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Line tension of multicomponent bilayer membranes
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The line tension or edge energy of bilayer membranes self-assembled from binary amphiphilic molecules is
studied using self-consistent-field theory (SCFT). Specifically, solutions of the SCFT equations corresponding
to an infinite membrane with a circular pore, or an open membrane, are obtained for a coarse-grained model
in which the amphiphilic species and hydrophilic solvents are represented by AB and ED diblock copolymers
and C homopolymers, respectively. The edge energy of the membrane is extracted from the free energy of the
open membranes. Results for membranes composed of mixtures of symmetric and cone- or inverse cone-shaped
amphiphilic molecules with neutral and/or repulsive interactions are obtained and analyzed. It is observed that
an increase in the concentration of the cone-shaped species leads to a decrease of the line tension. In contrast,
adding inverse cone-shaped copolymers results in an increase of the line tension. Furthermore, the density profile
of the copolymers reveals that the line tension is regulated by the distribution of the amphiphiles at the bilayer
edge.
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I. INTRODUCTION

Bilayer membranes self-assembled from phospholipids
are ubiquitous in the cell, separating the cell from the
exterior environment as well as encasing its internal organelle
structures [1]. Many functions of the membrane depend on its
physical and mechanical properties. In recent years, a great
number of theoretical and experimental studies have focused
on the relationship between the molecular properties (such
as composition, geometrical shape, and interactions between
lipid species) of the amphiphiles and the elastic properties of
the self-assembled membranes [2–5]. In particular, the study
of pore formation in bilayer membranes has been a subject of
great interest for its fundamental importance in processes such
as membrane fusion [6–9], transleaflet lipid diffusion [10], and
transport of small molecules across the membranes [1]. Many
medical and biotechnological applications also take advantage
of artificially formed membrane pores for delivering materials
into the cell [11,12].

The property of the self-assembled bilayer membrane is
strongly affected by the structure and composition of the
amphiphilic molecules, with consequences directly impacting
the formation and stability of membrane pores. From a
phenomenological point of view, the formation and stability
of a membrane pore can be understood by considering the
membrane’s surface tension γ and the line tension σ of an
open membrane edge [13]. It should be pointed out that,
in the literature, the term “line tension” has been used to
refer to the energy of the phase boundary between two
phases of lipids coexisting in the same membrane and to
the edge energy of an open lipid membrane. In the current
study, the line tension refers to the edge energy of an open
membrane, and the terms line tension and edge energy will
be used interchangeably. In general, the energy associated
with creating an open membrane edge originates from the
bending of the lipid monolayers at the edge, thus shielding

*shi@mcmaster.ca

the hydrocarbons from the water molecules. Therefore, the
formation of an open edge is associated with a highly curved
lipid monolayer with a large positive curvature. The toroidal
structure of an open membrane edge has been examined in
a number of computational studies [14,15]. In general, large
surface tension and low edge energy would favor the formation
of pores. The competition between the surface tension and the
edge energy determines the stability of the membrane. In many
cases, self-assembled structures such as biological membranes
or liposomes are considered to be tensionless, having zero
or nearly zero surface tension. Thus for these systems, the
formation and stability of pores is mainly determined by
the energy of the open edge or the line tension. For bilayer
membranes self-assembled from one type of lipid, the line
tension is mainly determined by the property of the lipids.
However, for multicomponent membranes, the line tension
can be further regulated by the composition and molecular
property of the amphiphilic species. From this perspective, it
is desirable to study the relationship between the composition
and molecular property of the amphiphiles and the line tension
of an open membrane edge.

