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Many single-molecule experiments for molecular motors comprise not only the motor but also large probe
particles coupled to it. The theoretical analysis of these assays, however, often takes into account only the degrees
of freedom representing the motor. We present a coarse-graining method that maps a model comprising two
coupled degrees of freedom which represent motor and probe particle to such an effective one-particle model
by eliminating the dynamics of the probe particle in a thermodynamically and dynamically consistent way. The
coarse-grained rates obey a local detailed balance condition and reproduce the net currents. Moreover, the average
entropy production as well as the thermodynamic efficiency is invariant under this coarse-graining procedure.
Our analysis reveals that only by assuming unrealistically fast probe particles, the coarse-grained transition rates
coincide with the transition rates of the traditionally used one-particle motor models. Additionally, we find that
for multicyclic motors the stall force can depend on the probe size. We apply this coarse-graining method to
specific case studies of the F1-ATPase and the kinesin motor.

DOI: 10.1103/PhysRevE.91.022709 PACS number(s): 87.16.Nn, 05.40.−a, 05.70.Ln

I. INTRODUCTION

In many single-molecule experiments beads that are at-
tached to molecular motors are used to infer properties of
the motor protein from the analysis of the trajectory of
these probe particles. In particular, external forces can be
exerted on the motor via such a probe particle [1,2]. In
the theoretical analysis of such assays, the motor is usually
modelled as a particle hopping on a discrete state space with
transitions governed by a master equation [3–8]. Alternatively,
the so-called ratchet models combine continuous diffusive
spatial motion with stochastic switching between different
potentials corresponding to different chemical states [9,10].
These approaches often comprise only one particle explicitly,
representing the motor. The contribution of external forces
which in the experiments act on the motor only via the
probe are then included in the transition rates [5,6,11–17]
(or Langevin equation for the spatial coordinate [18,19]) of
the motor particle directly. However, theoretical models that
are used to reproduce the experimental observations should
comprise at least two (coupled) degrees of freedom, one for the
motor and one for the probe particle. Such models consisting
of one degree of freedom hopping on a discrete state space
representing the motor coupled to a continuously moving
degree of freedom representing the probe are discussed in
Refs. [20–27]. While multiparticle models are more precise
and better represent the actual experimental setup, one-particle
models are widely used toy models often applied to illustrate
basic ideas.

Simplifying the description of systems consisting of many
degrees of freedom with a concomitant large state space while
still maintaining important properties is commonly known as
coarse-graining. In the context of stochastic thermodynam-
ics [28], various coarse-graining methods have been applied,
e.g., lumping together states of a discrete state space among
which transitions are fast [29–32], averaging over states for
discrete [33] or continuous processes [32,34], eliminating sin-
gle states from a network description [35–37], or eliminating
slow (invisible) degrees of freedom [38–40]. It was found that,

in general, coarse-graining has implications on the entropy
production and, in particular [41], dissipation. In the context
of biological systems and especially molecular motors, coarse-
graining procedures mostly focus on eliminating selected
states of the motor [37,42] or on reducing continuous (ratchet)
models to discrete-state models [43–47].

In the present paper, we introduce a coarse-graining
procedure that allows us to reduce molecular motor-bead
models to effective one-particle models with discrete motor
states with the external force acting directly on the effective
motor particle. We eliminate the explicit dynamics of the
probe particle completely still maintaining the correct local
detailed balance condition for the effective motor transition
rates and preserving the average currents of the system. As
a main result, we find that the coarse-grained rates show a
more complex force dependence than the usually assumed
exponential behavior and a more complex concentration
dependence than mass action law kinetics.

The paper is organized as follows. In Sec. II, we introduce
our coarse-graining method on the basis of a simple motor-
bead model with only one motor state and apply it to a
model for the F1-ATPase [26]. In Sec. III, we generalize the
procedure to motor models with several internal states and
apply it to both a refined model for the F1-ATPase and to
a kinesin model. A possible experimental implementation of
our method is presented in Sec. IV. We show that entropy
production and efficiency remain invariant under this coarse-
graining procedure in Sec. V, discuss implications on the stall
conditions in Sec. VI, and conclude in Sec. VII.

II. GENERAL ONE-STATE MOTOR MODEL

A. Explicit motor-bead dynamics

The general model for motor proteins with only one
chemical state consists of one degree of freedom representing
the motor which jumps between discrete states n(t) separated
by a distance d. The motor is coupled with the second degree
of freedom representing the probe particle via some kind of
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FIG. 1. (Color online) Schematic representation of a motor-bead
model comprising a one-state motor (small blue sphere) attached via
an elastic linker to the probe particle (large red sphere). An external
force fex is applied to the bead. The transition rates of the motor are
denoted by w+(n,x) and w−(n,x). The load-sharing factors θ+ and
θ− indicate the position of an underlying unresolved potential barrier
relative to the minimum of the free-energy landscape of the motor.

elastic linker, see Fig. 1 [26]. The motion of the probe particle
with continuous coordinate x(t) is described by an overdamped
Langevin equation with friction coefficient γ and constant
external force fex,

ẋ(t) = [−∂xV (n − x) − fex]/γ + ζ (t), (1)

including the potential energy of the linker V (n − x) and ther-
mal noise ζ (t) with correlations 〈ζ (t2)ζ (t1)〉 = 2δ(t2 − t1)/γ .
Throughout the paper, we set kBT = 1. This choice implies
that the product of force fex and distance d appearing in the
figures below is measured in units of kBT . The (instantaneous)
distance between motor and probe is denoted by y. The system
is characterized by the pair of variables (n,x) and is “bipartite”
in these variables since transitions do not happen in both
variables at the same time. The transition rates of the motor
fulfill a local detailed balance (LDB) condition,

w+(y)

w−(y + d)
= exp[�μ − V (y + d) + V (y)]. (2)

The free-energy change of the solvent �μ ≡ μT − μD − μP

with μi = μ
eq
i + ln(ci/c

eq
i ) and nucleotide concentrations ci

is associated with ATP turnover. The probability density p(y)
for the distance y obeys a Fokker-Planck-type equation,

∂tp(y) = ∂y{[∂y V (y) − fex] p(y) + ∂y p(y)}/γ
+ w+(y − d) p(y − d) + w−(y + d) p(y + d)

− [w+(y) + w−(y)] p(y). (3)

For constant nucleotide concentrations, the system reaches a
nonequilibrium stationary state (NESS) with constant average
velocity,

v ≡ d

∫ ∞

−∞
ps(y)[w+(y) − w−(y)] dy

=
∫ ∞

−∞
ps(y)[∂yV (y) − fex]/γ dy, (4)

and stationary distribution ps(y).

B. Coarse-graining procedure

In the coarse-grained description of the model we want to
map the motor-bead system to one effective motor particle
hopping between states separated by d. We thus have to
eliminate the x coordinate from the (n,x) description resulting
in a system characterized only by n.

For the coarse-grained model, we impose the following
conditions. The coarse-grained transition rates �± which
advance the effective particle by d should obey a LDB
condition,

�+

�− = exp[�μ − fexd], (5)

as the force is now assumed to act directly on the effective
motor particle. Furthermore, we require that the coarse-grained
particle moves with the same average velocity in the steady
state as the motor and the probe in the original model, i.e.,

v = d(�+ − �−). (6)

Solving the linear system of Eqs. (5) and (6) yields the coarse-
grained rates

�+ = v exp[�μ − fexd]/d

exp[�μ − fexd] − 1
, (7)

�− = v/d

exp[�μ − fexd] − 1
. (8)

The coarse-grained rates can be interpreted as effective tran-
sition rates that correspond to a transition process after which
both particles, motor and probe, have advanced a distance ±d.
In principle, there are (for any y) many possible displacement
processes to advance both particles by d, including ones with l

forward and l − 1 backward motor jumps. The coarse-grained
rate corresponds to the rate with which one such effective
displacement will happen.

