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Aggregation-fragmentation model of robust concentration gradient formation
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Concentration gradients of signaling molecules are essential for patterning during development and they have
been observed in both unicellular and multicellular systems. In subcellular systems, clustering of the signaling
molecule has been observed. We develop a theoretical model of cluster-mediated concentration gradient formation
based on the Becker-Döring equations of aggregation-fragmentation processes. We show that such a mechanism
produces robust concentration gradients on realistic time and spatial scales so long as the process of clustering
does not significantly stabilize the signaling molecule. Finally, we demonstrate that such a model is applicable
to the pom1p subcellular gradient in fission yeast.
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I. INTRODUCTION

Individual cells make precise cell-fate decisions based on
information from signaling networks during development. A
central paradigm of information transfer during development
is the morphogen gradient, a spatially varying concentration
profile [1]. The dynamics of morphogen gradient formation [2]
and interpretation [3] has been the subject of intense study, both
experimentally [4–8] and theoretically [9–12].

Single cells can interpret spatial gradients across the scale of
the cell itself, either in response to external chemical gradients,
such as chemotactic gradients [13], or subcellular gradients.
Subcellular concentration gradients are found in the single-cell
stage of Caenorhabditis elegans development [14] and in
single-cell organisms, including fission yeast [15,16] and bac-
teria [17–21]. In parallel with experimental work, theoretical
models have demonstrated how subcellular gradients can be
formed on the relevant time and spatial scales [22–27].

Clustering, either of the signaling molecules or receptors, is
observed in a number of subcellular signaling systems [28–31].
Receptor clustering helps ensure reliable readout of input
signal, for example, through receptor clustering by pos-
itive feedback that enables binary on-off decisions [32].
Clustering of signaling molecules is also observed [29],
potentially altering the dynamics of concentration gradient
formation.

Here, we develop a mechanistic model of cluster-mediated
concentration gradient formation based on the Becker-Döring
equations of aggregation-fragmentation processes [33,34]. We
show that such a model can produce a robust concentration gra-
dient under (certain) biological relevant parameter conditions.
In particular, we find that the process of clustering must not
significantly increase the signal molecule effective lifetime. Fi-
nally, we apply the clustering model to the cortical subcellular
gradient pom1p in fission yeast [15,16,29,35]. The modeling
describes how a single component (and its interactions with
itself) can create a robust subcellular concentration gradient
by adapting its effective dynamical properties at different
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spatial positions. Theoretical approaches on the dynamics of
concentration gradient formation in subcellular systems may
need to significantly differ from embryonic systems.

II. AGGREGATION-FRAGMENTATION MODEL OF
GRADIENT FORMATION

We develop a Becker-Döring-like model of concentration
gradient formation via clustering. This model takes into
account aggregation, fragmentation, and diffusion of clusters
with only a single molecular species. The parameters used are
derived from experiments in fission yeast [29], with typical
length and time scales on the order of a few microns and
seconds, respectively.

A. Model motivation

We consider the Becker-Döring equations with conserved
number and diffusion [36–38]. The motivation for such a
formalism comes from studies of pom1p in fission yeast.
In time-lapse movies, clusters of pom1p are not observed to
coalesce (as in a Smoluchowski process [34], which describes
E-cadherin clustering [39]) but observed to grow and decay
on second time scales, apparently independently of other
clusters [29]. Therefore, we assume that only monomeric
molecules are taken up into a cluster and during fragmentation
single molecules are released from clusters [Fig. 1(a)]. Cluster
disassociation events from the membrane are not observed
in cells [29] and so we assume that disassociation involves
only a single molecule at a time (i.e., when a component
disassociates from both the cluster and membrane it does
so without affecting the other components of the cluster)
[Fig. 1(a)]. Finally, large clusters are typically not observed to
join at the insertion region [29] so we consider insertion only in
the monomeric form. While difficult to solve analytically the
existence and uniqueness of solutions of qualitatively similar
models can be shown in relevant parameter regimes [37].
We use a one-dimensional model of concentration gradient
formation as our aim is to highlight the important general
behavior of such a model.
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FIG. 1. (Color online) (a) Reaction scheme of processes in the
clustering mechanism, Eqs. (1)–(3). Crossed circles denote particles
exiting the system (e.g., through membrane disassociation). (b)
Scaling of dynamic parameters as function of cluster size. For
aggregation the dashed line corresponds to the scaling of α without
the term e−s/s0 . For disassociation, the black line corresponds to equal
rate of disassociation of particles in all cluster sizes. The gray line
corresponds to rμ = 1.