In recent years, a number of studies using continuum
theory [16–18], computer simulations [14,19–26], and self-
consistent field theory [5,27–29] have focused on examining
the line tension of model bilayer membranes. In the studies
using continuum theory, the structure of the bilayer at the
pore edge is modeled by a highly curved monolayer. This
approach provides a simple model for estimating the line
tension, however it ignores the molecular structure of the
amphiphilic molecules. Furthermore, applying the continuum
theory to highly curved surfaces could lead to inaccurate
results. Computer simulations such as molecular dynamics
(MD) or Monte Carlo (MC) simulations provide a more
detailed description of the membrane pores, but these sim-
ulations are computationally expensive and are limited by the
number of amphiphiles. Self-consistent-field theory (SCFT)
has also been used for studying the line tension of bilayer
membranes, where lipids are modeled as amphiphilic block
copolymers. Although SCFT provides a less detailed picture
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of the bilayer membrane as compared with the MC or MD
simulations, it is computationally less expensive and provides
a complementary method for examining the elastic properties
of bilayer membranes.

Many of the theoretical and computational studies exam-
ining the elastic properties of bilayers have been focused
on single-component membranes [5,19–21,24,25,27,29–33].
For example, Li et al. investigated the elastic properties
of bilayers using SCFT and the continuum Helfrich model
[5]. Modeling lipids as AB-diblock copolymers, the authors
studied the effects of molecular architecture on the line tension
of single-component bilayers [5]. In a similar simulation study,
Hu et al. used the line tension of bilayer disks as a driving
force to construct flat and closed vesicles [33]. By studying
this mechanism, the authors were able to develop an accurate
theoretical method for calculating the membrane’s Gaussian
modulus [33]. Very recently, Pera et al. examined the edge
energy and the stability of pores of single-component lipid
membranes using a lattice self-consistent-field theory. These
previous studies indicate that the elastic properties of the
lipid bilayers are sensitive to the molecular architecture of the
lipids within the membrane. On the other hand, it is expected
that for membranes formed by multicomponent lipids, lipid-
lipid interactions and the interplay between different lipid
architectures can play a significant role in determining the
membrane properties. It is therefore desirable to extend the
study to multicomponent systems.

For multicomponent membranes, a number of experi-
mental, computational, and theoretical studies have been
carried out in recent years to examine the effects of com-
position, geometrical shape, and interactions of lipids and
other membrane-associated molecules on their line tension
[23,34–36]. For example, Sakuma et al. studied the effects of
DHPC or DPPC (cone- or cylindrical-shaped) lipids on the
stability of pores in giant unilamellar vesicles (GUVs) [36].
Complementing the experimental results, the authors also used
a two-dimensional continuum model to support the idea that
pore formation can be stabilized by the aggregation of the
cone-shaped lipids at the pore edge [36]. In a similar work
investigating the effects of inclusion molecules on the line
tension of bilayers, Karatekin et al. demonstrated that the
addition of cholesterols, approximated as inverse cone-shaped
molecules, resulted in an increase in the line tension [34]. In
contrast, the addition of cone-shaped molecules was shown to
reduce the line tension of the bilayer membrane [34]. Using
molecular dynamics simulations, de Joannis et al. examined
the line tension of bilayers composed of short and long tail
phospholipids [23]. These authors showed that an increase in
the concentration of short tail lipids results in a decrease in the
line tension of ribbon-shaped aggregates [23]. Furthermore,
they found that the short tail lipids concentrate at the edge
of the aggregates [23]. The studies highlighted above indicate
that the composition, geometrical shape, and interactions of
lipids and other membrane-associated molecules have signif-
icant effects on the line tension of multicomponent bilayer
membranes. These previous studies have provided valuable
insight into the property of multicomponent membranes.
Despite these studies, a systematic study of the physical
properties of multicomponent model membranes has been
scarce.

FIG. 1. (Color online) Schematics showing the different molec-
ular architectures studied.