In general, the coarse-grained rates depend (via v) on all
model parameters, including the friction coefficient of the
probe particle and the specific potential of the linker. If one
had chosen coarse-grained rates by just averaging over the
positions of the probe particle, i.e., by

〈w±〉 =
∫ ∞

−∞
ps(y)w±(y) dy, (9)

one would have obtained rates that yield the correct average
velocity but do not fulfill the LDB condition, as discussed in
Sec. II E below.

For a more explicit analysis, we must specify the forward
and backward rates of the motor. We choose [26]

w+(y) = w0 exp[μ+ − V (y + dθ+) + V (y)], (10)

w−(y) = w0 exp[μ− − V (y − dθ−) + V (y)], (11)

where θ+ and θ− are the load-sharing factors with θ+ + θ− =
1 and μ+ = μT , μ− = μD + μP . We assume an exponential
dependence of the transition rates on the potential difference
of the linker according to Kramers’s theory. This exponential
dependence on the potential difference is similar to one-
particle models where the rates of the motor typically depend
exponentially on the external force with a corresponding
load-sharing factor [3,5].
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C. Time-scale separation

In this section, we will investigate under which conditions
the coarse-grained rates (7) and (8) can be expressed using
a single exponential dependence on the external force as
typically assumed for mechanical transitions within one-
particle models [3,5].

Inserting Eqs. (10) and (11) in Eq. (3) in the NESS shows
that the contribution due to motor jumps is weighted with a
(dimensionless) prefactor,

ε ≡ w0 exp
[
μ

eq
T

]
d2γ. (12)

Here w0 exp[μeq
T ] determines the time scale of the transitions of

the motor while γ d2 determines the time scale of the dynamics
of the probe particle. The latter is mainly governed by the size
of the bead and the step size of the motor, whereas w0 exp[μeq

T ]
is determined by the attempt frequency and also by the absolute
nucleotide concentrations.

If the dynamics of the bead is much faster than the
transitions of the motor, time-scale separation holds with
ε → 0 [31,48]. In this limit of fast bead relaxation, denoted
throughout by a caret, the stationary solution of Eq. (3) in the
NESS becomes

p̂s(y) = exp[−V (y) + fexy]/N (13)

with N ≡ ∫ ∞
−∞ exp[−V (y) + fexy]dy. The average velocity

is then given by

v̂ = d

∫ ∞

−∞
p̂s(y)[w+(y) − w−(y)]dy

= dw0(eμT −fexdθ+ − eμD+μP +fexdθ−
). (14)

This expression inserted into Eqs. (7) and (8) yields

�̂+ = w0e
μT −fexdθ+

, (15)

�̂− = w0e
μD+μP +fexdθ−

, (16)

independent of any specific linker potential V (y). Since this
force dependence is purely exponential with the correct load-
sharing factor, these expressions represent exactly the rates
typically used in one-particle models. We notice that within
this approximation �+ = 〈w+(y)〉 and �− = 〈w−(y)〉 holds
true, which is in agreement with other coarse-graining proce-
dures in the time-scale separation limit, e.g., Refs. [31–33].

Note that only transition rates of the motor whose de-
pendence on the linker potential is chosen accordingly in
the Kramers form [Eqs. (10) and (11)] lead generically to
consistent coarse-grained and averaged rates when using the
fast-bead limit of ps(y).

D. Example: F1-ATPase

In general, a strong time-scale separation between motor
and probe is not necessarily realistic. In this case, Eq. (3) must
be solved numerically. We will use the model introduced in
Ref. [26], see Fig. 1, with a harmonic potential V (y) = κy2/2
as a simple example to illustrate our coarse-graining procedure.

In Fig. 2, the results for �+ and �− are shown for various
values of the friction coefficient γ . With decreasing γ , the
rates approach their corresponding fast-bead limits, �̂+ and
�̂−. These values are upper bounds because decreasing γ
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FIG. 2. (Color online) Coarse-grained rates �+ and �− (top) and
average velocity (bottom) as functions of fexd for various friction
coefficients γ in the range 5 s/d2 � γ � 5 × 10−10 s/d2 (from
bottom to top). With decreasing γ , the rates and the velocity approach
the corresponding fast-bead limit (solid black lines). Parameters: κ =
40 d−2, cT = cD = 2 × 10−6 M, cP = 10−3 M, �μ = 19, θ+ = 0.1,
w0 exp[μeq

T ]/ceq
T = 3 × 107 (Ms)−1.

implies smaller probe particles which exert less drag on the
motor. For finite γ , the coarse-grained rates do not show a
single exponential dependence on fex over the whole range
of external forces. Such a dependence, however, is usually
assumed to hold within one-particle models. Moreover, the
coarse-grained rates depend on γ , which is a parameter not
incorporated explicitly in many one-particle models.

The experimentally accessible values of γ cover a wide
range of the values chosen in Fig. 2. A dimer of polystyrene
beads (� 280 nm) as used in Refs. [49–52] corresponds to γ =
0.5 s/d2 [red (dark gray) line with squares] while a 40-nm-gold
particle [52–54] corresponds to γ = 5 × 10−4 s/d2 [yellow
(light gray) line with triangles]. Especially for large external
forces, the coarse-grained rates deviate strongly from their
asymptotic values even for a probe as small as the gold particle.

The average velocity as shown in Fig. 2 also strongly
depends on the friction coefficient of the probe particle, espe-
cially for large external forces. In this regime, for large γ , the
velocity is dominated by the friction experienced by the probe
while for small γ the probe relaxes almost immediately and
the velocity is dominated by the time scale of the motor jumps.

Another option to reach the fast-bead limit is to use very
small nucleotide concentrations. In Fig. 3, we show the coarse-
grained rates for various ATP and ADP concentrations. With
decreasing nucleotide concentration (at fixed �μ), the rates
approach the asymptotic �̂+ and �̂−. However, it is very hard
to do experiments at concentrations smaller than �10−7 M as
jumps of the motor are then very rare.

In Fig. 2 and in Fig. 3 the dependence of the coarse-grained
rates on the external force exhibits two different regimes.
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FIG. 3. (Color online) Coarse-grained rates �+ and �− as func-
tions of fexd for various cT , cD in the range 2 × 10−5 M � cT ,cD �
2 × 10−12 M (from top to bottom). With decreasing cT ,cD , the
rates approach the fast-bead limits �̂+ and �̂− (straight lines).
Parameters: κ = 40 d−2, γ = 0.5 s/d2, cP = 10−3 M, �μ = 19,
θ+ = 0.1, w0 exp[μeq

T ]/ceq
T = 3 × 107 (Ms)−1.

Up to values of the external force of roughly 15/d, the
coarse-grained rates can be well approximated by a single
exponential dependence on fex with the same slope as in the
fast-bead limit, dθ+ or dθ−, respectively. However, for large
γ and large cT , even in this regime, the absolute values of the
coarse-grained rates deviate up to two orders of magnitude
from their fast-bead approximation. For such parameters,
assuming a monoexponential dependence on fex with the
above slope would not be appropriate either.

For large external forces, all coarse-grained rates deviate
significantly from their fast-bead limits. We find again a
monoexponential decay for �+ but now with slope −d,
whereas �− grows only linearly with increasing fex. This so
far unaccounted for behavior can be understood by considering
the limit fex → ∞ as discussed in detail in the appendix. The
crossover from one regime to the other occurs beyond the stall
force fex = �μ/d.

In summary, we find that for the F1-ATPase under real-
istic experimental conditions the rates in a coarse-grained
description comprising only one effective particle that satisfy
the LDB condition Eq. (5) and reproduce the correct average
velocity v cannot be written in the form of a single exponential
dependence on the external force.

E. Comparison of coarse-grained with averaged rates

Instead of defining the coarse-grained rates according to
Eqs. (7) and (8), one might be tempted to use the averaged
rates (9) as a definition for the coarse-grained rates. In Fig. 4,
we show the averaged rates of our F1-ATPase model as well
as their ratio corresponding to the LDB condition. We find
that both 〈w+〉 and 〈w−〉 (for the latter less visible in the
plot) exhibit nonmonotonic dependence on the external force.
For external forces slightly larger than the stall force, 〈w+〉
increases with increasing fex due to the fact that in this region
the system moves backward with motor jumps following the
probe which leads to a peak at small y in ps(y). On the other
hand, 〈w−〉 exhibits a minimum around stall conditions for
large γ since in this region, ps(y) misses a peak at large y � 1.