B. Model formulation

We consider a mean-field discrete model of cluster forma-
tion. The reaction schemes are shown in Fig. 1(a) and result
in the following equations for clusters where ns represents the
concentration of a cluster containing s molecules:

∂n1

∂t
= D1

∂2n1

∂x2
− μ1n1 + μ2n2 −

smax∑
s=2

js − j2 + Jδ(x), (1)

∂ns

∂t
= Ds

∂2ns

∂x2
+ (js − μssns)

− (js+1 − μs+1(s + 1)ns+1) for s > 1, (2)

js = αs−1n1ns−1 − βsns, (3)

where Ds denotes the diffusion coefficient, μs the membrane
disassociation rate, and αs and βs denote the aggregation and
fragmentation rates, respectively, for a cluster containing s

molecules. J is the monomeric insertion rate and boundary
conditions are ∂ns

∂x
|x=0,L = 0 for s � 2.

C. Parameter scaling

Equations (1)–(3) have a large parameter space, increasing
with smax, the maximum cluster size. However, using biophys-
ical arguments we can reduce the parameter space to seven
nondimensional parameters as discussed below.

Diffusion. We take Ds = D1s
−rD , where rD = 1,

Fig. 1(b), consistent with experiments on clustered protein
membrane diffusion [29,40] (note that this contrasts with
theoretical predictions of logarithmic diffusion scaling on
biological membranes [41]). We have confirmed that our main
conclusions hold for rD = 2/3 (not shown).

Disassociation. Experimentally, large clusters are not
observed to disassociate from the membrane [29]. Therefore,
we assume only single molecules disassociate in each reaction.
We take μs = μ1s

−rμ ; rμ = 0 if clustering has no membrane-
stabilizing effect (i.e., the rate of monomer disassociation is
equivalent from all clusters). We also consider the case rμ = 1,
i.e., clustering stabilizes the signaling molecule within the
cluster [Fig. 1(b)]. We shall see that the latter scenario results
in a nonrobust gradient and is a key result of this analysis.

Aggregation. Aggregation depends on the cluster size:
Bigger clusters are more likely to collide with and aggregate
a monomer. How exactly aggregation depends on the cluster
topology is unclear and here we consider αs = α1s

rα with
rα = 1/2. Experimentally, there is an upper limit on the
cluster size [29], so an additional term within the aggregation
parameter is included to limit the maximum size of the
clusters: αs = α1s

rα e−s/s0 , where s0 = 100 [39] [Fig. 1(b)].
Such limitation on the maximum cluster size could also
have been implemented by including a component in the
fragmentation rate (below).

Fragmentation. Scaling of the fragmentation rate is likely
to occur via a similar mechanism to aggregation. Hence, we
consider βs = β1s

rβ with rβ = rα = 1/2. We have confirmed
that using rβ,α = 1/3 or rβ,α = 2/3 does not significantly alter
our key conclusions so long as rβ = rα . We choose the values
of α1 and β1 such that cluster dynamics are on the order of
a few seconds, consistent with pom1p cluster dynamics [29].
Note that we use β1 as the lowest order for fragmentation [even
though only terms βs , s � 2 appear in Eqs. (1)–(3)] for clarity
in representing the scaling.

Nondimensionalizing by substituing t = τ/μ1, ρs =
J√

D1μ1
φs , and x = u

√
D1/μ1, along with the scaling argu-

ments, reduces Eqs. (1)–(3) to

∂φ1

∂τ
= ∂2φ1

∂u2
−

smax∑
s=2

(κφ1s
rα e−s/s0 − β̃srβ )φs

−φ1 + [
21−rμφ2 + β̃φ2 − κφ2

1

] + δ(u), (4)

∂φs

∂τ
= s−rD

∂2φs

∂u2
− s1−rμφs + (s + 1)1−rμφs+1

− κφ1e
−s/s0

(
sr
αφs − (s − 1)rα e1/s0φs−1

)
− β̃(srβ φs − (s + 1)rβ φs+1), (5)

where κ = Jα1/
√

Dμ3
1 and β̃ = β1/μ1. The large parameter

space in Eqs. (1)–(3) has been reduced to seven dimensionless
parameters (Table I), independent of smax. Four of these seven
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TABLE I. Dimensionless parameters in clustering model.

