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Anomalous scaling in an age-dependent branching model
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We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with
branch age t as ™. Depending on the exponent «, the scaling of tree depth with tree size n displays a transition
between the logarithmic scaling of random trees and an algebraic growth. At the transition (¢ = 1) tree depth
grows as (log n)?. This anomalous scaling is in good agreement with the trend observed in evolution of biological
species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of

a critical point.
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I. INTRODUCTION

Tree structures appear in a variety of contexts ranging
from river networks [1] and blood vessels [2] to directed
polymers [3,4] or computer file systems [5—7]. Evolutionary
histories and genealogies are naturally represented as trees.
Each branching point represents an ancestral relationship in
a population or an event of diversification on sets of lan-
guages [8], species [9-13], or sociocultural innovations [14].
Based on genetic information, modern computational biology
has inferred thousands of trees, so-called phylogenies [15],
depicting the evolutionary relationships between sets of
species, from bacteria to mammals [16]. The shapes of the
collected phylogenies and of related evolutionary trees [17]
share statistical properties not observed in trees generated
by standard branching models [18-20]. It has been a long-
standing and fundamental question in evolutionary biology
to identify which processes accurately describe the observed
tree shapes and thus may serve as models of biological
evolution [21,22].

A suitable starting point and null hypothesis is the equal rate
Markov (ERM) process, which assumes that species speciate
at a constant homogeneous rate, independently of previous
events and of other species present. More specifically, starting
from a single tip (root), at each discrete time step a tip i is
chosen uniformly at random and two new tips are attached
to 7, increasing the number of tips by 1. The procedure has
a direct interpretation for macroevolution as a sequence of
speciation events, where the chosen species i is the latest
common ancestor of two new species. The resulting topology
of the growing tree, which is equivalent to the one produced
by the Yule model [23], tends to generate compact and nearly
balanced tree shapes. Balance refers to an even distribution of
the number of nodes in the subtrees arising from the branches
created at each speciation point. However, when comparing
with the shape of large collections of observed phylogenetic
trees available nowadays (e.g., Refs. [16,17,24]), the ERM
hypothesis can be rejected, as most real phylogenetic trees are
significantly less balanced than those generated by the ERM
and Yule models [11,21,22,24].
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II. TREE SHAPE AND DEPTH

Several indices for imbalance measurement have been
proposed, used, and compared; see Ref. [24—27] for detailed
discussion. Here we study how the depth [28] of a tree with n
tips,

d=n"" idi, (1)
i=1

scales with n. For each tip i, d; denotes the number of edges
separating i from the root. The role of the depth in capturing
tree imbalance is apparent from the two extreme cases. For
the (fully balanced) complete binary tree, d = log, n since
all n =2k tips are at distance k from root. On the other
extreme of full imbalance, a comb (or pectinate) tree has n
tips attached to a path of n — 1 nodes starting at the root. Here
nd=3%" ,d=1+42+-41n—2)+2(n—1), resulting
in asymptotically linear scaling d ~ n. For the ERM model,
the small random imbalances introduced in the process are not
enough to affect the dominant scaling behavior of the balanced
tree and one finds (d) ~ logn (the average is over realizations
of the random process). This logarithmic scaling is a robust
outcome related to the exponential growth of tips occurring in
time for virtually any model of growing supercritical trees [ 18],
as far as branches split independently and without memory, or
if these correlations and memory are sufficiently short-ranged.
Therefore we denote the logarithmic scaling of depth with tree
size as normal. Deviating scaling is called anomalous.

We have calculated [11,12] the depth d for all trees (and
subtrees) in the phylogenetic databases TreeBASE (containing
species phylogenies [16]) and PANDIT (protein phyloge-
nies [17]). The result in Fig. 1(a) suggests that the average
depth grows with the number of tips as

(d) ~ (logn)* 2)

in good approximation. Although alternative scaling laws have
been proposed [11,29], the (logn)* form is more accurate
for large tree sizes [12,30]. Similar behavior is observed in
virus phylogenies where the scaling for individual phylogenies
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FIG. 1. (Color online) Scaling of tree depth with size n. (a) Trees
from databases TreeBASE and PANDIT. Trees have been binned
by size such that each bin contains at least s trees using s = 1000
for PANDIT and s = 200 for TreeBASE. Least squares fits (dashed
lines) of the form v/d = y = ax + b withx = Inn yielda = 0.657 £
0.008, b = 0.53 4 0.03 with correlation coefficient r = 0.9986 for
TreeBASE;anda = 0.771 4 0.006,b = 0.48 £ 0.02, 7 = 0.9990 for
PANDIT. (b) Depth from age and AB models. Fits analogous to
the above yield a = 0.654 £ 0.002, b = 0.54 £ 0.02, r = 0.99995
for the age model with « = 1.0, At =1; a = 0.556 £0.003, b =
0.72 £0.02, r = 0.998478 for the AB model; a = 0.822 + 0.006,
b =0.20 £ 0.05, r = 0.99959 for the age model witha = 1.0, At =
1/n. Vertical error bars indicate (average & standard deviation)'/2,
in (a) for the average [d] taken over trees inside a bin and in (b) for
the mean depth (d) estimated by 100 independent realizations at each
given size n. Horizontal error bars in panel (a) give average £ Std.
Dev. over the tree sizes inside each bin.