A severe issue appears regarding the LDB condition. The
corresponding ratio of the averaged rates is also plotted in
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FIG. 4. (Color online) Top: Average rates 〈w+〉 and 〈w−〉 as
functions of fexd for various γ in the range 5 s/d2 � γ � 5 ×
10−9 s/d2. With decreasing γ , the rates approach �̂+, �̂− (solid
black lines). Bottom: Ratio of + and − rates. In contrast to �+,
�− (large red dots), the averaged motor rates do not fulfill the LDB
condition (solid black line). The parameters are the same as in Fig. 2.

Fig. 4 where it can be clearly seen that the LDB condition is
not fulfilled (except in the fast-bead limit).

F. Without external force

Even though we have motivated this paper by emphasizing
that external forces are typically applied to probe particles, it
should be obvious that our approach holds true for molecular
motors transporting cargo subject to Stokes friction in the
absence of external forces.

For one-particle models, the friction coefficient of the probe
cannot be taken into account explicitly. One rather has to
incorporate the drag effect of the bead into the motor rates [46].
If one wants to analyze experimental data obtained from probe
particles of different sizes, one then has to use different values
of the motor rates for each data set.

For the rather dilute solutions used in experiments in
Refs. [49,51,55] one generally assumes that the motor dynam-
ics is subject to mass action law kinetics, i.e., that the transition
rates depend linearly on the corresponding concentration of
nucleotides. Obviously, this linear dependence holds for all
concentrations and beads of all sizes for one-particle models.
When keeping cD and cP fixed, the average velocity of a
one-state motor will show a purely linear dependence on cT .

The experimental analysis of the average velocity of the
F1-ATPase as function of cT (for fixed cD , cP ) reveals a
saturation of the velocity for large ATP concentrations which
sets in earlier for large beads [53]. While such a saturation is
usually attributed to the hydrolysis step, we find that a sublinear
dependence of the velocity can also be caused by the drag of
the probe particle.
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FIG. 5. (Color online) Coarse-grained rates �+ and �− (top) and
average velocity (bottom) for various γ and fex = 0 as functions
of cT . Since cD and cP are fixed, �μ also increases with cT . The
rates and the velocity approach the fast-bead approximation (solid
black lines). Parameters: cD = 2 × 10−6 M, cP = 1 × 10−3 M, κ =
40 d−2, θ+ = 0.1, w0 exp[μeq

T ]/ceq
T = 3 × 107 (Ms)−1, γ in the range

5 s/d2 � γ � 5 × 10−9 s/d2 (from bottom to top).

In Fig. 5, the coarse-grained rates as well as the velocity are
shown as a function of the ATP concentration. With decreasing
γ , the coarse-grained rates approach the fast-bead limit and
the mass action law kinetics. The velocity is then linear in
cT as in a one-particle model. For large γ , eliminating the
cargo by coarse-graining yields coarse-grained rates that are
not linear in the concentrations although the motor rates are
still subject to mass action law kinetics. Moreover, the velocity
then exhibits a sublinear dependence reminiscent of the typical
saturation effect for large cT .

G. Comparison of full and coarse-grained trajectories

Trajectories of motor and probe generated by a simulation
of the complete model of the F1-ATPase are shown in Fig. 6.
Additionally, Fig. 6 contains a trajectory obtained from sim-
ulating the corresponding coarse-grained model. The average
velocity of both models is the same [by definition, see Eq. (6)],
whereas the coarse-grained model produces trajectories that
are “more random.” This behavior occurs since the coarse-
grained rates are constant (for fixed parameters) and produce a
simple biased random walk. The motor transition rates of the
complete model, however, depend on the actual position of the
probe and are therefore implicitly time dependent. Since fast
successive motor jumps are suppressed, the trajectory of the
complete model is less random [21,56].

The influence of parameters like the probe size or the ATP
concentration on the dynamics is visible in the bottom panels
of Fig. 6. While the average velocity is almost the same,
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FIG. 6. (Color online) Trajectories of the one-state model for the
F1-ATPase for several parameter sets obtained from simulations.
The trajectory of the detailed model (motor: steplike blue lines;
probe: fluctuating red lines) is shown together with a trajectory of
its corresponding coarse-grained model [green (light gray)]. Parame-
ters: κ = 40 d−2, θ+ = 0.1, w0 exp[μeq

T ]/ceq
T = 3 × 107 (Ms)−1, γ =

0.5 s/d2, fex = 0, cT = cD = 2 × 10−6 M, cP = 0.001 M (top left);
γ = 0.5 s/d2, fex = 40 d−1, cT = cD = 2 × 10−6 M, cP = 0.001
M (top right); γ = 0.005 s/d2, fex = 0, cT = cD = 2 × 10−6 M,
cP = 0.001 M (bottom left); γ = 0.5 s/d2, fex = 0, cT = 0.001 M,
cD = 2 × 10−6 M, cP = 0.001 M (bottom right).

the trajectories of the complete model differ significantly.
Using a small probe with a small friction coefficient, the
probe relaxes to the potential minimum of the linker before
the next motor jump occurs, whereas the large probe cannot
relax [25]. Large ATP concentrations induce many forward
and successive backward motor jumps that are absent at lower
ATP concentrations. These details are not captured in the
coarse-grained trajectories.

III. MOTOR MODELS WITH SEVERAL
INTERNAL STATES

A. Explicit motor-bead dynamics and coarse-graining
procedure

In this section, we will generalize the model taking into
account several different internal states of the motor labeled
by i. The motor states represent the nodes and the transitions
the edges of a network. Transitions between the motor states i

and j change the free energy by

�Fα
ij ≡ Fj − Fi − �μα

ij , (17)

where Fj − Fi is the free-energy difference of the internal
states of the motor and �μα

ij = −�μα
ji is the free-energy

change of the solvent. Depending on the transition, �μα
ij

is given by μT , μD , μP or any combination thereof or 0.
Transitions may also advance the motor a distance dα

ij = −dα
ji .
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FIG. 7. (Color online) Network representation of a motor-bead
model with four internal motor states and discretized state space
of the probe particle (left). Each row of black dots represents one
motor state while the dots themselves represent specific distances y

accessible to the probe particle (via the vertical red lines) within the
same motor state. Transitions between motor states either leave y

the same (horizontal green lines) or can advance the motor by dα
ij

and change y (diagonal blue lines). The top view of this network
corresponds to the coarse-grained version of this model (right).

Since we allow for several transitions connecting two states,
we assign an additional index α to the transitions indicating
which link between i and j is used. An example for the network
of a full system comprising motor and probe particle is shown
in Fig. 7, where the state space of the probe is discretized for
better presentation.

The Fokker-Planck-type equation for such models is given
by

∂tpi(y) = ∂y{[∂y V (y) − fex]pi(y) + ∂ypi(y)}/γ
+

∑
j,α

[
wα

ji

(
y + dα

ij

)
pj

(
y + dα

ij

) − wα
ij (y)pi(y)

]

(18)

with transition rates of the motor that obey a LDB condition

wα
ij (y)

wα
ji

(
y + dα

ij

) = exp
[−�Fα

ij − V
(
y + dα

ij

) + V (y)
]
. (19)

The coarse-grained version of such a model should take
into account the different states of the motor as well as the
several possible α transitions between i and j . Thus, the motor
network (including all motor cycles) should be conserved
under coarse-graining. To account for the several internal
states, we require that the coarse-grained rates should obey a
LDB condition and the operational current [57] from motor
state i to motor state j via edge α should be conserved.
The operational current is the sum over all y-dependent
net transition currents that contribute to the transition i →
j . Conserving the operational currents corresponds to the
condition of reproducing the correct mean velocity for the

one-state model. The above conditions read

�α
ij

�α
ji

= exp
[−�Fα

ij − fexd
α
ij

]
(20)

and

Pi�
α
ij − Pj�

α
ji = jα

ij (21)

with the operational current

jα
ij ≡

∫ ∞

−∞

[
pi(y)wα

ij (y) − pj

(
y + dα

ij

)
wα

ji

(
y + dα

ij

)]
dy

= −jα
ji (22)

and the marginal distribution

Pi =
∫ ∞

−∞
pi(y) dy. (23)

These equations can be solved for �α
ij and �α

ji using simple
algebra which yields the rates

�α
ij = jα

ij

exp
[−�Fα

ij − fexd
α
ij

]
Pi exp

[−�Fα
ij − fexd

α
ij

] − Pj

, (24)

�α
ji = jα

ij

1

Pi exp
[−�Fα

ij − fexd
α
ij

] − Pj

. (25)

In principle, it is sufficient to use only Eq. (24), since �α
ji takes

exactly this form with jα
ij = −jα

ji ,�Fα
ij = −�Fα

ji , and dα
ij =

−dα
ji . This equivalent procedure would be more symmetric

and treat all transition rates on an equal footing but the LDB
condition is then less obvious. Note that without the LDB
condition (20), the stated conditions of Pi and jα

ij would also
be compatible with coarse-grained rates like the ones in, e.g.,
Refs. [31,33].