In this paper, we utilize self-consistent-field theory to study
the line tension of self-assembled multicomponent bilayers.
We model the lipids as amphiphilic AB and ED diblock
copolymers, which self-assemble to form bilayer membranes
in a hydrophilic solvent modeled as C-homopolymers. Mod-
eling the lipids and water molecules by polymeric species
provides a coarse-grained mesoscopic model, in which some
of the atomistic details of the system are ignored. The
simplified coarse-grained model could lead to significant
computational speed-up so that larger systems are accessible.
Furthermore, the mesoscopic model and interactions allow
the study of collective phenomena of the system, including
self-assembled structures and their mechanical properties,
as well as phase transitions between these structures [37].
We use the coarse-grained model system to examine the
effects of composition, geometrical shape, and interactions
of the amphiphilic molecules on the line tension of the
bilayer membranes. We control the geometrical shape of the
lipid species by varying the relative size of the hydrophilic
or hydrophobic blocks of diblock copolymers, as shown
schematically in Fig. 1. Similarly, we control the interactions
between the lipids by adjusting the Flory-Huggins parameter
χ between the blocks. The composition of lipid species within
the bilayer is regulated by tuning the relative chemical potential
of diblock copolymers, allowing us to examine the effects of
lipid composition on the line tension of the membrane edge.

The remainder of this paper is organized as follows. The
theoretical model and numerical procedure are presented in
Sec. II. Results on the effects of the composition of different
lipid species and their geometrical shape and interactions on
the line tension of bilayer membranes are reported in Sec. III.
Finally, a conclusion and summary of the current study are
given in Sec. IV.

II. THEORETICAL FRAMEWORK

The self-consistent-field theory (SCFT) is a well-
established theoretical framework for the study of many-body
systems, especially polymeric systems. Details of the SCFT
formalism have been reported in numerous references [38–40].
In this section, we will give a brief introduction of the theory,
focusing on the main aspects of the model and numerical
procedure.

The multicomponent system considered in this work is
composed of two amphiphilic diblock copolymers (AB and
ED) and a homopolymer (C). The hydrophilic or hydrophobic
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FIG. 2. (Color online) Schematics of the model system investi-
gated. A small pore formed in a giant unilamellar vesicle.

nature of the molecular species is ensured by specifying the
interactions between the blocks of the diblock copolymers
and the homopolymers, respectively [5]. The thermodynamic
properties of the system are most conveniently described using
the grand-canonical ensemble, in which the model system
contains AB,ED-diblock copolymers and C-homopolymers
at a fixed temperature, volume, and activities or chemical
potentials. In this study, we assume the membrane geometry
is locally flat, corresponding to systems in which the radius of
the vesicle is much larger than the region of the pore captured
within the computational box. A schematic description of such
a configuration is presented in Fig. 2.

In our model, the conformation of the amphiphilic
molecules is described by the Gaussian chain model. Fur-
thermore, the interactions between the different segments are
modeled using the Flory-Huggins interaction parameters χαβ .
An application of the SCFT formalism [38–40] to the model
system leads to an expression of the grand-canonical partition
function of the system,
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where φα(r) and ωα(r) correspond to the volume fraction
and conjugate auxiliary fields of the polymer species, with
α = {A,B,E,C,D} and β = {A,B,E,D}. The local incom-
pressibility constraint is ensured by the first δ function in
Eq. (2.1). The second δ function is used as a pining condition
to stabilize a pore of radius R [5]. Furthermore, the quantity
G[φ,ω] in Eq. (2.1) is the grand potential functional or
the grand canonical free-energy functional of the system.
It is more convenient, however, to consider the free-energy
density g[φ,ω] = NABG[φ,ω]/ρ0V , where the lengths of the
polymer chains are scaled with respect to the length of the
AB-diblock copolymers. Here, ρ0 is the monomer density
of the polymers, which we assume to be the same for all
species. The relative degree of polymerization of the species
with respect to the length of the AB-diblock copolymers can
be written as κED = NED/NAB and κC = NC/NAB .