was reported to follow the behavior (logn)?” with y varying
from 1 to 3 [24]. The important point is the departure from
the logn scaling of the ERM class. Thus strong correlations
are important in the evolutionary processes represented in the
phylogenetic databases.

III. STATISTICAL ENSEMBLES OF TREES

A direct approach to capturing the imbalance of phylo-
genetic trees is by defining a probability m(I|n) of placing
exactly [ out of n given tips in one of the two subtrees. This
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stochastic splitting is first applied at the root and then iterated
at the roots of its two subtrees, at their subtrees’ roots and so
forth, until arriving at the tips. A statistical ensemble of trees
is constructed by considering all possible binary trees up to a
given size, and assigning a probability to each of them as just
the product of the splitting probabilities of all the inner nodes.

Choosing uniform probabilities independently of /,
mermn) =1/(n — 1), 1 <I<n—1, leads to the ERM.
Aldous’ branching (AB) model [31] is the specific choice
map(l|n) o< I7'(n — 1)~', placing more probability mass on
the less balanced splits close to/ = 1 and/ = n — 1. The AB
model is a specific case of the one-parametric (with parameter
B) family of beta-splitting models [31]. Statistical quantities
computed from the AB ensemble (parameter value g = —1)
have been identified as giving a good fit to real data [21,22,32].
The expected depth scales as (logn)? [31]. It is interesting to
note that the AB case § = —1 is precisely the critical point
separating two qualitatively distinct scaling behaviors in the
general beta-splitting model: standard logarithmic scaling for
B > —1,and power-law scaling (d) ~ n=#~! for 8 < —1[31].

The AB model, beta-splitting, and other models [33]
introduced to account for tree imbalance, however, assign
probabilities to tree shapes in a way which is not based
on any evolutionary mechanism. While they can statistically
reproduce features of the trees in the databases, this does not
hint at any biological explanation of these features, as Ref. [21]
remarks.

IV. THE AGE MODEL
A. The model and its depth

We introduce the age model, which describes the growth of
abinary tree by iterative stochastic addition of tips, one at each
time step. Each tip i is assigned an age t; () being the time that
passed from the birth of the tip, #;, to the present time ¢, i.e.,
7;(t) =t — ;. Attime ¢t = O the tree consists of a single tip (the
root), labeled with the index i = 1, representing an ancestral
species. The growth proceeds by iterating the following three
steps: (i) A tip i is chosen with probability p;(¢) inversely
proportional to a power of its age

—o

PO =y

3)
where the normalization constant c¢,(#) is chosen such that
probabilities from all tips sum up to 1; (ii) a new branch
j is split from i with creation time ?; =t while tip i
remains; (iii) time ¢ is increased by Ar and the process
resumes at (i). Each branching represents a new species
evolutionarily splitting from the original one. This is coherent
with a scenario of peripatric speciation, in which a small
part of an ancestral population becomes isolated and starts
an independent evolution process, whereas the main part of
the population continues its previous dynamics. We focus
on At =1 first and discuss the case of At = 1/n later, in
Sec. IV C. There we also regard a variation that treats both
new descendants of the split branch as new, starting at age
zero. In terms of biological evolution, the symmetric splitting
is allopatric speciation.
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FIG. 2. (Color online) Comparison between data and models
(AB, ERM and age) by distributions of depth. The large panels show
the maximum deviation (Kolmogorov-Smirnov statistic) between the
cumulative distribution of depth in each model and the real trees.
Subsets 7 of the databases are chosen the same as the bins in Fig. 1(a).
See the main text for further details. The inset shows, for one subset of
TreeBase (trees of size 76 < n < 102), the cumulative distributions
of the real trees (thick curve without symbols) and the three models,
leading to the KS statistic values marked by the dashed rectangle.