Transitions whose rates are independent of the linker
elongation y and hence have dα

ij = 0 retrieve their original rate
constants through this coarse-graining procedure. For such a
transition, jα

ij is given by

jα
ij = Piw

α
ij − Pjw

α
ji (26)

with rates fulfilling the LDB condition wα
ij /w

α
ji =

exp[−�Fα
ij ]. Inserting jα

ij into Eqs. (24) and (25) and using
the LDB condition and dα

ij = 0 immediately yields

�α
ij = wα

ij , �α
ji = wα

ji . (27)

Transitions with rates depending on y but with dα
ij = 0 have

coarse-grained rates that depend on fex only implicitly via jα
ij

and Pi,j as will be discussed in Sec. III D for the chemical
transition rates of kinesin.

The rates determined from the LDB condition Eq. (20), the
populations Pi , and the operational currents are algebraically
consistent with the fact that a full set of rates �α

ij will uniquely
determine the populations Pi on the coarse-grained network.
Consistency can be seen by integrating the Fokker-Planck
equation (18) over y, yielding the coarse-grained master
equation

∂tPi =
∑
j,α

jα
ji =

∑
j,α

Pj�
α
ji − Pi�

α
ij , (28)
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whose stationary solution in the NESS can be expressed as
a function of the rates �α

ij [57,58]. Thus, the expression of
any current observable in terms of the operational currents is
consistent with its expression in terms of cycle currents on the
coarse-grained network.

B. Time-scale separation

Similarly to the one-state model, we explore the con-
sequences of a putative time-scale separation between the
dynamics of motor and probe for each motor transition. In
the limit γ → 0 (formally equivalent to ε → 0 but here one
would have several εij within the Fokker-Planck equation and
all go to 0) the solution of Eq. (18) in the NESS becomes,
analogously to Refs. [29,32],

p̂s
i (y) = P̂i exp[−V (y) + fexy]/N . (29)

The marginal distribution can be obtained using Eq. (18) with
its solution for fast bead relaxation,

∂t P̂i =
∫ ∞

−∞
∂t p̂

s
i (y) dy

=
∑
j,α

(
P̂j

〈
wα

ji

〉
y
− P̂i

〈
wα

ij

〉
y

) =
∑
j,α

ĵ α
ji = 0. (30)

For Kramers-type transition rates like Eqs. (10) and (11),

wα
ij (y) = kα

ij exp
[
μ

α,+
ij − V

(
y + dα

ij θ
α,+
ij

) + V (y)
]
, (31)

wα
ji(y) = kα

ji exp
[
μ

α,−
ij − V

(
y − dα

ij θ
α,−
ij

) + V (y)
]
, (32)

with μ
α,+
ij − μ

α,−
ij = �μα

ij and kα
ij /kα

ji = exp[−Fj + Fi], the
y-averaged rates 〈wα

ij 〉y and 〈wα
ji〉y become

〈
wα

ij

〉
y

= kα
ij exp

[
μ

α,+
ij − fexd

α
ij θ

α,+
ij

]
, (33)〈

wα
ji

〉
y

= kα
ji exp

[
μ

α,−
ij + fexd

α
ij θ

α,−
ij

]
. (34)

The change of chemical free energy �μα
ij is split into μ

α,+
ij

and μ
α,−
ij , indicating that both directions of the transition

can involve binding and release of the chemical species
that account for �μα

ij . The free-energy change arising from
changing the motor state, Fj − Fi , is incorporated in the
attempt frequencies kα

ij of the corresponding states. Inserting
the operational current in the form of Eq. (30) with these
averaged rates, simple calculus shows that the coarse-grained
rates (24) and (25) reduce to

�̂α
ij = kα

ij exp
[
μ

α,+
ij − fexd

α
ij θ

α,+
ij

]
, (35)

�̂α
ji = kα

ji exp
[
μ

α,−
ij + fexd

α
ij θ

α,−
ij

]
, (36)

which is again consistent with transition rates of one-particle
models that assume a purely exponential dependence on the
external force.

C. Example: F1-ATPase with intermediate step

1. With external force

The 120◦ step of the F1-ATPase is known to consist of
a 90◦ and a 30◦ substep [53]. Such a stepping behavior can
be modelled with a unicyclic motor with two internal states.
A schematic representation of a system comprising a probe

FIG. 8. (Color online) Schematic representation of a motor-bead
model for the F1-ATPase with two internal states of the motor, 1
[blue (dark gray)] and 2 [pale green (light gray)]. Transition between
states 1 to 2 corresponding to the 90◦ (30◦) substep are labeled with
superscript 90 (30). The transition rates are chosen accordingly from
Eqs. (31) and (32).

particle and a motor with two internal states is shown in Fig. 8.
The two different pathways for transitions between the states 1
and 2 correspond to the 90◦ and 30◦ substeps of the F1-ATPase,
respectively.

Like in Sec. II D for the one-state model, we examine the
coarse-grained rates for the 90◦ and 30◦ steps and the velocity
which are shown in Fig. 9. Similarly to the 120◦ scenario, the
rates approach their fast-bead limit with decreasing γ .

As in the one-step model, the dependence of the coarse-
grained rates on the external force shows two regimes. For
small external forces, the rates can be well approximated by
a single exponential dependence on fex with slope ±dα

ij θ
α,±
ij

in most cases. For large probe particles, however, the rates
neither match the absolute value nor show monoexponential
dependence on fex with the above slope. For large forces, the
forward rates decay faster, whereas the backward rates grow
more slowly than in the fast-bead limit.

Concerning the average velocity, strong deviations from the
fast-bead limit occur only for the largest friction coefficients.
Using small beads, the force-velocity relation resulting from
our coarse-graining procedure coincides well with the one
obtained from a one-particle model due to the fact that the
velocity involves only differences of the rates multiplied with
the marginal distribution rather than the rates themselves. For
large external forces and small γ , the velocity is significantly
smaller than in the one-state model since the motor has to take
two successive steps to cover the full d. The force-velocity
relations for the two-state as well as for the one-state model
reproduce very well the experimentally determined force-
velocity relation from Ref. [51] for the corresponding value of
the friction coefficient γ .

The limiting cases fex → ±∞ are more involved here
than in the one-state model since one has to account for the
dependence of the Pi’s on the external force. However, as long
as the Pj ’s do not decay faster than exp[−fexd

α
ij ], it is still

possible to approximate the rates (24) and (25) by

�α
ij ≈ −jα

ij exp
[−�Fα

ij − fexd
α
ij

]/
Pj , (37)

�α
ji ≈ −jα

ij

/
Pj , (38)

since Pi is bounded by 1.
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FIG. 9. (Color online) Coarse-grained rates for the 90◦ (top) and
the 30◦ (center) substep and average velocity (bottom) as functions
of fexd for various γ in the range 5s/d2 � γ � 5 × 10−10 s/d2

(from bottom to top). With decreasing γ , the rates and the velocity
approach their corresponding fast-bead limit (solid black lines).
Parameters: κ = 40 d−2, cT = cD = 2 × 10−6 M, cP = 10−3 M,
θ+

90,30 = 0.1, k90
12 exp[μeq

T ]/ceq
T = 3 × 107 (Ms)−1, k90

21 exp[μeq
D ]/ceq

D =
3667.5 (Ms)−1, k30

21 = 1000 s−1, k30
12 exp[μeq

P ]/ceq
P = 40 (Ms)−1. The

attempt frequencies are chosen on the basis of Refs. [53,54] where
very small probe particles have been used.