Using Lagrangian multipliers η and ξ to enforce the incom-
pressibility and pinning condition, the free-energy density can

be written as
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where QAB,QED , and QC are the single-chain partition
functions for the AB, ED, and C molecules, and zED and
zC are the activities of the ED and C species. We note that the
chemical potential of the AB-diblock copolymers is chosen
such that zAB = 1. Using the saddle point approximation,
the density profiles φα(r) and their conjugate fields ωα(r)
are determined by demanding that the free energy Eq. (2.2)
be invariant with respect to variations in the φ, ω, η, and ξ

fields. This minimization leads to a set of self-consistent field
equations,
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φθ (r)χCθ + η(r) + ξ (R),

φA(R) + φB(R) + φE(R) + φD(R) = φC(R),∑
θ

φθ (r) = 1,

where α = {A,B}, β = {E,D}, and θ = {A,B,C,D,E}. In
the above set of self-consistent equations, the functions q(r,s)
and q†(r,s) are the forward and backward end-integrated
propagators. These propagators satisfy the modified diffusion
equations,

∂q(r,s)

∂s
= R2

g �2 q(r,s) − ω(r)q(r,s),
(2.4)

∂q†(r,s)

∂s
= −R2

g �2 q†(r,s) + ω(r)q†(r,s),

with the initial conditions q(r,0) = 1 and q†(r,1) = 1 [38]. In
the above equations, Rg is the radius of gyration and is defined

022713-3



ASHKAN DEHGHAN, KYLE A. PASTOR, AND AN-CHANG SHI PHYSICAL REVIEW E 91, 022713 (2015)

as Rg = b
√

N/6, where b is the Kuhn length of the Gaussian
chain.

In the geometry examined in our study, the axial symmetry
about the center of the pore permits us to write the self-
consistent equations in cylindrical coordinates [5]. With this,
we apply the alternating direction implicit (ADI) technique to
solve the modified diffusion equations [Eqs. (2.4)] in the r-z
plane [41]. By solving Eq. (2.4) using appropriate boundary
conditions, we can determine solutions of the SCFT equations
in terms of the density profiles φα(r) and their conjugate
fields ωα(r) for a given set of model parameters. In particular,
solutions corresponding to a pore of a given radius can be
obtained. To extract physical quantities such as membrane
surface tension, bending moduli, and pore line tension, we
fit the free energy of the system calculated using the SCFT
method to that given by the Helfrich model [13]. In the Helfrich
model, the membrane can be represented as a two-dimensional
elastic sheet, with a free energy given by

fH =
∫

dA[2κM (M − c0)2 + κGG + γ ] +
∫

dL σ, (2.5)

where M and G are the local mean and Gaussian curvatures.
These curvatures can be specified in terms of the principal cur-
vatures c1 and c2 as M = (c1 + c2)/2 and G = c1c2 [13,42].
In Eq. (2.5), c0, γ , and σ are the spontaneous curvature,
membrane’s surface tension, and line tension, respectively.
For large vesicles or flat membranes, the membrane pore, as
shown schematically in Fig. 2, can be considered to be in
a flat geometry, thus allowing us to set c1 = c2 = 0. Using
this information, we can rewrite the Helfrich free energy as a
function of membrane surface tension and pore line tension,

fH = γ

∫
dA + σ

∫
dL.

Although the self-assembled biological membranes
can often be characterized as tensionless, many studies
focus on bilayers with nonzero surface tension [31,34,43].
In the current study, however, we focus on tensionless
membranes. Specifically, we vary the chemical potential of
the C-homopolymers so that the membrane is tensionless [5].
For a tensionless membrane and with the assumption that the
pore is circular and locally flat, we can write the free energy of
the pore as fH = 2πRσ . In this simple form, the free energy
of the pore is linearly proportional to the radius. The line
tension or the edge energy of the membrane is proportional to
the slope of the line. By fitting the free energy calculated using
the SCFT method to fH , we can obtain the line tension for
membranes for various copolymer composition, geometrical
shape, and interactions. It should be pointed out that extension
of the study to membranes with tension is straightforward.
Specifically, the free energy of the pore with tension will be
given by fH = −πR2γ + 2πRσ . A fitting of the free energy
of the pore to this expression can then be used to obtain the
surface tension γ and the line tension σ .

