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Modeling spontaneous chiral symmetry breaking and deracemization phenomena:
Discrete versus continuum approaches
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We derive the class of population balance equations (PBE), recently applied to model the Viedma
deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit
establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes
erases the microreversible nature of the molecular interactions in the population growth rate functions and limits
the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled
in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the
question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for
absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the
ideal racemic composition up to observable enantiometric excess levels.
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I. INTRODUCTION

In chemistry, absolute asymmetric synthesis or spontaneous
mirror symmetry breaking (SMSB) refers to the transfor-
mation of achiral or racemizing initial products to chiral
reaction products in detectable enantiomeric excesses, and
in the absence of any chiral polarization. This may occur in
enantioselective-autocatalytic reaction networks leading to a
bifurcation scenario [1], i.e., if the racemic state is metastable
and the stable state (steady state of minimum entropy pro-
duction) is one of the two degenerate chiral branches. This
is achieved by virtue of the chiral fluctuations generated by
the inherent statistical fluctuations around the ideal racemic
composition [2]. In the framework of linear thermodynamics
of irreversible processes, this mirror symmetry breaking occurs
for specific system parameters and only in the case in which
the system cannot come into thermodynamic equilibrium with
its surroundings [3]. However, in this latter case, such reaction
networks may yield kinetically controlled absolute asymmetric
synthesis, i.e., temporary, but synthetically useful, enormous
amplifications of the extremely tiny enantiomeric excesses
generated by chiral fluctuations up to detectable enantiomeric
excess values [4]. The Soai reaction [5] is a well-established
experimental proof of this. The significance of studying these
systems is due to the topic of biological homochirality which,
in our opinion, is a central point for the design of potential
systems mimicking primordial processes of life. In this respect,
such studies should be performed within the framework of
linear thermodynamics of irreversible processes [6], since this
is the appropriate scenario for describing most of the chemical
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reactions in primordial organisms implying enantioselective
transformations.

A key point is that the principle of detailed balance (known
as the principle of microreversibility in chemistry) applies
in both equilibrium and in linear irreversible thermodynamics
scenarios. This implies that, in a dynamic and kinetic modeling
of the system, the matter flow in the material transformations
must necessarily be described by forward and reverse rates
whose ratios are in strict compliance with the corresponding
free-energy differences for the chemical species involved
in that specific transformation. In models and simulations
where microreversibility (detailed balance) is not taken into
account, artifactual SMSB may be erroneously obtained and
misinterpreted.

An intriguing experimental scenario of absolute asymmet-
ric synthesis is that first reported by Viedma on the deracem-
ization of racemic enantiopure crystal mixtures, the so-called
racemic conglomerates [7] of achiral or fast racemizing
compounds. The experimental setup involves the continuous
wet mechanical grinding of a racemic conglomerate mixture
of enantiomorphic crystals [8]. The theoretical understanding
of Viedma’s experiment is as yet an unsettled matter [9].
Nevertheless, the indisputable nexus of agreement between
all experimental and theoretical reports to date is that the
higher solubility of the smaller crystals (the Gibbs-Thomson
effect) [10] obtained through grinding creates a supersaturated
media for the larger crystals, and that a steady-state continuous
distribution of visible crystal sizes and small crystal clusters
down to the monomer must be obtained.

Among the many models proposed attempting to explain
Viedma deracemization [9], population balance equations
(PBEs) have begun to be applied recently [11,12]. Prior to
this, population balance methods have been used successfully
for modeling crystallization processes [13]. The PBEs applied
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CELIA BLANCO, JOSEP M. RIBÓ, AND DAVID HOCHBERG PHYSICAL REVIEW E 91, 022801 (2015)

to achiral crystallizations are based on a description of crystal
growth processes from the first nucleating particles up to
the large crystals. They mostly deal with the crystal growth
of single species or to selective crystallization of different
compounds. Specific attempts to use PBEs for describing the
Viedma phenomenon are reported using profiles of the energy
differences between clusters/crystals by the description of the
critical size cluster through the supersaturation value given
by the classical primary nucleation theory [11]. However,
in such population balance modeling, only net growth and
dissolution flows, according to whether the cluster/crystal
size is above or below the critical size cluster, are considered,
and the conclusion drawn from these studies is that small
initial differences between enantiomorphs, for example in
crystal size distributions, are the origin of the final chiral
outcome, i.e., it is a controlled process [11], but moreover that
the final stable state must be chiral [11]. We analyze below
the same general class of PBEs, but under the fundamental
thermodynamic constraints dictated by microreversibility
(i.e., detailed balance in physics).

By means of a reversible kinetic scheme, we established
recently that the Viedma experiment corresponds to a genuine
SMSB bifurcation scenario [14]. To accomplish this, it
was necessary to recognize the basic trends of the aggre-
gation/deaggregation network in the Viedma phenomenon,
taking into account the thermodynamic constraints implied by
the interacting processes (mechanical attrition, solubilization,
crystal growth, and racemization). Careful consideration was
given to forward and reverse reaction rates in all the processes.
Mechanical grinding of clusters is the only process that is
genuinely irreversible. The needed mutual inhibition step is
to be found in the reverse flow of chiral clusters toward the
racemizing monomers in solution. That is, the symmetry-
breaking bifurcation depends sensitively on the microflow
(detailed balance) of chiral matter back to solution where it can
racemize, becoming available for further growth of clusters.

In view of the above, the following question then arises:
What relation is there between the microreversible kinetic
reaction schemes [14] and the continuum population balance
models [11,12] applied to Viedma deracemization? They are
actually two complementary sides of the same coin. In this
paper, we will start from the general discrete kinetic scheme
employed in [14], namely (i) racemizing chiral monomers
in solution, (ii) monomer-cluster growth and dissolution,
(iii) cluster-cluster agglomeration and fragmentation, and (iv)
irreversible breakage of clusters, and we derive, by means
of the continuum limit, the general class of PBEs that have
been applied to the Viedma deracemization phenomenon. This
demonstration not only serves to bridge the two approaches,
but it also brings to the fore the important issue of micro- versus
macrofluxes in the context of chiral bifurcation phenomena
and deracemization. We establish a mathematical connection
between discrete microreversible kinetic rate schemes and
the continuous differentiable variables and particle population
distribution functions employed in the PBEs, identifying the
advective fluxes, Eq. (2), as well as the growth/dissolution
functions that are implied by them. This provides a first-
principles microscopic reason for these semiempirical contin-
uous growth rate terms, and it also reveals clearly at what stage
the microreversibility/detailed balance is permanently washed

out in taking the continuum limit. We also derive continuum
agglomeration and fragmentation terms [i.e., the h terms above
in Eq. (1)] from an underlying reversible microscopic descrip-
tion. This establishes that the cluster-cluster agglomeration
terms employed in the specific PBE models [11,12] represent
irreversible cluster-cluster agglomerations, and are thus an
additional source of (undesired) kinetic control.