For the F1-ATPase model, the numerical analysis in the
fex → ∞ limit yields a linear dependence of 〈y〉 and jα

ij on fex.
We also find that P2 decays exponentially while P1 approaches
1. Hence, �90

12 and �30
21 decay exponentially with slope −d90

12 =
−0.75d and −d30

21 = −0.25d, respectively, like in the one-
state model but �90

21 now grows exponentially with a smaller
exponent while �30

12 still grows linearly.

2. Without external force

Just as for the one-state model, we examine the dependence
of the coarse-grained rates on the ATP concentration in the
absence of external forces.

Figure 10 shows the coarse-grained rates for the 90◦
and the 30◦ substeps as well as the average velocity. With
decreasing γ , the coarse-grained rates approach the mass
action law kinetics for the corresponding one-particle rates.
In contrast to the one-state model, even in this limit, the

10−5
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10−8 10−6 10−4 10−2 100
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10−8 10−6 10−4 10−2 100
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10−2

10−1

10−8 10−6 10−4 10−2 100

100

105

10−8 10−6 10−4 10−2 100

10−2
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10−8 10−6 10−4 10−2 100

FIG. 10. (Color online) Coarse-grained rates for the 90◦ (top) and
the 30◦ (center) substep and average velocity (bottom) for various γ

and fex = 0 as functions of cT . Since cD and cP are fixed, �μ also
increases with cT . The rates and the velocity approach the fast-bead
approximation (solid black lines). Parameters: cD = 2 × 10−6 M,
cP = 1 × 10−3 M, κ = 40 d−2, θ+

90,30 = 0.1, γ in the range 5 s/d2 �
γ � 5 × 10−10 s/d2 (from bottom to top).

velocity shows saturation. This is due to the fact that
the time scale of the hydrolysis reaction is independent
of the ATP concentration and represents the limiting effect
for the velocity. The dependence of the average velocity on
the ATP concentration is reminiscent of a Michaelis-Menten
kinetics and coincides well with experimental results for
several different probe particles as shown in Ref. [53].

For large beads, the coarse-graining process yields rates that
are no longer linear in the corresponding concentrations. In this
regime, the sublinear dependence of the velocity on the ATP
concentration appears already for smaller ATP concentrations.
Comparing the velocity curves of the two-state model with the
one-state model, we find that for large beads the velocity curves
almost coincide since in this regime the limiting effect for the
velocity is the friction experienced by the bead. Thus, using
large probe particles, it is not possible to infer the underlying
motor dynamics from the characteristics of the velocity as a
function of the ATP concentration [25].
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FIG. 11. (Color online) Coarse-grained forward rates for vari-
ous γ = 2.1 s/d2, 0.26 s/d2, 0.14 s/d2, 0.017 s/d2, 0.003 s/d2,
0.001 s/d2, 3.8 × 10−4 s/d2 (from bottom to top) for the parameter
sets I: cT = 430 nM, cP = 1 nM; II: cT = 1 mM, cP = 1 nM; III:
cT = 1 mM, cP = 200 mM as used in [52]. Parameters that are
the same for all sets I–III: cD = 1 nM, κ = 40 d−2, θ+

90,30 = 0.1
and the attempt frequencies kα

ij as given in Fig. 9. The values of
cD = cP = 1 nM are a rough estimate because there is no information
about these concentrations in Ref. [52].

Figure 11 shows the coarse-grained forward rates for three
different nucleotide concentrations and for various γ chosen
as in the experiment [52]. We find that the 90◦ rate depends
only weakly on γ for small ATP concentrations which is
reminiscent of the experimental observation that the ATP
binding rate to the motor depends only weakly on the size
of the probe [52]. However, for large ATP concentrations that
were not investigated in the experiment, the 90◦ rate shows a
strong dependence on γ . This is due to the fact that for small
ATP concentrations the relaxation times of all probe particles
are in the order of, or even faster than, the motor jump rates. The
results for the 30◦ rate are consistent with experimental results
for the hydrolysis rate [52]. Increasing cP decreases the Pi

release rate in the experiment as it decreases the 30◦ rate here.

D. Example: Kinesin

As a final more complex example, we apply our coarse-
graining method to a model with a multistate motor. We choose
the well-studied six-state-model representing a kinesin motor
introduced in Ref. [5], see Fig. 12. Implementing the probe par-
ticle and an elastic linker V (y), we adopt the transition rates of
the motor from [5] and replace the dependence on the external
force by the dependence on the elongation of the linker,

w+
25(y) = k25 exp[−V (y + dθ+) + V (y)], (39)

w−
52(y) = k52 exp[−V (y − dθ−) + V (y)], (40)

w+
ij,chem = kij

2 exp[μ+
ij ]

1 + exp[∂yV (y)χij ]
, (41)

w−
ji,chem = kji

2 exp[μ−
ij ]

1 + exp[∂yV (y)χij ]
. (42)

The first two rates belong to the mechanical transition, the
lower two rates represent the chemical transitions which
depend on the instantaneous force exerted by the linker with
a chemical load-sharing factor χij , see Ref. [5]. The change

FIG. 12. (Color online) Six-state-model representing a kinesin
motor adapted from Ref. [5]. The transition between states 2 and
5 is purely mechanical and corresponds to a step of length d whereas
all other transitions are pure chemical transitions. The motor model
includes three cycles: F , which, in the + direction, includes ATP
hydrolysis and forward stepping; B, which includes ATP hydrolysis
and backward stepping in its + direction; and a pure chemical cycle
(around the circle) that includes hydrolysis or synthesis of two ATP.

of chemical free energy μ±
ij = μT ,μD,μP depends on which

transition involves binding of the corresponding nucleotide.
We choose again V (y) = κy2/2.

The coarse-grained rates for the mechanical transition are
shown in Fig. 13. With decreasing γ , the rates approach
their fast-bead limit which corresponds to the rates used in
Ref. [5] while strong deviations occur for finite γ especially
for assisting external forces. The friction coefficient of a probe
of size 500 nm as in Ref. [55] can be calculated using Stokes’s
law yielding γ � 7.7 × 10−5 d2/s. For friction coefficients
in this range [light green (light gray) line with triangles],
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104
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1010
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FIG. 13. (Color online) Coarse-grained rates for the mechanical
transitions (with y dependence) for various γ in the range
0.077 s/d2 � γ � 7.7 × 10−10 s/d2 (from bottom to top). The rates
approach the one-particle rates from Ref. [5] (solid black lines).
Parameters: κ = 10 d−2 [55], cT = 0.001 M, cD = cP = 10−9 M
(estimated), θ+ = 0.65, χij = 0.25,0.15, k12 exp[μeq

T ]/ceq
T =

k45 exp[μeq
T ]/ceq

T = 2 × 106 (Ms)−1, k21 = k23 = k34 = k56 = k61 =
100 (s)−1, k32 exp[μeq

D ]/ceq
D = k65 exp[μeq

D ]/ceq
D = 2 × 104 (Ms)−1,

k43 exp[μeq
P ]/ceq

P = k16 exp[μeq
P ]/ceq

P = 2 × 104 (Ms)−1, k25 = 3 ×
105 (s)−1, k52 = 0.24 (s)−1, k54 = (k52/k25)2k21.
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FIG. 14. (Color online) Left: Average velocity for the model with
probe particle (colored lines with symbols) an the one-particle model
from Ref. [5] (solid black line). Right: Coarse-grained rates for
chemical transitions (with y dependence) for γ = 0.077 s/d2. Other
parameters as given in Fig. 13.

our coarse-grained rates show a distinct deviation from the
one-particle rates (solid black lines). However, the average
velocity (obtained from our coarse-grained rates) as function
of the external force coincides very well for almost all γ with
the velocity curve obtained from the bare motor model, see
Fig. 14. Like for the F1-ATPase model discussed in Sec. III C,
this agreement is due to the fact that the velocity involves
only the difference of the rates multiplied with the marginal
distribution. If one investigates only force-velocity curves,
the discrepancies between the coarse-grained rates and the
one-particle rates are hardly visible.