III. RESULTS AND DISCUSSION

In this section, we present the results for the line tension
of bilayer membranes composed of two types of amphiphilic
molecules. We vary the architecture of the lipid species by

FIG. 3. (Color online) 2D density profiles for the (a) bilayer and
(b) pore configuration. The profile illustrates the overall density of
the diblock copolymers AB + ED in the lighter regions and solvent
C in the dark regions. These plots correspond to the cross-sectional
view of the bilayer and the pore, respectively.

adjusting the volume fractions fα and the relative block
lengths κ of the diblock copolymers. Similarly, the interac-
tions between the segments are controlled by adjusting the
Flory-Huggins parameters χ . To investigate the effects of
amphiphile composition, we introduce an order parameter,
ψ = (φAB − φED)/(φAB + φED), to characterize the relative
volume fraction of the AB and ED amphiphilic molecules
within the bilayer. Furthermore, to isolate the effects of molec-
ular geometries, interactions, and membrane composition, we
investigate bilayer systems with zero surface tension (γ = 0).
Starting with a system in the bilayer configuration, as shown in
Fig. 3(a), we adjust the chemical potential of the solvent such
that the membrane is tensionless. We then construct a pore of
radius R, illustrated in Fig. 3, using the pinning condition as
described in the preceding section.

The free energy of the pore, as described by the continuum
model, is fH = (2πσ )R. In this form, the line tension σ can
be determined by evaluating the free energy of the system as a
function of radius R. Figure 4 presents the free energy obtained
from the SCFT calculations, as a function of pore radius

FIG. 4. The free energy as a function of pore radius R for
blends with χAB = χED = χAD = χBE = χBC = χCD = 30, fA =
fB , κC = 1, and various ED-molecular architectures. The molecular
fraction of the D species is defined as fD = ND/NAB . The pore radius
R is measured in units of Rg and is normalized with respect to the
bilayer thickness d , given as d ∼ 4.3Rg .
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for a model system with χAB = χED = χAD = χBE = χBC =
χCD = 30, χAE = χBD = χAC = χCE = 0, fA = fB , κC =
1, μAB = μED , and different ED-molecular architectures.
By adjusting fD while keeping the length of the E-block
constant, we change the geometry of the ED-molecules from
a cylindrical- to a cone-shaped structure. The results can then
be used to examine the effects of mixing cylindrical- and
cone-shaped lipids on the line tension.

Figure 4 shows the free energy of 1:1 mixtures of
cylindrical- and cone-shaped molecules as a function of pore
radius R. The first feature to notice is that the line tension,
which is proportional to the slope of the free-energy curve,
decreases with an increase in the asymmetry (fD) of the ED-
molecules. For a tensionless membrane, the only contribution
to the free energy is from the line tension. In this case, the
stability of the pore is determined by analyzing the free energy
as function of the pore radius. For blends with fD = 0.5, 0.3,
and 0.25, the slope of the free energy is positive, corresponding
to pores that would shrink upon the release of the pining
constraint. In contrast, blends with fD = 0.2 have a negative
line tension, which correspond to pores that would grow in size,
resulting in the rupture of the membrane. Most interestingly,
binary lipid mixtures with zero line tension would correlate
with long-lasting stable pores. These results suggest that an
increase in the lifetime of a pore can be obtained by tuning the
concentration of cone-shaped detergent molecules within the
membrane.

To further explore the effects of lipid asymmetry on the
pore line tension, we investigate membranes composed of
various concentrations of ED-molecules. By controlling the
chemical potential of the ED-diblock copolymers (μED), we
can adjust the relative composition of the ED-molecules
in the membrane. Figure 5 presents the line tension σ as
a function of the order parameter ψ for model systems
with χAB = χED = χAD = χBE = χBC = χCD = 30, χAE =
χBD = χAC = χCE = 0, fA = fB , κC = 1, and fD = 0.25,
0.30, and 0.40. The molecular composition within the mem-
brane is characterized by the order parameter ψ , where ψ = 1

FIG. 5. The line tension σ as a function of order parameter
ψ for blends with χAB = χED = χAD = χBE = χBC = χCD = 30,
fA = fB , κC = 1, and fD = 0.25, 0.3, and 0.4.

and −1 correspond to membranes composed purely of AB

and ED species, respectively. As shown in Fig. 5, membranes
composed of asymmetric molecules (cone-shaped) have lower
line tension than those composed of symmetric molecules
(cylindrical-shaped). A decrease in σ for membranes com-
posed of asymmetric lipids has been reported previously for
single-component membranes by Li et al. [5]. These authors
investigated the effect of molecular fraction f on the line
tension for single-component bilayers, and they showed that
a decrease in the relative size of the head groups results in a
decrease in the line tension [5].