Parameter Value Note

rα , s0
1
2 , 100 s0 = 100 constrain

maximum cluster size
rβ

1
2 rβ = rα

rμ 0, 1 rμ > 0 results in stabilization
of monomers in larger clusters

rD 1 See Refs. [29,40]
κ = Jα1√

D1μ3
1

∼425 Defines range of clustering effects

β̃ ∼20 Fragmentation occurs on shorter
timescales than disassociation

parameters, rα,β,D,μ are constrained by physical arguments as
described above. The phenomenological cluster size factor s0 is
limited by experimental observation of cluster sizes [29]. Only
κ and β̃ are free parameters and hence, despite the apparent
complexity of Eqs. (1)–(3), the dynamic behavior of the system
is effectively described by just two parameters.

D. Concentration gradient profile

We solve the above system of equations (up to smax cluster
size, typically 200) using MATLAB pde45 and confirm the
steady-state distribution using the MATLAB ode solver bvp4c.
The total concentration profile, defined as

NT =
smax∑
s=1

sns , (6)

is shown in steady state in Fig. 2(a) for a range of κ .
Unsurprisingly, large clusters are localized to the source
region, Fig. 2(b). The effective diffusion,

Deff(x) =
(

smax∑
s=1

snsDs

) /
NT , (7)

is a function of position, increasing away from the source,
Fig. 2(b) inset. The time scales of clustering [42] and
protein dynamics are consistent with observations of pom1p
in vivo [29].

What biophysical processes do κ and β̃ represent? β̃

effectively defines the relative lifetime of molecules in clusters
before disassociation, which in turn alters the effective
diffusion, Fig. 2(b) inset. κ compares the effects of inser-
tion and aggregation (increasing either amplifies clustering)
with diffusion and disassociation (increasing either reduces
clustering). Small κ corresponds to weak clustering and
the diffusive dynamics of the monomer dominate. Large
κ results in clustering dominating the dynamics with a
resulting steep concentration gradient. Using biologically
plausible parameter values [29], both κ and β̃ occur at
values that allow large clusters to form (to give benefits of
modulating diffusion) without permitting very large clusters
to dominate the dynamics, particularly away from the source
region.
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FIG. 2. (Color online) (a) Concentration profile, Eq. (6), with
κ = 425 and β̃ = 20. Dotted and dashed black lines correspond to
κ ≈ 142 (J → J/3) and κ = 1275 (J → 3J ), respectively. Gray
lines show solutions of a model without clustering with same
insertion and disassociation rates and D = 0.1 μm2 s−1 (see SDD
model in Table II). Inset shows profiles on logarithmic scale. (b)
Cluster concentration as function of position, with the darker color
representing higher concentration. Red (steplike) and blue (smooth)
lines correspond to the cluster size with highest concentration and
mean cluster concentration, respectively. Inset: Effective diffusion,
Eq. (7), as function of position for β̃ = 20 (black), β̃ = 200
(dashed), and β̃ = 2 (gray). Parameters as Fig. 1(b) unless otherwise
stated.

III. ROBUSTNESS OF CLUSTER-MEDIATED
CONCENTRATION GRADIENT FORMATION

We have demonstrated that a clustering model can produce
a concentration gradient on similar spatial and temporal scales
observed in subcellular systems. Ultimately, the concentration
profile must be able to impart precise (i.e., robust) information
to the cell. Below, we explore whether such concentration
gradients can be robust to relevant biological fluctuations. To
gain a qualitative understanding, we first discuss a phenomeno-
logical model incorporating concentration-dependent diffu-
sion before discussing the effects of noise on the clustering
model.
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TABLE II. Steady state solutions to SDD, NLD, and CDD
models. For NLD model solution for nonlinear degradation term
−αρ2 is shown [9]. CDD model solution for r = 1/2.