II. POPULATION BALANCE MODELING

Briefly, the objective in population balance modeling is to
calculate the particle distribution or density function f (x,r,t),
where the vector x denotes a collection of different internal
quantities or attributes (e.g., size, mass, internal composition,
age, etc.) associated with the solid phase particles, and r
denotes the particle position vector in physical space. This
distribution function is obtained as a solution of the general
population balance equation [15]:

∂f

∂t
+ ∇x · ( Jx) + ∇r · ( Jr ) = h(x,r,t), (1)

where

Jx = f (x,r,t)Ẋ(x,r,C,t),
(2)

Jr = f (x,r,t)Ṙ(x,r,C,t),

are the bulk advective particle fluxes [16] through internal
coordinate space (x) and through physical space (r), respec-
tively: that is, the number of particles flowing per unit time per
unit area normal to the direction of the generalized velocity
vectors Ẋ , and Ṙ. These velocities or rates of change may
also depend on the continuous phase vector C, including
all the continuous background quantities that might affect
the behavior of the particles (e.g., chemical concentrations,
supersaturation, background fluid flow, etc.). C satisfies its
own standard transport equation. The term h(x,r,t) represents
all birth and death processes in the solid phase, such as particle
agglomeration and particle fragmentation. Models must be
provided for these rates of change Ẋ and Ṙ as well as for
h if agglomeration and or fragmentation are to be included.
Equation (1) can then be solved in principle when the initial
and boundary conditions are provided.

While the PBE approach Eq. (1) may be satisfactory for
modeling features of standard single-species crystallization
[17,18], it is not obviously suitable to apply it, without
prior careful consideration, to bifurcation phenomena, such
as spontaneous mirror symmetry breaking (SMSB), which
involves a pair of energetically degenerate competing enan-
tiomers. This is because the underlying PBE formalism itself
[15], which is based on the Reynolds transport theorem, is
articulated in terms of bulk system particle (macro)fluxes,
Eq. (2), which can be oblivious to the delicate constraints
dictated by thermodynamics (e.g., detailed balance). In con-
trast to microscopic kinetic schemes, which aim at modeling
individual reactions, population balance modeling is more
akin to a “global” approach based on coarse-grained (low
spatial resolution) variables and parameters. It treats entire
populations rather than individual particles. The microscopic
resolution of the underlying molecularity or detail can be
lost at the level of the population balance model. This loss
of resolution is a consequence of the continuum limit that
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one implicitly (or explicitly) takes in going from the fine- to
the coarse-grained system variables and parameters. The PBE
models applied to the Viedma experiment [11,12] involve net
growth or net dissolution flow for clusters above and below
the critical size nucleus, respectively. Thus the principle of
microreversibility is obscured in the choice of PBE system
parameters, and the simulations based on those functions
can and do yield artifactual SMSB. Moreover, the inclusion
of homochiral cluster-cluster agglomeration, via the h-term
in Eq. (1), should be a microreversible process as well.
But the inverse process, namely deagglomeration or binary
fragmentation (not to be confused with mechanical grinding,
which is a totally irreversible process), is lacking in the models
proposed so far [11,12]. This omission yields a further source
of (undesired) kinetic control.

There is an important practical advantage from relating
the kinetic rate and population balance approaches. Because
PBE’s are expressed in terms of derivatives of growth rates
and particle distribution functions and involve integrals over
complicated kernels, analytic solutions are hard to come
by and one must frequently resort to numerical simulation.
Simulations of PBEs, Eqs. (1) and (2), in turn, require
implementing some discretization method [15], and one is
often led to numerically integrating sets of coupled ordinary
differential equations, just as for direct simulations of kinetic
reaction rate schemes. However, the mathematical relationship
established here between our kinetic scheme and the corre-
sponding PBEs indicates that the former is the appropriate (and
microreversible) discretization of the latter. We can exploit
this fact to carry out selected simulations of the underlying
kinetic model to underscore the effects of omitting/restoring
microreversibility as well as to consider the effects of the
presence or absence of binary cluster-cluster aggregation and
other processes (e.g., inclusion or omission of irreversible
grinding) in the Viedma attrition experiment.

III. CLUSTER FORMATION BY MONOMER ADDITION

The PBE models proposed for explaining the Viedma
deracemization phenomena [11,12] all invoke the Gibbs-
Thomson rule, which is based in turn on Gibbs thermo-
dynamics as applied to classical nucleation theory. Since
our purpose here is to establish a mathematical relationship
between microreversible reaction networks [14] with those
continuum population approaches, we therefore adopt the
same underlying assumptions.

In classical nucleation theory [19,20], the process of
formation of molecular clusters of a new phase in a background
phase occurs by the addition of monomers to a spectrum of
clusters of different sizes p, which are in dynamic equilibrium:

C1 + Cp

kp−−−⇀↽−−−
k−(p+1)

Cp+1, 1 � p. (3)

The most likely route for the formation of clusters is from a
sequence of bimolecular additions [20]. This reversible kinetic
scheme involves single molecules C1, while the clusters Cp are
made up from p � 2 molecules.