In contrast to the coarse-grained rates of the F1-ATPase
models, the coarse-grained rates for the mechanical transition
of the kinesin model show more structure especially for
negative, i.e., assisting external forces. Since the kinesin
model contains several internal motor cycles, depending
on the external force the dominant cycle can change,
leading to crossover regimes with changing weight of the
probabilities Pi .

The dependence of the coarse-grained rates for chemical
transitions on the external force is visible in Fig. 14. Although
there is no explicit dependence on external forces for pure
chemical rates since dα

ij = 0, jα
ij and Pi depend on fex via

y. The operational current for transitions within the F cycle
in + direction decreases with increasing fex, whereas the
operational currents within the B cycle in + direction slightly
increase with fex, which can be explained intuitively since the
motor prefers “backward” cycles for large opposing forces.
However, all coarse-grained rates decrease with increasing fex,
similarly to the bare motor rates (41) and (42) which decrease
with larger y, a situation that is more likely to appear for large
external forces.

IV. EXPERIMENTAL IMPLEMENTATION

In order to practically apply the coarse-grained descrip-
tion, one has to determine the marginal distributions Pi ,
the operational currents jα

ij , and the free-energy differences
�Fα

ij . For multistate motors, this is a rather challenging task
since only a few quantities can be extracted reliably from
the experimentally measured trajectory of the probe. Note,
however, that this problem does not happen exclusively in our

approach but is inevitable whatever method is used to infer
motor properties from such trajectories.

In the following, using the 90-30 model for the F1-ATPase,
we will illustrate how these quantities can be estimated.
If all motor transitions involve mechanical transitions with
different step sizes, the plateaus in the probe trajectory can
be assigned to specific corresponding motor states. Since after
a large-enough time interval all possible transitions will have
occurred, one is also able to reconstruct the links connecting
the states. The marginal distributions Pi are then given as
the fraction of time that the corresponding motor state is
occupied. For the two-state model of the F1-ATPase, we assign
plateaus in the probe trajectory that are followed by a fast
90◦ forward or 30◦ backward displacement to motor state
i = 1 and plateaus that are followed by fast 90◦ backward
or 30◦ forward displacement to i = 2. In principle, there
are several possibilities to reconstruct hidden variables from
partially visible trajectories [59–61]. Here we will use a simple
algorithm which sets i = 2 if four consecutive data points
are within a specific range around 90◦ and otherwise i = 1.
The marginal distributions P1, P2 are then represented by the
fraction of data points with assigned i = 1,2.

If the motor is not very complex, the operational currents
jα
ij can be obtained rather easily since they are precisely the net

currents between two motor states. For unicyclic motors, all
operational currents are equal to the average velocity divided
by d, the operational current of an ATP binding transition is
the net disappearance rate of ATP in the solution (given that
there are no other ATP binding reactions), and so on. If all
motor transitions involve mechanical transitions with different
step sizes, the operational currents between any two states can
be obtained by counting the number of transitions of a specific
step size from i → j , nα

ij , and j → i, nα
ji . The (time) average

of this current using one long trajectory of length ttot is then
given by

jα
ij = (

nα
ij − nα

ji

)/
ttot. (43)

In our example, in order to estimate j 90
12 we have to count

the number of sudden displacements of “size” 90◦ either from
the trajectory of the probe directly or from the reconstructed
trajectory of the motor using the assignment rule mentioned
above. If the time resolution of the trajectory is very coarse or
if the reconstruction method is rather inaccurate, jumps that
consist of fast consecutive 90 and 30 jumps with apparent
step size 120◦ will appear which have to be included in the
number of 90◦ (and also 30◦) jumps. Figure 15 shows a
reconstructed motor trajectory obtained with the algorithm
mentioned above. We have used a trajectory of the probe
from our simulations as “experimental data.” Compared to
the original motor trajectory, this reconstruction captures
the average dynamics quite well. Large fluctuations of the
probe can generate additional apparent motor jumps in the
reconstructed trajectory that are absent in the original one.

Finally, the estimation of the free-energy difference �Fα
ij =

Fj − Fi − �μα
ij is slightly more involved. In equilibrium

(�μ = 0, fex = 0), detailed balance holds,

wα
ij (y)

wα
ji

(
y + dα

ij

) = p
eq
j

(
y + dα

ij

)
p

eq
i (y)

, (44)
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FIG. 15. (Color online) Comparison of the simulated trajectory
of motor and probe with a trajectory of the probe and the estimated
motor position that was reconstructed using the simulated trajectory
of the probe. The trajectories are shifted for better visibility.
Parameters: κ = 40 d−2, γ = 0.005 s/d2, cT = cD = 2 × 10−6 M,
cP = 10−3 M, c

eq
T = 3.33 × 10−7 M, c

eq
D = 0.0682 M, c

eq
P = 1 M,

fex = 0, lower boundary to set i = 2: x − 
x� = 0.375d , upper
boundary to set i = 2: x − 
x� = 0.89d .

with the Boltzmann distribution p
eq
i (y)=P

eq
i exp[−V (y)]/

N . Inserting this expression yields

P
eq
j

/
P

eq
i = exp

[−Fj + Fi + �μ
α,eq
ij

] ≡ exp
[−�Fα

ij

]
(45)

for the marginal distributions in equilibrium. Note that
�μ

α,eq
ij �= 0 if the corresponding transition comprises only

binding or release of nucleotides. Thus, the equilibrium
free-energy difference �Fα

ij (which explicitly depends on the
equilibrium concentrations) can be obtained from the ratio of
the marginal distributions under equilibrium conditions. Using
μi = μ

eq
i + ln(ci/c

eq
i ), we find that

�Fα
ij = �Fα

ij ±
∑

k

ln
ck

c
eq
k

(46)

with k = T ,D,P and the sign depending on which binding or
release event corresponds to the transition ij,α [62]. Hence,
the free-energy difference �Fα

ij needed for the coarse-grained
rates can be expressed by the equilibrium free-energy differ-
ence �Fα

ij obtained from experimental data at equilibrium
conditions and the nucleotide concentrations with respect to
the equilibrium concentrations corresponding to the conditions
used to obtain �Fα

ij . For the 90-30 model, we have P
eq
2 /P

eq
1 =

exp[−�F90
12 ] = exp[−�F30

12 ] with −�F90
12 = −F2 + F1 +

μ
eq
T − μ

eq
D = −F2 + F1 + μ

eq
P = −�F30

12 since �μ = 0 in
equilibrium.

Once these quantities have been estimated, there are no
additional fit parameters needed or left. All concentrations
as well as the external force are usually known from the
experimental setup. To obtain the coarse-grained rates from
the probe trajectory of our 90-30 model, we then proceed
as follows. First, we choose equilibrium conditions and
obtain �F12 from the ratio of marginal distributions. Then
we change to nonequilibrium concentrations and estimate
P1, P2 and the operational current j 90

12 . The coarse-grained
rates, according to Eqs. (24) and (25), are then given

TABLE I. Comparison of the coarse-grained rates and other
relevant quantities obtained from the simulation of the full model
with the ones estimated using the reconstructed motor trajectory. The
trajectory used to obtain these values is shown in Fig. 15.