As illustrated in Fig. 5, an increase in the concentration of
cone-shaped lipid species in the membrane leads to a decrease
in the line tension σ . Furthermore, the decrease of σ is more
pronounced for cone-shaped lipids with smaller head groups
(characterized by smaller fD), in that the line tension can be
changed from positive to negative. For example, for a binary
mixture of symmetric AB- and asymmetric ED-molecules
with fD = 0.25, the pure AB and ED membranes have
positive and negative line tensions, respectively. As shown
in Fig. 5, for this system the line tension vanishes at a critical
composition, ψc. At this concentration, a pore with a finite
radius formed in a tensionless membrane would be stable.

A decrease in the line tension as a function of an increase
in the concentration of cone-shaped molecules has been
reported in a number of experiments [34–36]. It has been
suggested that the decrease in the line tension is caused
by the aggregation of the cone-shaped molecules at the
pore edge [34–36]. The availability of the SCFT solutions
allows us to investigate the segregation of lipid species within
the membrane by analyzing the density profile of the lipid
species. Figure 6 presents the density profiles for a system
with χAB = χED = χAD = χBE = χBC = χCD = 30, χAE =
χBD = χAC = χCE = 0, fA = fB , κC = 1, fD = 0.25, and
ψ = 0.18. As shown in Fig. 6, the cone-shaped ED-molecules
have a higher concentration at the pore edge. This effect can
be seen more clearly in the one-dimensional profile (Fig. 6)

FIG. 6. (Color online) Relative concentrations of the AB, ED,
and C molecules φ̃γ (γ = AB, ED, and C) as a function of position
for blends with fD = 0.25. Inset: 2D density profiles of the (a) AB and
(b) ED blends for χAB = χED = χAD = χBE = χBC = χCD = 30,
fA = fB , κC = 1, fD = 0.25, and ψ = 0.18.
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of the relative concentrations of the molecular species φ̃γ =
φγ /φγ,bulk (γ = AB,ED, and C), which is the concentration
of the molecular species normalized by their bulk values for
a planar membrane. The results shown here clearly reveal an
increase in the concentration of ED-molecules at the pore
edge. This observation of molecular segregation to the pore
edge provides strong evidence that the mechanism of line
tension decrease is the coupling of molecular density with
the curvature of the amphiphilic monolayers.

To understand why the segregation of the cone-shaped
molecules at the pore edge reduces the line tension, we need
to consider the spontaneous curvature of the AB and ED

monolayers. When a pore is formed, the hydrophobic tails are
exposed to the solvent. To reduce the unfavorable interaction
between the hydrophobic tails and solvent, the molecules
rearrange to shield the hydrophobic segments. This results in
the formation of an edge with a large positive curvature. If the
bilayer is composed only of symmetric molecules, with zero
spontaneous curvature, the penalty for bending the membrane
is large. On the other hand, if cone-shaped molecules with
positive spontaneous curvature are added to the membrane,
they could aggregate at the pore edge and act as pore stabilizers,
thus reducing the line tension.