This defines a family of models parameterized by «. We
note that c,(n) (and p;(n)) depends only on the values of n
and « (and 7). These quantities are independent of the details of
the previous branching history, which is a stochastic process.
The ERM model, in which at each step one tip is uniformly
(independently of its age) chosen for speciation, is recovered
for « = 0. Negative o enhances branching probability of the
oldest tips, so that trees more balanced than random ones are
expected. We will see that for sufficiently large positive o
(in fact @ > 1) the excess branching probability given to the
youngest tips strongly breaks balance and modifies the ERM
logarithmic depth scaling.

Figure 1(b) shows the dependence of mean depth on tree
size for the age model for several choices of the exponent . At
o = 1.0, we obtain (d) ~ (log n)?, for both time increments
At =1 and At = 1/n (see below). The parameters of the
fitted curves agree well between model and data [Fig. 1(a);
see the figure caption for details]. For comparison, the size
dependence of depth in the AB model is also shown.

Going beyond averages and considering also fluctuations, a
closer comparison between models and data is made in Fig. 2
by the Kolmogorov-Smirnov (KS) statistic. For a set of real
trees 7, the cumulative depth distribution g(d) is the fraction
of trees in 7 having depth less than d. For each tree in 7, we
generate with the rules of the model being tested 100 trees of
the same size, obtaining a collection 7" of 100 x |7 | model
trees having the same size distribution as 7 and a cumulative
depth distribution ¢’(d). The KS statistic is the maximum
deviation k = max R |g(d) — ¢’ (d)| between data and model
distributions, with x = 0 if and only if the distributions are
identical. Except for the smallest trees (n < 20), we find
(Fig. 2) that the depth distributions of the real trees in both
databases are systematically closer to the age model with
o = 1.0 than to the AB model.
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B. Analytic calculations for the age model and finite-size
corrections

At time step n (and taking Ar = 1), the tree has n tips with
ages T1=n, np=n—1,....t=n—-i+1,...,1, = 1.
Thus the normalization constant is

ca<n)=;$=;kia. )

The asymptotic behavior of ¢, (n) for large n is

I—a

i ife < 1
co(n) ~ {logn, ifa=1,asn— oo. )
(o), ifa>1

¢(a) is Riemann’s zeta function, which is finite for o > 1.
The expected age of the tip chosen at time 7 is

;’—“n, ifa <1
—
ey fa=1
Z” lrl_a nz"*gn
=== ~ I_*T__ ifl<a<?2. (6
() cy(n) n—o fé"‘)(zfa) _ ©)
= logn, ifa=2
b
L= :
O if2 <«

This shows that the chosen age becomes progressively
younger as « increases. Older branches become less likely to
branch and imbalance is enhanced. Note that (1) ~ n/2 for
the ERM model (o = 0).

A heuristic argument to obtain (d(n)) uses An /m as an
estimate of the mean number of branching events in a time
interval of length An centered at n. Thus we can count the
mean number of branching events as a function of n by the
integral:

logn, ifa <1
; | (logn)?, ifa=1
(dn)) ~ / dn’ ~ el ifl<a<?2.
1 T(n') "o : n :
li(n) ~ oz’ ifa =2

n, if2<a«a
(7
Prefactors have not been included since our crude argument
is not expected to give them exactly. li(n) is the logarithmic
integral function.

Equation (7) gives the n dependence of the depth (d) in
leading order for large tree size n. Finite size corrections
to scaling, found numerically, are significant only close to
the transition. Figure 3 shows finite size corrections to this
leading order. As usual, the corrections become large close
to a transition point, in this case close to o = 1 [Fig. 3(a)].
Likewise, o above but close to 1.0 leads to large corrections
from the scaling with n*~' [Fig. 3(c)]. For « = 1.0, the
function (d)/(Inn)? is only weakly dependent on n, falling
monotonically from 0.85 to 0.48 over 5 orders of magnitude
in n [filled triangles in Fig. 3(b)].

The predicted behavior (7) is consistent with our nu-
merical findings. Thus the age model with o = 1 leads to
the asymptotic square-logarithmic scaling that appears to
describe the real phylogenies rather well. Interestingly, this
particular scaling appears at the critical transition between
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FIG. 3. (Color online) Analysis of finite size corrections. We plot the average depth of trees from the age model for various parameter
values «. Different panels use different rescaling of depth; see the y axis labels. If finite size corrections from the scaling of Eq. (7) were absent,
the three lower curves (o < 1.0) would be flat in panel (a). In panel (b) this would be the case exactly for « = 1.0 (filled triangles). In panel
(c), the three curves for > 1.0 would be flat. Each data point is an average over 100 independent trees.

purely logarithmic and power-law scaling, in much the same
way as for the beta-splitting model [31]. This may indicate a
kind of universality in tree-shape transitions, and associated
universality classes. Another transition, to the comb tree
scaling, occurs at o = 2.