Classical nucleation theory (CNT) [14,21], in its definition
of a critical size nucleus, gives estimates of the free-energy
relationships for the addition/loss of monomer units to/from

FIG. 1. Solid curve: typical profile of the Gibbs free energy of
nucleation and growth by monomer addition to clusters as a function
of cluster size i according to the classical nucleation theory [21]
and for a given value of the supersaturation S > 1. The energy
levels indicate the free-energy differences �G0 in going from n

to n + 1 monomer units. The difference between adjacent levels
�G0

n→n+1 yields the ratio of forward and reverse rates at each
step of monomer-to-cluster aggregation/deaggregation; see Eq. (5).
The underbraces indicate a convenient isodesmic approximation
employed in the simulations [14]: within each indicated cluster size
subrange i, the ratio of the forward to reverse rates is a constant
(compare with Fig. 4, which lists the monomer-cluster reactions for
each isodesmic range).

the growing or dissolving cluster; see Fig. 1. The solid curve
represents the difference in the bulk and surface free energies
of a growing cluster of p monomer units. The maximum
corresponds to the critical size nucleus (critical cluster radius),
which in turn corresponds to a critical number of monomer
units pcrit, indicating the transition between endergonic to
exergonic reactions. This critical size, or corresponding critical
number of monomer units pcrit(S), depends on the supersatura-
tion value S > 1 and on a capillary length, which combines all
the physical parameters of the particles such as surface tension,
molar volume, area and volume shape factors, etc. [20].

The free-energy curve predicting the existence of a critical
size nucleus shows a profile analogous to that of Fig. 1. When
expressed in discrete molecular units p, this curve is given by
[21]

�Gp = −p ∗ �μ + spγ + c, (4)

where γ is the cluster interfacial tension, sp is the cluster
surface area, and �μ = kT ln S is the chemical potential
difference in molecules transferring from solution to solid
phase.

Most importantly, for equilibrium thermodynamics, the
forward (attachment of a molecule) and reverse (detachment
of a molecule from a cluster) rates in Eq. (3) satisfy

kp

k−(p+1)
= exp

(−�G0
p→(p+1)

kBT

)
, (5)

where �G0
p→(p+1) = �G0

p − �G0
(p+1) denotes the free-

energy difference between two cluster sizes that differ by a
single monomer unit (see Fig. 1).

Assuming spherical clusters, then for each p there is a
corresponding radius rp; see Fig. 2. Let the mass of a molecule
be δm. Then the mass of a cluster of p molecules is m(p) =
p ∗ δm. Therefore,

p = m(r)

δm
= 4πρr3

3 δm
= 4πr3

3 δm/ρ
= 4πr3

3 

, (6)
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FIG. 2. (Color online) Formation of spherical chiral clusters (by
monomer attachment and detachment) from the blue (dark gray)
and red (light gray) enantiomers in solution. At the molecular level,
both cluster growth (molecule uptake) and dissolution (detachment of
molecules) are operative simultaneously at generally different rates;
see Eq. (3). The solution phase racemization of the enantiomers can
be visualized as the periodic (and rapid) interconversion of the single
molecules with rate kR .

where 
 = δm/ρ is the volume per molecule. The relation
between radius and number of molecular units making up the
spherical cluster is

rp =
(

3


4π

)1/3

⇒ δrp = rp+1 − rp ∼ 1

3
p−2/3. (7)

The change in radius δrp depends on the cluster size p, and it
goes to zero for sufficiently large p. When expressed in terms
of the cluster radius, the free-energy profile Eq. (4) can be
written as [20]

�G(r) = −
(

4πr3

3


)
�μ + (4πr2)γ + c. (8)

The value of the critical radius rc follows from solving
d�G(r)/dr = 0, which yields

rc = 2γ


�μ
, (9)

⇒ pcrit = 4πr3
c

3

. (10)

IV. CONTINUUM LIMIT OF KINETIC SCHEMES

We establish a mathematical relationship between dis-
crete microreversible kinetic schemes for cluster growth by
monomer uptake from solution, Eq. (3), and the corresponding
advective fluxes, Eq. (2), and growth rate functions (i.e., the
Ẋ) appearing in PBEs [11,12]. The continuum limit of the
discrete kinetic scheme Eq. (3) leads to a population balance
equation together with a mass balance equation (conservation
of total system mass).

A. Becker-Döring equations

The monomer-cluster aggregation scheme Eq. (3) corre-
sponds to the constant mass formulation of the Becker-Döring
(BD) equations [22]. Consider the growth or dissolution of

clusters via microreversible cluster-monomer interactions. The
concentrations {cp(t)}∞p=2 satisfy

dcp(t)

dt
= Jp−1(t) − Jp(t) (p � 2), (11)

Jp(t) = kpcp(t)c1(t) − k−(p+1)cp+1(t). (12)

The microfluxes Jp can be positive or negative. Expanding out
Eq. (11) shows that

dcp(t)

dt
= (kp−1cp−1(t)c1(t) − k−pcp(t)) (13)

− (kpcp(t)c1(t) − k−(p+1)cp+1(t)), (14)

indicating how all the forward and reverse processes contribute
to the evolution of the cluster concentration cp(t). Note that
the cluster growth by molecule uptake from solution and its
dissolution by release of a molecule back to solution are
operative simultaneously for all cluster sizes p � 2, and at
generally different rates.

The monomer concentration p = 1 obeys the following
equation:

dc1(t)

dt
= −J1(t) −

∞∑
p=1

Jp(t). (15)

Then the total system mass M(t) = ∑∞
p=1 p cp(t) is conserved.

B. PBE plus mass-balance equation

We now pass from an enumerable set of cluster concentra-
tions to a single distribution function in cluster size, c(p,t):
that is, the density of clusters containing p-monomers at time
t [23]. Then the BD and monomer evolution Eqs. (11) and (15)
can be written as (note, �p = 1 is treated as infinitesimal for
large p, so that Jp−1(t)−Jp(t)

�p
→ − ∂J (p,t)

∂p
)

∂c(p,t)

∂t
+ ∂J (p,t)

∂p
= 0, (16)

dc1(t)

dt
= −

∫ ∞

0
J (p,t)dp. (17)

Comparison of Eq. (16) with Eq. (1) shows that this is a
population balance equation for pure growth and dissolution
(since h = 0) of clusters formed by a single species. Mass is
conserved in the continuum formulation (see Appendix A).
Below we derive the explicit form of the continuum advective
flux J (p,t) in Eq. (2) as implied by classical nucleation theory.