The above analysis can be extended to the case of species
with inverse cone-shaped geometries. In addition to inverse
cone-shaped lipids, the shape of cholesterol molecules is
often described as an inverse cone-shaped structure. Given
the abundance of cholesterol in biological membranes, it
is interesting to explore the effects of inverse cone-shaped
molecules on the line tension. As a model system for
inverse cone-shaped lipids, we calculated the line tension
for membranes composed of AB and ED molecules, where
NA = NB and ND > NE . Figure 7 gives the line tension of
this bilayer system as a function of the order parameter ψ ,
for blends with χAB = χED = χAD = χBE = χBC = χCD =
30, χAE = χBD = χAC = χCE = 0, fA = fB , κC = 1, fE =
0.25, 0.35, and 0.45. As before, ψ = 1 and −1 correspond

FIG. 7. Line tension σ as a function of order parameter ψ for
blends with χAB = χED = χAD = χBE = χBC = χCD = 30, fA =
fB , κC = 1, and fE = 0.25, 0.35, and 0.45.

FIG. 8. (Color online) Relative concentrations of the AB, ED,
and C molecules φ̃γ (γ = AB, ED, and C) as a function of position.
Inset: 2D density profiles of the (a) AB and (b) ED blends for
χAB = χED = χAD = χBE = χBC = χCD = 30, fA = fB , κC = 1,
fE = 0.25, and ψ = 0.3.

to membranes composed of pure AB and ED molecules,
respectively.

The results shown in Fig. 7 reveal that an increase in the
concentration of the inverse cone-shaped molecules (ED-
molecules) leads to an increase in the line tension of the
membrane edge. The increase of the line tension is more
pronounced for ED-molecules with a larger block asymmetry.
To understand why inverse cone-shaped molecules result in an
increase in the line tension, we will focus on the distribution
of the AB and ED species within the bilayer. In Fig. 8, we
present the density profiles for the AB,ED and C molecules.
In contrast with the case of cone-shaped ED-molecules, there
is a depletion of the ED-molecules at the pore edge. This
effect is shown more clearly in the one-dimensional density
profile, where the relative concentrations of the molecules φ̃γ

(γ = AB,ED, and C) are plotted as a function of the position.
The aggregation of the ED-molecules away from the pore edge
is caused by the mismatch between the spontaneous curvature
of the ED-molecules and that of the pore edge. This indicates
that pore formation in systems with a high concentration of
inverse cone-shaped molecules is highly unfavorable.

Experiments on the effects of cholesterol molecules on
the stability of membranes indicate that an increase in the
concentration of cholesterol molecules results in a more
stable membrane [43–45]. For example, Koronkiewicz and
Kalinowski showed that the critical radius, at which the
membrane rupture, increases for membranes with higher
cholesterol concentration [45]. For a bilayer membrane with a
finite surface tension, the free energy as given by the continuum
model can be written as fH = 2σπr − γπr2, resulting in a
critical radius of rc = 2σ/γ . Therefore, the critical radius is
proportional to the line tension σ . As shown in Fig. 7, the
line tension increases with an increase in the concentration
of the inverse cone-shaped molecules. For a system with
finite surface tension, this corresponds to an increase in the
critical pore radius rc. These results indicate that an increase
in the concentration of inverse cone-shaped molecule such as
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FIG. 9. The line tension σ as a function of the order parameter
ψ for blends with χAB = χED = χAD = χBE = χBC = χCD = 30,
fA = fB = fE = fD , and κC = κED = 1 for χAE = 0, 2, and 4.

cholesterol would correspond to an increase in the energy
associated with creating a pore, therefore preventing pore
formation and stabilizing the membrane.

Finally, we investigate the effects of head-group in-
teractions on the line tension of multicomponent bilay-
ers. We begin by considering a repulsive interaction be-
tween the A/E blocks (head groups) for symmetric blends
with NAB = NED = NC . Figure 9 gives the line tension
σ as a function of the order parameter ψ , for blends
with χAB = χED = χAD = χBE = χBC = χCD = 30, χBD =
χAC = χCE = 0, fA = fB = fE = fD , κC = κED = 1, and
χAE = 0, 2, and 4. In this figure, the line tension for blends with
χAE = 0 is taken as a reference. It is interesting to point out
that mixing symmetric molecules with repulsive head group
interactions leads to a decrease in the line tension, with a
minimum at ψ = 0. We can understand the decrease in the line
tension for a mixed system by considering the properties of a
pore modeled as a folded monolayer. Using a two-dimensional
continuum model, Li et al. considered the line tension of a pore
created by folding a monolayer onto itself, forming a pore edge
similar to that seen in Fig. 3(b) [5]. Using this approach, the
authors derived an expression for the line tension as a function
of the monolayer properties,