C. Extensions

The definition of the age model so far describes peripatric
speciation. A more symmetric allopatric speciation mecha-
nism would imply a more similar role for the species arising
in a branching event, for example a resetting to zero of the
age of the two species emerging from the branching, so that
both are considered to be new and not just one of them. The
analytic evaluations become more delicate, since c,(#) is now
a random variable, but heuristics confirms that the asymptotic
scaling of the expected age 7(n) and depth scaling (d(n)) in
the symmetric model is the same as for the corresponding
asymmetric one given by Eqs. (6) and (7). Numerically we
find the mean depth obtained from the allopatric version to
coincide with that of the original peripatric version of the
model at « = 1: Relative deviations between (d) estimates are
below 1% and become smaller for growing 7.

Another important extension corresponds to the case in
which the age of the tips is not measured in number of
speciation events t, but in a different but related time unit. It
is biologically reasonable (as assumed also in the Yule model)
that speciation rate is proportional to the number of species
present, so that the instants of times assigned to successive
speciation events f, and #,4 are related to the numbering of
speciation events n and n + 1 by At = 1,1 —t, = 1/n. This

~ logn at large n. This new time age a,(t) of a
tip that has an event age t is thus a,(t) = 1, — t,—; ~ logn —
log(n — ) = —log(1 — t/n) for large n. For a version of the
age model with speciation probabilities proportional to 1/ay,
we can recalculate the expected value of the event age t(n)
chosen at instant 7 or t,:

implies 7,

Yo Tan(0) ™
Do an(T)™

To further analyze this expression, we approximate the
sums by integrals, and introduce the change of variable
s = t/n. After this it is clear that the integrals for large n are
dominated by the singularities arising as s — 0 (say, within
the interval s € [1/n,€], with € small), which allow us to use
the small s expansion, a,(t) & —log(l — s) = s:

T(n) = ®

ff ns(s ™ +---)ds

() ~ }g(s_”“_)ds : ©)

Now, these integrals become identical to the ones correspond-
ing to the asymptotic evaluation of the sums in the original
age model, so the asymptotic behavior of the depth will be
the same. This points out, once again, that the important
ingredient needed to alter the standard logarithmic ERM depth
scaling is the excess of branching probability assigned to
young branches (small 7) by the t=* factor. Continuous-
time branching processes in which different branches split
independently with some waiting time distribution of the
renewal type [18] can be also considered. They would have
instantaneous branching rates decaying as t~! at long times
when the waiting-time density decays as a power law at these
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long times. But as Eq. (9) reveals this long-time behavior is not
the relevant one, but the presence of a short-time singularity.
Singularity with the required strength can not be achieved with
normalizable continuous-time waiting-time densities. This is
why we have always found the normal depth scaling as logn
in simulations of this type of processes, even when the waiting
time distribution had fat tails. Another ingredient in the age
model is that the normalization constant in the denominator
of Eq. (3) involves the age of all branches. This provides an
interaction among all branches, which is absent in models of
independent branching.

V. DISCUSSION

Motivated by observations of anomalous scaling in evo-
lutionary trees [11,12,21,22,24], the proposed age model
introduces time correlations and branch interactions such
that a variety of depth scalings can be reached beyond the
standard logarithmic one. Remarkably, for the case o = 1,
corresponding to the critical point between two qualitatively
different phases, the model agrees with observed phylogenetic
trees better than previous models. In addition, it describes the
tree generation process assuming that lineages which have
not speciated for a long time display in the future a still
more reduced speciation rate. This kind of phenomenon is

PHYSICAL REVIEW E 91, 022803 (2015)

discussed in the framework of evolution and heritability of
evolvability and robustness in the biological literature [34]
and of phenotypic entrapment in genotype networks [35].
In a broader picture, dynamics on possibly rugged fitness
landscapes [36] provides evolution at the microscopic level.
It could serve as a mechanistic explanation of the assumptions
of the age-dependent model.

Future work should consider the inclusion of extinction
processes into the model. This is a realistic element that would
open the possibility of an additional critical behavior (the
transition between growth and extinction) known to alter tree
topology [18,37-40]. Why evolution should be poised at the
critical point deserves further investigation [41,42]. Analyses
and comparison of branch length distributions are worth
pursuing. Although branch length data of phylogenies are not
as reliable as their topological structure [43], improvements
are rapidly accumulating (see, e.g., Ref. [44]).
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