C. CNT and continuum advective flux

Up to this point, the above considerations are model-
independent, that is, they hold for arbitrary forward and reverse
reaction rates kp,k−(p+1) subject only to the constraint in
Eq. (5). We now appeal to classical nucleation theory (CNT)
and the Gibbs-Thomson rule to model the forward and reverse
rates of monomer-cluster interactions as outlined in Sec. III.
See Refs. [14,20,21] for further details.
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From Eqs. (4) and (5), we calculate the ratio

k−(p+1)

kp

= exp

(
�Go

p − �Go
p+1

kT

)
, (18)

= exp

(
�μ − γ (sp+1 − sp)

kT

)
, (19)

= exp

(
α

rp

− γ (sp+1 − sp)

kT

)
, (20)

where we use �μ = kT ln S and the basic Gibbs-Thomson
relationship for size-dependent solubility, ln S(rp) = 2γ


kT rp
=

α
rp

[20], and where rp denotes the radius of a cluster containing
p monomers; see Eq. (7). In other words, the existence of
a critical size cluster for a given value of supersaturation S

implies a size-dependent solubility S(rp) [20].
Now take the large-p limit of the flux term Eq. (12):

Jp(t) = kpcp(t)c1(t) − k−(p+1)cp+1(t), (21)

∼= kp

(
c1(t) − k−(p+1)

kp

)
cp(t), (22)

= kp

[
c1(t) − exp

(
α

rp

− γ (sp+1 − sp)

kT

)]
cp(t),

(23)

⇒ J (p,t) = kp

[
c1(t) − exp

(
α

rp

)]
c(p,t), (24)

J (p,t) = G(p,t)c(p,t), (25)

where for large p we approximate cp ≈ cp+1, use Eq. (20),
and we drop the contribution proportional to the difference
in surface areas sp+1 − sp ≈ 0, as this will be negligible
in this limit. We verify from the last line that J (p,t) is
an advective flux: compare this to Eq. (2). It is linear in
the cluster distribution function c(p,t), and when G(p,t) is
expressed in terms of cluster size (or cluster radius), it yields
the empirical growth rate expressions employed in the PBEs
[11] for the two-enantiomer case (see below). The advective
flux Eq. (24) can be either positive or negative depending on
whether the solute (monomer) concentration is greater or less
than the size-dependent solubility, and this in turn depends
on the size of the critical nucleus; see Fig. 3. The empirical
growth rate G(p,t) (which we have derived from microscopic
considerations) can be either positive or negative:

G(p,t) > 0 ⇔ c1(t) > exp

(
α

rp

)
, (26)

G(p,t) < 0 ⇔ c1(t) < exp

(
α

rp

)
, (27)

depending on whether the (instantaneous) solute concentration
is either greater than or less than the size-dependent solubility.
Since a given solute concentration implies a corresponding
critical size cluster, this means that the first inequality holds
for cluster sizes greater than the critical size cluster, whereas
the second holds for clusters smaller than the critical size
cluster. In other words, the empirical growth term G implies
a net growth or net dissolution for cluster sizes above or

GR GP
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FIG. 3. Fluxes: (dimensionless) crystal growth rates G∗
R,P vs

particle size y employed in Ref. [11] for a given supersaturation
S > 1.01 and α∗ = 10−2. The arrows denote the direction of the
corresponding advective fluxes Jy = G∗(y)f (τ,y): for y greater
than a critical length (here equal to unity), the crystal growth rate
is positive (to the right), otherwise it is negative (to the left),
indicating dissolution back to monomers. But the inverse processes
or counterfluxes, i.e., (i) precritical cluster growth up to the critical
size and (ii) partial dissolution for clusters greater than the critical
size, are not included in G∗.

below the critical size nucleus, respectively, and for a given
solute concentration (or given supersaturation). This situation
is depicted graphically in Fig. 3.

This is in contrast to the microfluxes Eq. (12), which
depend simultaneously on both molecular uptake and release
of molecules and for all cluster sizes both larger and smaller
than the critical nucleus: note that the microfluxes Jp and Jp−1

individually can be either positive or negative; see Table I.
The main conclusion from this section is that the continuum
limit leading to the advective flux in the PBE averages out the
microreversibility of the underlying kinetic scheme.

V. PBE MODEL FOR ENANTIOMERS

Below we derive a general class of population bal-
ance equations starting from our kinetic scheme [14] for
growth, dissolution, solution phase racemization, binary

TABLE I. Comparison of micro- and macrofluxes. The contin-
uum limit (p 	 1) maps Jp(t) to J (p,t) and [Jp−1(t) − Jp(t)] to
− ∂J (p,t)

∂p
. For the macroflux, we have invoked classical nucleation

theory and the Gibbs-Thomson effect.

Jp(t) : microflux J (p,t) : macroflux

kpcp(t)c1(t) − k−(p+1)cp+1(t) kp(c1(t) − exp( α

rp
))c(p,t)
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agglomeration, and irreversible fragmentation (attrition) for
two enantiomers.

A. Growth, dissolution, and solution phase racemization

We straightforwardly generalize Eq. (3) and consider
reversible growth of two chiral clusters subject to solution
phase racemization of the monomers:

L1 + Lp

kp−−−⇀↽−−−
k−(p+1)

Lp+1, D1 + Dp

kp−−−⇀↽−−−
k−(p+1)

Dp+1, (28)

L1
kR−−−⇀↽−−−
kR

D1. (29)

Then the continuum limit of this kinetic reaction scheme is
immediate from Secs. IV B and IV C:

∂ci(p,t)

∂t
+ ∂Ji(p,t)

∂p
= 0 (i = L,D), (30)

dcL(t)

dt
= −

∫ ∞

0
JL(p,t)dp + kR(cD − cL), (31)

dcD(t)

dt
= −

∫ ∞

0
JD(p,t)dp + kR(cL − cD), (32)

where cL,cD = [L1],[D1], cj (p,t) denotes the distribution
function of clusters of handedness j = L,D, and where the
advective fluxes and growth rates are

Ji(p,t) = Gi(p,t)ci(p,t), (33)

Gi(p,t) = kp(ci(t) − exp(α/rp)). (34)

The total system mass cL(t) + cD(t) + ∫ ∞
0 p[cL(p,t) +

cD(p,t)]dp is conserved (see Appendix A).

B. Reversible binary agglomeration

The above considerations have dealt with pure growth
and dissolution processes. To complete the picture, we turn
to reversible cluster-cluster aggregation and then finally
irreversible binary fragmentation (i.e., mechanical grinding).
The kinetics of the former process can be represented as
follows, and for a single chemical species,

Cp + Cs

ap,s−−−⇀↽−−−
bp,s

Cp+s , (35)

where the aggregation rate coefficients ap,s are referred to
collectively as the aggregation kernel. The rates for the
inverse aggregation process bp,s are denoted collectively as
the fragmentation or deaggregation kernel.

