansion with easy money, the moment arrives
for a dramatic reversal of the expansion; this is now known as
a Minsky moment in the financial community [24,25]. Usually

an external shock, such as sudden increases in interest rates,
acts as a wake-up call for a financial meltdown. Assets that
were previously considered liquid become illiquid and values
of risky assets are heavily devaluated. Banks with imprudent
practices can no longer borrow money from the interbanking
money market at a reasonable cost and fail. The devaluation
and the propagation of failures induce each other amplifying
the meltdown [22,24–26]. On the other hand, in the FF model,
there are no locally conserved “carriers” of vulnerability such
as sand grains in the sandpile model [6]. The failure of a
node simply causes failures of all vulnerable nodes connected
to the failed node. This is a simplified version of the real
situation in which vulnerability is amplified by the collapse
of asset markets and the subsequent evaporation of liquidity.
The nonconservative nature of the FF model is an essential
ingredient for the supercritical behavior because conventional
conservative avalanche models such as the sandpile model
do not exhibit supercriticality in regular lattices or scale-free
networks [27].

In the FF model, the separation of two time scales, the
periods of expansion and meltdown, seems to be reasonable for
modeling financial crisis. After the Minsky moment, a failure
of one vulnerable bank tends to trigger a financial meltdown.
Since the time scale for such a meltdown in reality is much
smaller than that for expansion [5], we describe a financial
meltdown as a series of bank failures occurring in one time
step.

In the next time step, the failed nodes become healthy
again. An interpretation of this rule is that the failed banks
are refinanced through government bailouts or acquisitions by
other actors. In reality, failed banks may also be dissolved,
or new banks may enter the system, and the bank network
evolves. However, after a transient period of the evolution
which is rather short compared with the interval between two
successive financial crises, the network should be still scale-
free and have similar statistical properties with the previous
one. Thus, statistical properties of the FF model on such
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FIG. 2. (Color online) (a) Probability distributions of avalanche
sizes for various q. The tails of the distributions systematically deviate
from a power-law behavior. (b) Probability distributions of avalanche
sizes for various degree exponent values γ . Simulations were run
on scale-free networks with exponent γ = 2.5 for (a), containing
N = 107 nodes and L = 10N links for (a) and (b).

dynamic networks can be obtained by repeated simulations
in an ensemble of scale-free networks.

III. AVALANCHE SIZE DISTRIBUTION

The simulation results of Ps(s) for various q ≡ θ/N are
shown in Fig. 2(a). They show that a parameter q, the
availability of liquidity relative to the system size, positively
affects the magnitude of the large-scale financial meltdown.
When q is sufficiently small, the size distribution decays
in a power law-like manner. In this case, external shocks
are frequent, small-scale avalanches are more likely, and
large-scale avalanches are less likely. In contrast, when q is
large, the distribution exhibits a supercritical behavior and can
be characterized in three distinct regions: (i) in the first region,
the size distribution decays at a rate close to a power law;
(ii) in the second region, a bump exists whose pattern can
be described by an increasing power-law function, called the
supercritical region; and (iii) in the third region, the distribution
tails off sharply.

In the model, a protracted period without shock allows
the development of bubbles, which are represented by a
giant cluster of complex transactional relationships among
vulnerable banks. This is equivalent to the giant cluster in
a percolation theory [28] [Fig. 1(c)]. The failure of one bank

in a giant cluster causes the failure of the whole cluster. It
is a large-scale financial meltdown in the model. The size
distribution in the first region is due to the failures of banks
in finite-sized clusters as well as giant clusters, whereas the
distribution in the second region stems from the failures of
banks in giant clusters only.

We examine the sensitivity of our key findings to a change
in the degree exponent γ , which controls the degrees of mega
banks. For all levels of γ from 2.1 to 5, supercritical behavior
is apparent [Fig. 2(b)]. We also run simulations on regular
lattices, in which megabanks are outright absent. Supercritical
behavior also appears when q is sufficiently large, which
will be shown later. This result shows that the absence of
megabanks does not eliminate the possibility of a supercritical
financial meltdown completely if q is large. Indeed, history
suggests that large-scale financial meltdowns did occur in
premodern eras prior to the evolution of modern megabanks
[22,29,30].