σ = πκM

1 − 4c0δ

2δ
, (3.1)

where κM, c0, and δ are the bending modulus, spontaneous
curvature, and thickness of the monolayer, respectively [5,46].
For a symmetric system such as a single-component AB

bilayer, the spontaneous curvature of the monolayer c0 is zero.
In a mixed AB/ED system, the effect of the repulsive head
group interaction would result in the formation of an effective
cone-shaped molecule, shown schematically in Fig. 10. The
nonzero spontaneous curvature for the cone-shaped molecule
results in a decrease in the line tension as shown in Fig. 9.
These results indicate that the line tension of a membrane can
be regulated by introducing molecules with repulsive head
group interactions.

FIG. 10. (Color online) Schematic diagram showing the effect of
repulsive head group interaction on the overall geometrical shape of
the lipids.

IV. CONCLUSION

Using the self-consistent field theory, we have investigated
the line tension or edge energy of self-assembled multicom-
ponent bilayer membranes, focusing on the effects of com-
position, geometrical shape, and interactions of lipid species.
The lipid species in the bilayer were modeled as amphiphilic
AB and ED diblock copolymers in a solvent, modeled
as C-homopolymers. Solutions of the SCFT equations are
obtained for a bilayer membrane with a pore of fixed size.
By fitting the SCFT free energy of the pore to the Helfrich
model, we have extracted the line tension of the membrane.
We then examined the effects of the composition, geometrical
shape, and interactions of lipid species on the line tension.

We first investigated bilayer systems composed of cylin-
drical, cone-, and inverse cone-shaped lipid species, focusing
on the effects of relative lipid composition on the line tension
of the self-assembled bilayer membranes. Our results revealed
that an increase in the concentration of the cone-shaped lipids
results in a decrease in the line tension. The mechanism
underlying the reduction in the line tension was found to
be related to the segregation of the molecules within the
membrane. Lipid segregation is driven to relieve the stress
caused by the large positive curvature of the pore edge.
The local curvature of the pore matches more closely to the
spontaneous curvature of the cone-shaped lipids, resulting in
the aggregation of the cone-shaped species at the pore edge.
The overall effect of adding cone-shaped lipids to the bilayer
is consistent with experimental and computational studies
[34–36]. In contrast to the behavior of cone-shaped lipids,
we discovered that an increase in the concentration of the
inverse cone-shaped molecules results in an increase in the
pore line tension. The underlying mechanism for this increase,
similar to the cone-shaped lipid system, is the segregation of
lipids within the bilayer. In contrast, however, the spontaneous
curvature of the inverse cone-shaped lipids is different from
that of the pore edge. This results in a depletion of the inverse
cone-shaped molecules from the pore edge. Experiments have
also shown that an increase in the concentration of inverse
cone-shaped molecules such as cholesterol could result in an
increase in the line tension of the membrane, causing it to
be more stable [34]. Finally, we considered the effects of
repulsive interaction between the head groups of symmetric
lipid species. We discovered that an increase in the repulsive
interaction between the head groups results in a decrease in the
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pore line tension. This effect was understood to be caused by
the formation of effective cone-shaped lipid aggregates, which
we know to lower the line tension.

Although the coarse-grained model ignores many molecu-
lar details of lipids, the results and conclusion from the current
study provide a qualitative understanding of the interplay
between the lipid segregation and local curvature. In particular,
the results provide clear evidence that the segregation of the
lipids can lead to the increase or decrease of the line tension,
depending on the geometry of the molecules. The predicted
trend of the line tension as a function of the concentration
of the second lipids is in good agreement with available

experiments. Although this trend of line tension could be
understood intuitively, the current study places the mechanism
of the line tension behavior in a multicomponent lipid system
on a solid theoretical base.
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