From the law of mass-action, Smoluchowski wrote down
the differential equations for binary cluster aggregation and
fragmentation [22,24]:

dcp(t)

dt
= 1

2

p−1∑
s=1

Js,p−s −
∞∑

s=1

Jp,s, (36)

where the aggregation fluxes are given by

Jp,s = ap,scpcs − bp,scp+s , (37)

Js,p−s = as,p−scscp−s − bs,p−scp. (38)

We now take the continuum limit of Eq. (36) to arrive at

∂c(p,t)

∂t
= 1

2

∫ p

0
a(s,p − s)c(s,t)c(p − s,t)ds

− c(p,t)
∫ ∞

0
a(p,s)c(s,t)ds

− 1

2
c(p,t)

∫ p

0
b(s,p − s)ds

+
∫ ∞

p

b(p,s − p)c(s,t)ds. (39)

The first two terms correspond to source and sink terms arising
from a binary aggregation process, see Sec. 3.3.5 in Ref. [15].
The latter two terms correspond to reverse aggregation or
binary fragmentation. The above equation is expressed in terms
of the cluster mass [recall, the cluster mass m(p) = δm ∗ p

is proportional to the number of molecular units]. When
expressed in terms of cluster size (see Chap. 6 of Ref. [17]), the
first two contributions yield the same mathematical structure
(integrals, limits, and kernels) as the explicit agglomeration
terms employed in population balance modeling [11], provided
we identify ap,s with the specific continuum kernels employed
there. In this way, we also verify that the latter two terms
in Eq. (39) are absent from those specific population models
[11,12].

Thus, incorporating such an irreversible process in the h

term, Eq. (1), constitutes an assumption of kinetic control
in the binary agglomeration process and reduces the scope
of the thermodynamic description of the process. Notice that
mechanical grinding is not the inverse of agglomeration, and
this is taken up in the following section.

C. Irreversible binary fragmentation

The mechanical grinding of clusters into two fragments
can be represented as follows, and for a single chemical
species:

Cp+s

fp,s→ Cp + Cs. (40)

We remark that irreversible fragmentation is what prevents
the system from being able to reach the conditions leading to
thermodynamic equilibrium. In the continuum language, this
gives the fragmentation contributions appearing in the PBE
models [11,12] provided we identify fp,s with the specific
continuum kernels employed there. From the previous con-
siderations, we can immediately write down the contribution
of binary fragmentation to the evolution of populations of
clusters, namely,

∂c(p,t)

∂t
=

∫ ∞

p

f (p,s − p)c(s,t)ds

−1

2
c(p,t)

∫ p

0
f (s,p − s)ds, (41)

= 2
∫ ∞

p

b(u)P (p|u)c(u,t)du − b(p)c(p,t). (42)

The relation between Smoluchowski’s fragmentation kernels
fp,s and the breakage functions commonly employed in
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population balance modeling is given as follows:

f (p,s − p) = ν(s)b(s)P (p|s), (43)

f (s,p − s) = ν(p)b(p)P (s|p), (44)

where ν(x) is the average number of particles formed from
the breakup of a single particle of mass x [ν(x) = 2 for binary
breakup], b(x) is the fraction of particles of mass x breaking per
unit time, and P (x|x ′) is the probability density for particles
from a breakup of mass x ′ to have mass x, and it obeys the
constraint

∫ x ′

0 P (x|x ′)dx = 1 [15].
The full PBE including growth, dissolution, (reversible)

agglomeration, and mechanical grinding is obtained by substi-
tuting c(p,t) → ci(p,t) for i = L,D on the right-hand sides
of Eqs. (39) and (42) and then adding these terms to the
right-hand side of Eq. (30). This completes the demonstration
that the continuum limit of the kinetic scheme [14] leads to
population balance equations of the form presented above in
Eq. (1), including the h terms, and with the explicit advective
flux for growth, Eq. (2), derived from first principles (classical
nucleation theory and the Gibbs-Thomson effect).

Apart from the reversible agglomeration, this establishes
the relationship between the general kinetic scheme in [14]
and the class of population balance models [11,12]: the latter
arise from taking the continuum limit of the former.

VI. RESULTS: SIMULATIONS

Our main results above demonstrate that the kinetic reaction
scheme in Eqs. (28), (29), (35), and (40) can be regarded as a
bona-fide discretization of the continuum population balance
equations to which it gives rise. Numerical simulations of
this kinetic scheme indicate that the Viedma deracemization
phenomenon corresponds to a true SMSB scenario [14], and
that this scheme meets the challenge of being capable of
absolute asymmetric synthesis (AAS). Below we use this
kinetic scheme to simulate the PBEs [25], providing a few
illustrative examples in order to highlight the effects of re-
versible versus irreversible transformations on pure growth and
dissolution (recall the discussion in Sec. IV C), kinetic versus
thermodynamic control, the role of (reversible) agglomeration,
as well as the effects of irreversible mechanical grinding.

Full details of the complete kinetic network parameters,
rate constants, isodesmic approximations used for the free-
energy profile, and the sizes of clusters involved in both
the aggregation and in the fragmentation processes have
been published previously, as has an in-depth discussion of
the numerical methodology employed [14]. However, we
make special mention of the initial conditions employed
in all the simulations below. Unless otherwise stated, these
are as follows: (a) [D]0 = [L]0 = 0.5 mol l−1, [DNmax]0 =
6 mol l−1, [LNmax]0 = (6 + 1 × 10−13) mol l−1, and the initial
concentrations of the rest of the species (all the intermediate
sized clusters) were set equal to zero, or (b) [D]0 = [L]0 =
0.5 mol l−1,[DNmax]0 = 4 mol l−1,[LNmax]0 = 8 mol l−1, and
the initial concentrations of the rest of the species were set
equal to zero; in all cases, Nmax = 70. The former corresponds
to starting the system off from a very small initial ee,
smaller than that expected for a statistical fluctuation about
the ideal racemic composition: ee% = (1 × 10−12)% [2]. We

FIG. 4. Scheme 1: kinetic scheme based on the free energy
diagram for classical theory of primary nucleation. A racemizing
monomer pair (L1,D1) in solution (rate kR = kmR) and monomer-
cluster aggregation yielding chiral aggregates of a maximum size
(LNmax,DNmax). The network approximates the free energy curve in
Fig. 1 by four isodesmic regions (indicated by the reaction steps
grouped within the vertical brackets), whose end points are (i) a
precritical cluster size we fix to be four monomer units, (ii) the
critical cluster size denoted p = icrit, (iii) a postcritical cluster of
p2 > p units, and (iv) chiral clusters of maximum size Nmax. (2 → 4):
rates k1,km1; (4 → p): rates k3a,km3a ; (p → p2): rates k3b,km3b; and
(p2 → Nmax): rates k3c,km3c.

do so in order to see if the scheme is capable of AAS.
The latter conditions represent a much larger initial ee, of
roughly 33%.