Simulation Estimate

P1 0.944 0.952

P2 0.056 0.048

j 90
12 (1/s) 52.292 52.246

�F12 3.216 3.140

�90
12 (1/s) 55.325 54.899

�90
21 (1/s) 0.006 76 0.006 20

�30
21 (1/s) 937.1 1082.37

�30
12 (1/s) 0.037 0.046

by

�90
12 = j 90

12

cT c
eq
D exp

[−�F12 − fexd
90
12

]/(
c

eq
T cD

)
P1cT c

eq
D exp

[−�F12 − fexd
90
12

]/(
c

eq
T cD

) − P2
,

(47)

�90
21 = j 90

12
1

P1cT c
eq
D exp

[−�F12 − fexd
90
12

]/(
c

eq
T cD

) − P2
,

(48)

�30
21 = j 90

12

c
eq
P exp

[
�F12 − fexd

30
21

]/
cP

P2c
eq
P exp

[
�F12 − fexd

30
21

]/
cP − P1

, (49)

�30
12 = j 90

12
1

P2c
eq
P exp

[
�F12 − fexd

30
21

]/
cP − P1

. (50)

A comparison of the coarse-grained rates and related quantities
obtained from the full theoretical model and from the recon-
structed one estimated using the probe trajectory is shown in
Table I. We find quite good agreement between the original
and the reconstructed quantities with a maximum error of 14%
except for the �30

ij rates which have a maximum error of 24%.
The 90-30 model thus provides a useful demonstration of

the experimental applicability of the coarse-graining method
showing that it is possible to estimate the coarse-grained rates
from experimental accessible data if the underlying motor
network is not too complex. Considering the simplicity of the
applied reconstruction method, the accuracy of the estimates
is rather encouraging.

V. INVARIANCE OF ENTROPY PRODUCTION
AND EFFICIENCY

An important question for any coarse-graining method
concerns its effect on entropy production. In general, a coarse-
grained description without imposed time-scale separation or
detailed balance for the eliminated variables often underesti-
mates the entropy production of the system [29–32,40]. In this
section, we show that for the type of models considered here,
our coarse-graining method conserves the entropy production
even if there is no time-scale separation between the eliminated
and remaining degree of freedom.
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Since transitions can be uniquely attributed to motor or
probe particle, the total entropy production of the system [28]
can be split in two parts, analogously to bipartite or partially
masked systems [63,64],

Ṡtot =
∑

i

∫ ∞

−∞

γ jx
i

2(y)

pi(y)
dy

+
∑
i,j,α

∫ ∞

−∞
pi(y)wα

ij (y) ln
pi(y)wα

ij (y)

pj

(
y + dα

ij

)
wα

ji

(
y + dα

ij

)dy

≡ Ṡ
p
tot + Ṡm

tot, (51)

where jx
i (y) = {[∂yV (y) − fex]pi(y) + ∂ypi(y)}/γ is the cur-

rent due to the motion of only the bead for fixed i. Obviously,
both Ṡ

p
tot and Ṡm

tot are non-negative.
The total entropy production (51) can be calculated using

the LDB condition (19) as

Ṡtot =
∑

i

∫ ∞

−∞
[∂yV (y) − fex]jx

i (y)dy

+
∑
i,j,α

∫ ∞

−∞
pi(y)wα

ij (y)
[
�μα

ij − Fj + Fi

− V
(
y + dα

ij

) + V (y)
]
dy

=
∑
i<j,α

�μα
ij j

α
ij − fexv � 0. (52)

Using partial integration, it can be easily seen that the parts
involving V (y) cancel, i.e., the energy of the linker is constant
on average. The total entropy production is then given by the
chemical free-energy consumption that is not transformed into
mechanical power.

For the coarse-grained description, the total entropy pro-
duction contains only contributions from the effective jump
process,

Ṡ
cg
tot =

∑
i,j,α

Pi�
α
ij ln

Pi�
α
ij

Pj�
α
ji

=
∑
i,j,α

Pi�
α
ij ln

�α
ij

�α
ji

. (53)

Using the LDB condition for the coarse-grained rates (20) and
the condition on the operational current (21) yields

Ṡ
cg
tot =

∑
i<j,α

�μα
ij j

α
ij − fexv, (54)

which is precisely (52). For these models for which the state
space of the eliminated degree of freedom does not contain
entropy producing internal cycles, the average total entropy
production in the NESS remains invariant under our coarse-
graining procedure.

It is also instructive to apply the entropy-splitting scheme
introduced in Ref. [31] to our coarse-graining procedure. In
Ref. [31], it was shown that the total entropy production can be
written as a sum of the coarse-grained entropy production (53)
plus a contribution of the microstates corresponding to a
mesostate (which are eliminated during coarse-graining) plus
a contribution due to the fact that jumps between mesostates
can occur involving different microstates. In our framework,
the total entropy production is already recovered by the coarse-
grained entropy production. The two additional contributions

which correspond to the total entropy production of the probe
particle and the average total entropy production of the motor
minus the coarse-grained entropy production cancel each
other.

We finally show that our coarse-graining procedure also
preserves the energy transduction, or thermodynamic, effi-
ciency ηT defined as the ratio of the extractable power Ẇout

and the rate of chemical energy input �̇μ [65],

ηT ≡ Ẇout

�̇μ
. (55)

For the systems we have studied so far, as long as the external
force is smaller than the stall force, the power output is given
by Ẇout = fexv and the power input by

∑
i<j,α �μα

ij j
α
ij , which

leads to the efficiency

ηT = fexv∑
i<j,α �μα

ij j
α
ij

, (56)

which is the same in the coarse-grained description since v,
jα
ij , and �μα

ij are conserved.
For motor models with tight coupling or multistate models

with a single motor cycle, the rate of chemical energy input
equals the velocity �̇μ = v�μ/d and the efficiency reduces
to ηT = fex/�μ. In general, however, any idle cycles of the
motor increases the rate of chemical input over the velocity
and therefore reduces the efficiency.

VI. STALL FORCE AND RATE ANOMALY

Coarse-graining multicyclic motor models as developed
here reveals a remarkable feature concerning the stall force
with significant implications on the interpretation of experi-
mental data. For an example, consider the kinesin motor for
the parameters chosen in Fig. 13. Figure 16 shows that the stall
force is a function of the size of the attached probe particle.
Generally speaking, the stall force can indeed depend on the
size of the probe since the network of the full system comprises
more cycles than the coarse-grained or bare motor network,
see Fig. 7. Varying the size of the probe, the relative weight of
the cycles in the full system and hence their contribution to an
operational current can change yielding a varying stall force.
Thus, the experimentally obtained stall force corresponds to

−1

−0.5

0

0.5

1

13.6 13.8 14 14.2 14.4

FIG. 16. (Color online) Average velocity of the kinesin model as
a function of the external force. Depending on the size of the probe,
stall conditions are reached for different values of the external force.
Parameters as in Fig. 13.
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the stall conditions of the motor-probe complex but does not
necessarily represent the stall conditions of the bare motor.
If one is interested in the latter one should use very small
probe particles since the limit of vanishing friction coefficient
γ is equivalent to applying the force directly to the motor.
As discussed below, the stall force is independent of γ for
one-state or unicyclic multistate motor models. Hence, an
experimentally observed variation of the stall force with probe
size can be used as proof that the motor is indeed multicyclic.

The varying stall force has also implications on the
transition rates. In Fig. 13, a close look around fexd = 14
shows that these data points are missing for the following
reason. For all investigated models, we find that if, as a function
of the external force, the sign change of an operational current
depends on the friction coefficient γ , the coarse-grained
rates corresponding to this transitions can become piecewise
negative. This phenomenon occurs when the affinity of the
affected transitions, ln[Pi�

α
ij /(Pj�

α
ji)], has the opposite sign

of jα
ij . An isolated sign change in the denominator of Eqs. (24)

and (25) leads to a pole in the corresponding rate. Such an
anomaly in �α

ij necessarily implies a corresponding one in �α
ji

since the ratio of the effective rates obeys the local detailed
balance condition which enforces the same sign for both rates.
In this range, the coarse-graining scheme introduced here fails
to produce physically acceptable rates. In practice, one should
discard the results at least when either a rate is negative or
becomes larger than the rate for vanishing bead size. In Fig. 17,
where we zoom into the range around the stall force, this range
is shaded gray. Taken at face value, this phenomenon looks
like a shortcoming of our approach. It is the price to pay for
requiring over the full parameter range both the local detailed
balance condition and the correct net currents from any one
motor state to any other. While the negative rates do not allow
for a sensible physical interpretation, they nevertheless can be
used to calculate average quantities and yield, e.g., the correct
entropy production as shown in Sec. V.