IV. FINITE-SIZE SCALING
OF SUPERCRITICAL BEHAVIOR

A bump in an avalanche size distribution is found in many
systems. Such bumps are usually believed to be a finite-size
effect that vanishes in the thermodynamic limit, manifesting
critical behavior. However, the bump in our avalanche size
distribution is qualitatively different in that it sustains in the
thermodynamic limit, implying genuine supercritical behavior.
Furthermore, the bump exhibits the increasing power-law
behavior, which has not been observed in other avalanche
dynamics to our knowledge. Here we systematically analyze
these observations based on a finite-size scaling analysis of the
avalanche size distribution.

We first denote the crossover point between the first
and second regions as sc1. In Fig. 3 we show that the
aforementioned behavior is observed in systems of different
sizes, but the crossover point depends on the system size in a
power-law manner (i.e., sc1 ∼ Nμ). Based on this result, we
make the usual scaling ansatz:

P (<)
s (s) = c1G<(s/sc1). (1)

The scaling function G<(x) behaves as G<(x) ∼ x−τ for x <

1. To eliminate the size dependency, c1 is determined as c1 ∼
N−μτ .

The crossover point between the second and the third
regions is denoted as sc2. To characterize the scaling behavior
in the bump pattern for different system sizes, we introduce
another scaling hypothesis:

P (>)
s (s) = c2G>(s/sc2), (2)

where sc2 ∼ N , because sc2 represents a massive-scale
avalanche comparable to the system size in order of magnitude
[Fig. 3(b)]. Then the scaling function behaves as G>(x) ∼ xζ

for x < 1 and sharply decays for x > 1. Because the two
avalanche size distribution functions are continuous at sc1,
the coefficient c2 must depend on the system size as c2 ∼
Nζ−μ(τ+ζ ).

We numerically confirm the scaling behavior using the data
collapse procedure. The scaling hypothesis implies that curves
N−μτP (<)

s (s/Nμ) for different N should collapse into the same
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FIG. 3. (Color online) (a) Plot of data collapse in small-size
avalanche region and (b) intermediate-size avalanche region for
different system sizes N . The parameter q is fixed as 10−4. The
underlying networks are scale-free networks with degree exponent
γ = 2.5. Panel (a) indicates the crossover point sc1 between the first
and second region scales as N0.53, and panel (b) indicates the other
crossover point sc2 between the second region and third region scales
as N .

curve in the first region, and that the collapsing part extends
as N grows. Similarly, the curves N−ζ+μ(τ+ζ )P (>)

s (s/N) for
different N should collapse into the same curve in the second
region. This data collapse is well established by the choice of
τ = 2.55, μ = 0.53, and ζ = 0.75 for networks with γ = 2.5
(Fig. 3). The chosen exponents do not depend on q, but on
γ (Table I). Thus, the scaling behavior is independent of the
parameter q. It depends only on the topology of the underlying
network.

A scaling relation between the exponents τ , μ, and ζ

is obtained by considering the average size of avalanches
〈s〉. For a duration �t , the average number of avalanches is
given by ρ�t/qN , where ρ is the density of the vulnerable
banks in the steady state. Then the average number of failed

TABLE I. Dependency of the scaling exponents on the degree
exponent γ of the underlying scale-free networks.

γ 2.1 2.5 3.0 4.0 5.0
τ 2.8 2.55 2.4 2.0 1.98
μ 0.5 0.53 0.55 0.65 0.67
ζ 0.8 0.75 0.7 0.9 1.0

0.08

0.1

0.12

0.14

0.16

ρ
t

10−8 10−7 10−6 10−5 10−4 10−3 10−2

q

N = 108

N = 107

N = 106

FIG. 4. (Color online) Average density of vulnerable nodes as a
function of q. The density is measured just before each shock. Degree
exponent of the underlying network is taken as γ = 2.5. The scaling
behavior is evident in the range of q where the plateau is observed in
the average density.

banks in the duration is 〈s〉ρ�t/qN . This must be equal
to the average number of banks (1 − ρ)�t that become
vulnerable in the duration because the number of vulnerable
banks in the system is steady on average. Thus, we obtain
〈s〉 = qN (1 − ρ)/ρ [11]. On the other hand, we have 〈s〉 =∫ sc1

1 sP (<)
s (s) ds + ∫ ∞

sc1
sP (>)

s (s) ds ∼ Nζ−μ(τ+ζ )+2. Thus, the
relation μ(τ + ζ ) − ζ = 1 is obtained. Our measurement of
the exponents in the simulations also fits the relation well.
This relation implies that the second region is sustained in the
thermodynamic limit because the probability of the avalanches
in the region is constant as

∫ sc2

sc1

P (>)
s (s) ds ∼ Nζ−μ(τ+ζ )+1 ∼ const. (3)