A. Pure growth and dissolution

We first consider pure growth and dissolution processes by
means of our kinetic scheme (Fig. 4), simulating a virtual case
of a constant supersaturation value S > 1, i.e., when the free-
energy curve in Fig. 1 remains constant in time, and comparing
the outcome first for irreversible and then for reversible rates.
If we use either of the initial conditions (a) or (b) summarized
above, no amplification is detected (data not shown) in either
case, not even starting from a rather large initial ee.

On the other hand, if we adopt initial chiral cluster
concentrations given by Gaussian distributions, and in order
to mimic those employed in Ref. [11], then very different
outcomes are observed. The difference is, we start the system
off with an initial spectrum of cluster sizes centered about a
mean value. To proceed, we take each chiral family of initial
clusters to be centered at different mean values (p,p2); we take
equal initial widths σL = 1,σD = 1, and set a = 5. The initial
concentrations for clusters comprised of n-monomer units are
described as follows:

Ln(0) = a

n
exp[−(n − p)2/σL], (45)

Dn(0) = a

n
exp[−(n − p2)2/σD]. (46)
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These imply equal initial masses for each population of
enantiomers:

∑
nLn(0) = ∑

nDn(0). The time-dependent
enantiomeric excesses we calculate are given by

een(%) = (Ln − Dn)/(Ln + Dn) × 100, (47)

ee(%) =
Nmax∑
n=2

[n(Ln − Dn)]

/ Nmax∑
n=2

[n(Ln + Dn)] × 100.

(48)

The former depends on the individual cluster size 2 � n �
Nmax and the latter gives a measure of net mass-averaged chiral
excess, and it corresponds to the enantiomeric excess measure
used in Ref. [11]. The measure in Ref. [11] includes all cluster
sizes down to the monomer, whereas our measure starts off
with the dimer.

Kinetic control: Irreversible rates were enforced by drop-
ping the forward rates of precritical cluster growth k1 = k3a =
0 from i = 2 up to p = icrit as well as dropping the rates for
postcritical cluster deaggregation (dissolution) for clusters of
sizes i > icrit, back down to icrit: thus we set km3b = km3c = 0
for all sizes n > icrit greater than the critical size; see Fig. 1.
This setting of these null rate constants mimics the strict
dissolution or strict growth of clusters below or above the
critical-sized cluster, respectively, and it is the very feature
enforced by the continuum growth functions G(p,t) appearing
in the population balance models (see also Fig. 3).

For our simulations, we take Nmax = 70, p = 10, p2 =
30 and the reaction rates km1 = 4 × 104, km3a = 150, k3b =
100, k3c = 100 and the solution phase racemization rate kR =
106. The overall system ee(%) decreases from its small initial
value to about −40% and remains locked in at this value
for the remainder of the simulation times; see Fig. 5 (top).
Since the initial distribution of the Ln clusters is smaller than
that of the Dn clusters, the former dissolve preferentially (the
Gibbs-Thomson effect), and via solution phase racemization,
they contribute to the growth of the Dn clusters: hence the final
ee is negative. Figure 5 (bottom) displays the gradient in een

indicating how the initial individual een’s evolve in time. The
ee of each cluster depends on its size, as measured in monomer
units. The set of een’s shows a complex behavior, reflecting
the spread in the initial een(0) coming from the Gaussians (the
“sufficiently different initial sizes”) [11]. For times t(s) 	 0.1,
a gradient pattern sets in indicating how each cluster size is
locked in (kinetically) to a specific chiral excess.

Thermodynamic control: In marked contrast, when mi-
croreversibility is reinstated, k1 = 104, k3a = 102, km3b =
90, km3c = 90 (Fig. 6). Then for the remaining rates and
initial conditions as before, the system undergoes a short
duration chiral excursion before ending up in the inevitable
final racemic state: the earliest stages of the reaction network
come under kinetic control, but the late-time asymptotic
regime comes under thermodynamic control. Note how the
mass-averaged ee resolves into the complex pattern of the
individual een for each cluster size; see the bottom of Fig. 6.
Despite the initially wide spectrum of enantiomeric excesses,
these all converge to zero under thermodynamic control. Very
small but nonzero values for these rate constants merely
postpone the inevitable approach to the asymptotic racemic
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FIG. 5. (Color online) Kinetic control: simulation showing the
effect of using irreversible rates (i.e., setting k1 = k3a = km3b =
km3c = 0 in Fig. 4). That is, we shut off growth of precritical clusters
up to the critical size and degradation of postcritical clusters back
down to the critical size. Bottom: the enantiomeric excesses een(%)
for clusters of size 2 � n � Nmax. The gradient from small to large n

is indicated by the arrows.

state. The only difference between this and the former outcome
is that here we allow for cluster growth up to the critical size
cluster and also dissolution of clusters greater than the critical
size cluster: all transformations involved are fully reversible.
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FIG. 6. (Color online) Thermodynamic control: simulation
showing the effect of using fully reversible rates, i.e., for k1 = 104,
k3a = 102, km3b = 90, km3c = 90 in Fig. 4. Bottom: enantiomeric
excesses een(%) for clusters of size 2 � n � Nmax. The gradient
from small to large n is indicated by the arrows. Compare with
Fig. 5.
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FIG. 7. (Color online) Full kinetic model [14] with reversible
agglomeration. Initial conditions: tiny initial ee: ee% = 1 × 10−12%,
type (a) (see text). This provides a striking example of absolute
asymmetric synthesis.