This stall force anomaly with a corresponding range of
negative rates occurs neither for any one-state motor model
nor for unicyclic motors around stall conditions since only
one motor cycle contributes to all cycles of the full system
causing the zero of jα

ij and ln[Pi�
α
ij /(Pj�

α
ji)] to occur for the

same fex. We also found several multicyclic motors that do not
lead to negative rates, e.g., the kinesin model if one assumes
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FIG. 17. (Color online) Detail of the coarse-grained mechanical
transition rates of the kinesin model as shown in Fig. 13. Near the
stall force at fexd � 14 these rates exhibit a pole. In the gray shaded
range, they should not be interpreted as physical transition rates.

the chemical rates to be independent of y. A derivation of the
precise conditions under which for multistate motor models a
pair of effective rates diverges or becomes negative must be left
to future work. We stress, however, that in all examples shown
in this study, this anomaly occurs only in the narrow range
shown in Fig. 17. From a practical point of view, it therefore
may not be as relevant as it is intriguing from a theoretical
perspective.

VII. CONCLUSION

Most experiments on molecular motors comprise some kind
of probe particle. Therefore, any theoretical modeling with
parameters estimated from experimental data will explicitly or
implicitly contain characteristics of the probe particle.

In this paper, we have introduced a systematic coarse-
graining method that allows us to reduce motor-bead models
to effective one-particle motor models. This coarse-graining
procedure provides a compromise between a one-particle
description that is simple to handle and a detailed model
comprising the dynamics of the full system. It yields an effec-
tive one-particle model maintaining the true motor network,
where the influence of the probe is naturally incorporated
without any additional assumptions since the simplification of
the description takes place a posteriori. Any external force
acting on the probe is then acting on the effective motor
directly. The coarse-grained rates obey a LDB condition and
yield the correct net currents. Fixing the marginal distribution
and the average currents, there is still freedom on how to
choose the rates. Only with the LDB condition the effective
rates are determined uniquely.

Applying the coarse-graining procedure to motor-bead
models, we find that in general the coarse-grained rates do not
show a single exponential dependence on the external force
in contrast to what is often assumed for mechanical transition
rates in one-particle models. Only in the often unrealistic limit
of fast bead relaxation, the coarse-grained rates reduce to the
corresponding one-particle rates.

In the absence of external forces, in general the coarse-
grained rates are not proportional to the ATP concentration
even if the motor rates obey mass action law kinetics. This
feature originates from the drag effect of probe (due to friction)
that is incorporated in the coarse-grained rates. For the same
reason, the average velocity shows a sublinear dependence
on the ATP concentration even for a one-state motor model.
Assuming an a priori one-particle model with external force
acting directly on the motor, one would have either to use
a rather counterintuitive complex force-dependence of the
transition rates or to introduce additional motor states in order
to obtain a sublinearly growing velocity caused by the drag
of the probe. In a one-particle description, the effect of large
probe particles on the dwell time distributions could also be
mistaken as signature of additional motor states, thus leading
to an overly complex motor network [21,56].

Considering the influence of the coarse-graining procedure
on the stochastic thermodynamics of the system, we show
that the total entropy production remains invariant under
coarse-graining. This is due to the fact that, on the one hand,
the state space of the eliminated degree of freedom contains
no entropy producing cycles. On the other hand the design
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of the coarse-graining procedure is also important. It has to
conserve the motor network as well as the net currents and
provide transition rates that fulfill a LDB condition. Likewise,
the thermodynamic efficiency remains invariant in our scheme.

Our coarse-graining method conserves average quantities
like the entropy production or operational currents although
eliminating the dynamics of the probe particle strongly affects
the cycle structure of the full system. In order to preserve also
fluctuations of current observables in the long-time limit it was
found that coarse-graining methods should conserve the cycle
structure of the full system [36,37].

From the experimental point of view, in order to obtain the
simpler effective model, the underlying mesoscopic modeling
need not to be known since all these quantities enter the coarse-
grained description via the net currents and the marginal
distributions which, in principle, can be extracted from the
experimental data as we have demonstrated using a two-step
model for the F1-ATPase.

The main advantage of the coarse-graining procedure
introduced here is that once the rates have been obtained from
experimentally accessible quantities, they automatically fulfill
a LDB condition and provide the correct average currents, i.e.,
velocity, entropy production, hydrolysis rate, and so on.

For multicyclic motors, the coarse-graining procedure can
yield rates that can have poles and become (piecewise)
negative. If this scenario occurs, the coarse-grained rates lack a
physical interpretation as transition probabilities in this range
but they can still be used to calculate average quantities.
For this class of motors the stall force typically depends on
the size of the probe particle, i.e., the friction coefficient.
Applying naively a one-particle model to such an experimental
setup would not allow us to determine the energy transduction
mechanism of the motor correctly. For one-state motors, the
coarse-grained rates are always positive.

So far, we have discussed coarse-graining only under NESS
conditions. In principle, the coarse-graining procedure as
introduced in Secs. II B and III A can also be applied to non-
stationary states, e.g., if the nucleotide concentrations are not
constant and �μ decreases with time [62,66]. Such a scenario
would yield time-dependent Pi’s, net currents, LDB condi-
tions, and therefore also time-dependent coarse-grained rates.

Further generalizations might include other types of models
representing the full system. While developed here for discrete
motor models, the coarse-graining procedure should be also
applicable to continuous motors moving in a tilted periodic
potential where the potential minima will become the discrete
states of the coarse-grained effective motor. The introduction
of the index α in principle also accounts for more involved
potentials or free-energy surfaces that depend on both the
motor and the probe state.
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APPENDIX: LIMITING CASE: LARGE APPLIED FORCE

In the limit of large external forces, fex → ∞, the coarse-
grained rates (7) and (8) can be expressed as

�+ ≈ −v exp[�μ − fexd]/d, (A1)

�− ≈ −v/d. (A2)

While �μ is independent of the external force, the average
velocity is a function of the external force,

v = 〈∂yV (y) − fex〉/γ = κ〈y〉/γ − fex/γ. (A3)

It becomes negative for forces larger than the stall force �μ/d,
which ensures that both �+ and �− are positive. If there is
no time-scale separation between the dynamics of motor and
probe, 〈y〉 grows linearly in fex for fex → ∞ with a smaller
slope than 1/κ . On the other hand, with time-scale separation,
we have 〈y〉 = fex/κ . Note that within time-scale separation,
the average velocity has to be calculated using the average
velocity of the motor, Eq. (4), since the “average velocity” of
the probe 〈∂yV (y) − fex〉/γ is zero as a result of the fast-bead
limit of Eq. (3). Due to the linear dependence of 〈y〉 on fex, the
average velocity, and therefore also �−, are then proportional
to the external force, whereas the exponential factor dominates
for �+,

�+ ∼ fex exp[�μ − fexd]/(γ d), (A4)

�− ∼ fex/(γ d). (A5)

In the opposite limit of a large assisting force fex → −∞,
the coarse-grained rates (7) and (8) become

�+ ≈ v/d, (A6)

�− ≈ v exp[−�μ + fexd]/d. (A7)

As above, the average y grows linearly and the velocity is
proportional to fex if there is no time-scale separation which
leads to

�+ ∼ |fex|/(γ d), (A8)

�− ∼ |fex| exp[−�μ + fexd]/(γ d). (A9)

This simple analysis clearly shows that the coarse-grained
rates do not coincide with the often a priori assumed single
exponential force dependence of one-particle rates. Within
our numerical analysis, the asymptotic behavior appears for
|fex| � 500/d. The regime for large forces shown in Figs. 2
and 3 is not the asymptotics yet. However, since 〈y〉 is also
linear in fex in this region yet with different slope, v is still
proportional to fex.
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