The range of q in which the scaling behavior holds can be
estimated by the average density of vulnerable nodes measured
just before each shock. We find that there exists a range of q

in which the average density measured just before each shock
is independent of q. The scaling behavior holds in the range,
whereas deviation is observed outside the range (Fig. 4). A
finite upper bound q0 (≈10−4) of the range exists, but the
lower bound seems to vanish as the system size increases.
For any 0 < q < q0, the scaling behavior holds if the system
size is large enough. The vanishing lower bound is supported
by the fact that the percolation threshold vanishes in scale-
free networks with 2 < γ < 3 [28]. The density of vulnerable
nodes is always higher than the percolation threshold, implying
a supercritical giant cluster exists in the thermodynamic limit.

We have two divergent size scales sc1 and sc2 in the model.
The scaling of sc2 of the order of N is clear, but scaling
of the crossover point sc1 is not trivial. To understand the
characteristics of the exponent μ, we simulate the model on the
two-dimensional square lattice. When q is sufficiently large, a
bump again appears in the tail of the distribution (Fig. 5). We
find that the crossover points scale as sc1 ∼ L1.9 and sc2 ∼ L2,
where L is the linear size of the system and N = L2. The
value 1.9 of the exponent sc1 is close to the fractal dimension
of the percolating cluster around the percolation threshold on
the lattice. The scaling is expected because sc1 is the starting
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FIG. 5. (Color online) Data collapse of the avalanche size dis-
tributions on two dimensional square lattices of different sizes for a
fixed q = 0.7. The linear size of a lattice is denoted as L. The collapse
of the decreasing part indicates that the crossover point scales as L1.9.
The inset shows the cutoff point of the increasing part scales along
the order of the system size L2.

point of the bump and thus represents the typical size of small
giant clusters. The existence of the bump and the cutoff of
the order of N are also expected if the density of vulnerable
nodes is maintained to be larger than the percolation threshold
by sufficiently large q. However, the bump is too narrow to
exhibit any power-law behavior. Therefore, the arguments we
made for the FF model on scale-free networks will not be
directly applicable to the bump in the lattice. We remark that
in a previous study [15], a similar distribution was observed
and was interpreted as a violation of a simple finite-size scaling
ansatz, but no scaling analysis for sc1 was provided.

V. DISCUSSION

We have studied the FF model on scale-free networks
and derived a scaling relation for the avalanche sizes in
the supercritical region, which implies that the supercritical
dynamics can occur generically, independent of system size. In
particular, the dynamics of our model generate not only small-
scale bank failures but also extremely large-scale financial
meltdowns. The dynamics are shaped by the formation of
a bubble, which is represented by a cluster of counterparty
relationships among vulnerable banks that make speculative
bets on risky assets.

The size of a bubble is controlled by the duration in which
the system is not exposed to external shocks (e.g., no lightening
in the context of forest fire). When the duration is short,
small-scale bank failures are more likely, but the possibility for
an extreme financial meltdown is reduced. When the duration
is long enough, however, small-scale bank failures become
less frequent, as is usually the case in an era of easy access
to money. History, however, suggests that a protracted era
of easy money promotes imprudent banking practices and
development of speculative bubbles [22,23,31]. In our model,
the system evolves to a supercritical state in this munificent
environment, increasing the likelihood of development of an
unusually large cluster of counterparty relationships among
vulnerable banks with speculative bets on risky assets. This
cluster is equivalent to a supercritical percolation cluster in the
context of forest fire. When one bank in this cluster fails, other
counterparties in the cluster are affected, and cascading bank
failures occur.

This is reminiscent of the financial meltdown triggered by
the demise of Lehman Brothers, which was acting as the prime
broker for many hedge funds in executing trades, holding
collateral and receiving and disbursing monies [14]. Lehman’s
failure immediately wiped out large numbers of hedge funds.
The bankruptcy of Lehman’s European subsidiary alone froze
$40 billion in clients’ funds [32]. Furthermore, its biggest
counterparties, such as Bank of America, Citigroup, and
Deutsche Bank, were critically affected and eventually bailed
out by governments. Then a credit crunch hammered banking
systems globally, and the shutdown of some asset markets
made it difficult to conserve the value of an asset. It became
blatantly obvious that this nonconservative nature is one of
the essential features of financial crisis. Our findings highlight
the importance of policy interventions in keeping the economy
operating within reasonable duration of an easy money regime,
which seems to be one of the root causes of large-scale financial
meltdowns.
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