B. Presence or absence of reversible agglomeration

A characteristic and illustrative example of the different
final states achieved in the presence or in the absence of cluster-
to-cluster agglomeration is shown in Figs. 7 and 8, respectively.
In the presence of cluster-to-cluster agglomeration, a final
chiral state is obtained, but in its absence, and even when
starting from a significant initial ee, the final outcome is
a racemic stationary state: after an initial chirality transfer
to the rest of clusters, the system cannot retain the initial
ee and eventually racemizes (permanent mirror symmetry is
recovered); see Fig. 8.
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FIG. 8. (Color online) Full kinetic model [14] without agglom-
eration. Initial conditions are large, ee = 33%: type (b) (see text).
Kinetic controlled temporary chiral amplification (chiral excursion).
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FIG. 9. (Color online) Full model without grinding: Initial con-
ditions are large, ee = 33%: type (b) (see text). Short-lived chiral
amplification followed by the final racemic state.

Note that a recent report [12] using PBE’s claimed to
achieve chiral amplification without agglomeration. A careful
consideration of the unorthodox “growth” term employed by
those authors reveals, however, that it actually corresponds to
an agglomeration characterized by a singular agglomeration
kernel (for the proof of this, see Appendix B).

C. No grinding

In contrast to Fig. 7, which shows reversible agglomeration
in the presence of grinding, we consider agglomeration without
grinding. Even when starting from large initial ee, and for
the same rates used in the simulation leading to Fig. 7, the
system eventually racemizes; see Fig. 9. This underscores
the importance of grinding, which, on the basis of the
approximation leading to net flows in PBEs, has been claimed
to be unnecessary for obtaining a final chiral state in a closed
system with a homogeneous temperature distribution (e.g., see
the second paper in Ref. [11]).

Most importantly, the simulations demonstrate that
(i) in the absence of agglomeration but even with irre-
versible grinding, the final outcome will be racemic (Fig. 8);
(ii) with agglomeration operative but no grinding, the outcome
will be racemic (Fig. 9). Only for the case (iii) when
both agglomeration and irreversible grinding are operative
simultaneously can the system lead to a final chiral outcome,
and with large enantiomeric excesses close to 100% for the
largest chiral clusters (Fig. 7).

Recall that absolute asymmetric synthesis (AAS) is the
transformation of achiral or racemizing products in the absence
of any chiral polarization (i.e., circularly polarized light,
hydrodynamic vortices, chiral contaminants, etc.) to chiral
products in detectable enantiomeric excess levels [3]. AAS
may occur in networks leading to a bifurcation scenario
with subsequent amplification of the initial chiral fluctuations
about the ideal racemic (mirror symmetric) composition. Since
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for AAS there is no chiral bias, one expects a stochastic
distribution of signs (plus/minus) in the final enantiomeric
excesses between successive experiments, precisely because
the sign of the initial chiral fluctuation is random (there is no
bias). This in turn must lead to a bimodal distribution in the
signs of the final chiral outcomes (as well as for temporary
chiral amplifications ending up as racemic final states). To test
this ability of our kinetic scheme, we repeat the simulations
reported above in Figs. 7–9, now flipping the sign of the initial
enantiomeric excesses. The series of results [27] demonstrate
that the final enantiomeric excesses also change sign as well,
that is, they follow the sign of the initial chiral perturbation.
Hence, a random distribution of initial chiral perturbations
will lead to a bimodal distribution in final chiral outcomes, the
essential hallmark of AAS. This is in accord with the observed
experimental results; see the first paper in Ref. [8].

VII. DISCUSSION AND CONCLUSIONS

The continuum limit of a kinetic reaction scheme involving
growth, dissolution, solution-phase racemization, binary ag-
glomeration, and mechanical fragmentation [14] yields the
general class of population balance equations (PBEs) that
have been used recently in attempts to model the Viedma
deracemization phenomenon [11,12]. This result in and of
itself constitutes the main result of this paper. Among other
things, it establishes a mathematical connection between
chemical kinetic schemes and continuum population balance
modeling, demonstrating that both approaches are really two
complementary sides of the same coin. The continuum limit
reveals moreover that even if one accounts for detailed balance
(microreversibility) at the kinetic level, it is lost in the growth
and dissolution rate functions appearing in the PBEs. This
means that those functions are a source of kinetic control
(since they represent irreversible processes). Moreover, we
have also verified that the aggregation or agglomeration
terms employed in those particular PBE models do not
account for the inverse processes of deagglomeration (binary
fragmentation) and thus contribute a further source of kinetic
control.

These findings are of capital importance if one wishes to
use PBEs to study spontaneous mirror symmetry breaking
(SMSB) or absolute asymmetric synthesis. Here we use SMSB
as a synonym of thermodynamically controlled absolute asym-
metric synthesis, i.e., as a transformation where the racemic
state is metastable and a degenerate chiral state (scalemic
mixture as final outcome) is the final (long-time) stable
state of the system. This can only occur under experimental
conditions preventing the evolution of the system (open or
closed) toward thermodynamic equilibrium. The chemical
significance of the phenomenon of SMSB is that it takes place
under microreversible constraints within the framework of
linear thermodynamics of irreversible processes. The thermo-
dynamic rationalization of such spontaneous mirror symmetry
breaking is the achievement of an asymptotic stable chiral
state that, in the framework of irreversible thermodynamics, is
characterized by minimum entropy production [6]. Neverthe-
less, in closed systems that come into thermodynamic equilib-
rium with their surroundings, kinetically controlled absolute
asymmetric synthesis is possible: a temporary amplification

of chirality results that may be useful in applied synthesis [4].
These considerations do not invalidate or question the use of
PBMs in common crystallizations, implying a supersaturation
value that decreases in time accompanied by a fast secondary
nucleation process, nor the description they give of preferential
crystallizations. Indeed, such population balance modeling is
intended to simulate a kinetically controlled crystallization
process [28,29].

The kinetic and population balance models treated here
are based on the mean-field approximation, so it may be
worthwhile to mention some basic statistical mechanical
and stochastic properties of the chiral phase transition in
chemical systems. For technical reasons, the study of statistical
mechanical aspects of chiral symmetry breaking in chemical
systems is best investigated using simpler reaction schemes
based, for example, on Frank’s original model. The Frank
model captures the essence of chiral symmetry breaking but
falls short of being able to explain more involved phenomena
such as Viedma deracemization [14]. Having said this, we
summarize some of the pertinent results as follows:

A useful statistical approach to chiral symmetry breaking
starts from the chemical master equation for birth-death
processes on a spatial lattice, providing an exact description
of the Frank model dynamics on the microscopic level [30].
This solution can be cast in terms of a quasi-Schrödinger
equation with an associated non-Hermitian “Hamiltonian.”
Simulations of Langevin equations derived from this master
equation approach indicate that the growth of chiral domains
from initially spatially extended racemic configurations (in a
two-dimensional reaction domain) grow by front propagation
until the entire available computation domain is occupied by
a single chirality. Sometimes the end-result consists of two
subdomains of opposite chirality within a single computational
domain, representing a stable outcome with a global net zero
ee. In such a statistical treatment, long-range chiral correlations
(bounded above by the system’s finite size) emerge from the
local autocatalytic growth of the enantiomers of the same
handedness, and once one homochiral domain “wins” territory,
it persists stably as long as the system is maintained out of
equilibrium.

In a related vein, dynamic critical properties of a simple
variant of the Frank model demonstrate that the dynamic phase
transitions of the latter are in the same universality class as
statistical models of directed percolation [31]. The inherent
stochasticity arises from the internal reaction noise (as typified
by the chemical master equation approach).

The effective potential can be calculated for the Frank
model in which external noise is introduced to account for
random environmental effects [32]. The well-mixed limit,
corresponding to negligible diffusion and also finite diffusion
in two spatial dimensions, is considered. White noise has
a disordering effect, whereas in the latter two-dimensional
case, a true chiral phase transition occurs for external noise
exceeding a critical intensity which racemizes the system,
that is, a sufficiently strong external noise restores the chiral
symmetry.

Finally, the fundamental interest of any model/approach
regarding the question of the origin of biological homochirality
lies in its ability for absolute asymmetric synthesis and the
amplification of the tiny statistical chiral fluctuations about
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the ideal racemic composition up to observable ee levels [2].
The required “sufficient difference between the initial particle
size distributions” postulated in the mechanism in Ref. [11]
does not satisfy this necessary precondition to be of interest for
speculations concerning the origin of biological homochirality.
Such a condition could only lead to a deterministic selection
of one of the two chiral signs, but it is not at all a condition for
the emergence of chirality as a steady final state. The nature of
thermodynamic control implies, moreover, that for the same
system parameters and total chemical mass, the final state must
be the same independent of the initial relative concentrations of
the species involved in the transformations. An understanding
of how biological homochirality might have arisen begins with
the study of reaction networks leading to chiral states within
the framework of nonequilibrium microreversible chemical
transformations.
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APPENDIX A: MASS CONSERVATION

Define M(t) = ∫ ∞
0 p c(p,t)dp. Then M(t) + c1(t) is con-

served:

dM(t)

dt
=

∫ ∞

0
p

∂c(p,t)

∂t
dp, (A1)

= −
∫ ∞

0
p

∂J (p,t)

∂p
dp, (A2)

= [−pJ (p,t)]p→∞
p=0 +

∫ ∞

0
J (p,t)dp (A3)

=
∫ ∞

0
J (p,t)dp, (A4)

= −dc1(t)

dt
, (A5)

using Eqs. (16) and (17) and the boundary conditions
that particle distributions vanish at zero, c(0,t) = 0, and at
infinity, limp→∞ c(p,t) = 0 [15]. The generalization to the
two-enantiomer case in Sec. V is immediate; the corresponding
boundary conditions are ci(0,t) = 0 and limp→∞ ci(p,t) = 0
for i = L,D.

APPENDIX B: CRYPTO-AGGLOMERATION AND
THREE-BODY INTERACTIONS

Here we prove that the unusual growth rate (i = L,D)

Gi,R = k′(1 + �i,R)
(
Ci,0 − Csol

R

)
, (B1)

= k′[1 + k′′fi(R,t)R2]
(
Ci,0 − Csol

R

)
, (B2)

= k′(Ci,0 − Csol
R

) + k′k′′fi(R,t)R2(Ci,0 − Csol
R

)
,

(B3)

proposed in Ref. [12], corresponds to an agglomeration, albeit
a singular one (to facilitate the demonstration, we employ the
same notation). When multiplied by the particle distribution, it
yields a second-order term ∼k′k′′f 2

i in the particle distribution
function fi . Comparison with the general PBE Eqs. (1) and (2)
shows that this contribution corresponds to neither an advective
nor a diffusive flux [15]. Only these two types of fluxes are
allowed in the general PBE framework. This term, however,
can be expressed either as (i) a two-cluster agglomeration
integral with a singular kernel or (ii) as a three-body reaction
involving two clusters and a molecule. This second alternative
(ii) is rather unlikely to occur in ordinary solution chemistry
unless either very high concentrations are achieved or the
reactions take place in viscous media. Neither is the case for
the Viedma deracemization experiment.

Agglomeration in a PBE framework generally yields both
birth and death terms [15]. We consider here just the death
term (meaning that particles of radius R are depleted from the
overall population):

Qi(R) =
∫ ∞

0
βi(R,λ)fi(λ,t)fi(R,t)dλ, (B4)

with the singular agglomeration kernel β:

βi(R,λ) = k′k′′λ2
(
Ci,0 − Csol

λ

) d

dλ
δ(λ − R). (B5)

Calculate the rate of disappearance of particles of radius R

from the overall population:

Qi(R) =
∫ ∞

0
βi(R,λ)fi(λ,t)fi(R,t)dλ

=
∫ ∞

0
k′k′′λ2(Ci,0 − Csol

λ

) d

dλ
δ(λ − R)

× fi(λ,t)fi(R,t)dλ, (B6)

= lim
[
k′k′′λ2

(
Ci,0 − Csol

λ

)
× fi(λ,t)fi(R,t)δ(λ − R)

]λ→∞
λ→0

− ∂

∂R
k′k′′R2

(
Ci,0 − Csol

R

)
fi(R,t)fi(R,t), (B7)

= − ∂

∂R
k′k′′R2

(
Ci,0 − Csol

R

)
fi(R,t)fi(R,t). (B8)

We verify that (B8) corresponds identically to Eqs. (6) and
(9) in Ref. [12]. This proves that the k′k′′ contribution to the
“growth term” (B3) represents an agglomeration process [or
crypto-agglomeration, since it is concealed or camouflaged by
an unorthodox growth rate expression (B3)].

From inspection, we see that the product Gi,Rfi(R,t)
represents a three-body interaction (monomer-cluster-cluster)
since it contains the contribution Ci,0fi(R,t)fi(R,t).
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