Model ρ(x,t → ∞) Parameters

SDD J√
D0μ0

e−x/λ λ =
√

D0
μ0

≈ 1.6 μm

NLD A

(x+x0)2 A = 6D0/α, x0 = ( 12D2
0

Jα

)1/3

CDD B

(x+x1)4 B = 144ρ̄λ4, x1 = λ
( 48ρ̄

ρs
0

)1/3

A. Concentration-dependent diffusion

We consider a one-dimensional reaction-diffusion equation
with concentration-dependent diffusion (CDD), D(ρ), a func-
tion of the local protein concentration, ρ:

∂ρ

∂t
= ∂

∂x

(
D(ρ)

∂ρ

∂x

)
− μρ, (8)

with boundary conditions D(ρ(0)) ∂ρ

∂x
|x=0 + J = 0, where J

is the protein insertion rate and ρ(x → ∞) = 0. We con-
sider the case D(ρ) = D0(ρ̄/ρ)r . The solution to Eq. (8)
then has steady-state solution ρ(x) = B(x + x1)−m, where
m = 2/r , B = λmρ̄[m(m − 1)]m/2, and x1 = λ( ρ̄

ρS
0

)
1

m−1 g(m),

where g(m) = (m
m

m−2 (m − 1))
m−2

2(m−1) , ρS
0 = J/

√
D0μ, and λ =√

D0/μ, Table II.
In Fig. 3(a) we compare steady-state profiles for the NLD

and CDD models (right inset shows the behavior of the
diffusion coefficient in the CDD model as a function of
position) with the scenario of linear diffusion [D(ρ) = D0

in Eq. (8)] and degradation (SDD model), Table II. We define
robustness as the positional error, δx, in defining a boundary
at a threshold concentration [9],

δx(x,t) = δρ(x,t)/|ρ(x,t)′|, (9)

due to concentration fluctuations δρ(x,t) (ρ ′ is the spatial
derivative) from, for example, variations in J . δx is dependent
on when and where measurement occurs. We focus on the
spatial position in steady state for distances around 2–3 μm
from the source, consistent with boundaries in fission yeast.
Interestingly, in steady state, δx is independent of position
for all three models if the concentration fluctuations are due to
variation in the injection rate J , Fig. 3(b) [9]. Previously, it has
been shown that a model with nonlinear degradation (NLD)
can produce concentration profiles that are robust to variations
in the insertion rate [9]. In Fig. 3(b) we demonstrate that the
CDD model, just as with the NLD model, is more robust to
variations in the insertion rate compared to the SDD model
when 0 < r < 1.

Another source of error are stochastic biochemical (intrin-
sic) fluctuations, relevant in both embryonic and subcellular
systems [29,43–45]. Such fluctuations are typically well
described by Poisson statistics [46,47]:

δρint = a

√
ρ

DT
, (10)

where a is a constant that is assumed to be model independent
and T is the averaging period. NLD models are generally
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FIG. 3. (a) Steady-state profiles for SDD (gray), NLD (dashed),
and CDD (black) models (Table II). SDD model: J = 16.7 s−1,
D0 = 0.1 μm2 s−1, and μ = 0.03 s−1. ρ̄ = 40 μm−1 and nonlinear
degradation rate α were chosen such that the total particle number
was equal in all models with same J , D0, and μ0 and such that
the average diffusion in the CDD model for 0 < x/λ < 3 equals
D0. Left inset: Same as main panel but on a y-log scale. Right
inset: D(ρ) in the CDD model; the dashed line corresponds to
D = 0.1 μm2 s−1. (b) Error in defining spatial position, Eq. (9),
due to variations in J , given by δJ = 0.1J . Black bars denote
parameters as (a). Clear bars correspond to equal characteristic length
scale, λ = x0 = x1 (ρ̄ = 6 μm−1). Smaller values denote more robust
profiles. (c) Robustness of the NLD and CDD models due to intrinsic
fluctuations at x/λ = 2 relative to SDD model. Black and clear bar
notation same as (b). Though the specific fractions vary as a function
of position, the trend of δxSDD

int < δxCDD
int < δxNLD

int typically holds in
the region 0 < x < 3λ.

less robust to intrinsic fluctuations [47]. However, in the
CDD model the diffusion coefficient increases with distance
from the source, which in turn increases the effects of time
averaging [46] and hence reduces the detrimental effects of
intrinsic fluctuations. In Fig. 3(c) we show that the SDD model
is most robust to such variations at x/λ = 2, but concentration-
dependent diffusion results in more robust gradients than those
formed by nonlinear degradation processes.

B. Robustness of clustering model

Having developed a qualitative understanding of the robust-
ness of concentration-dependent diffusion to relevant fluctu-
ations, we now discuss the robustness of the full clustering
model, Eqs. (1)–(3).

To test the robustness of the clustering model to variations in
protein insertion we first created 250 profiles using parameters
in Fig. 1 but with the insertion rate Gaussian distributed (mean
J̄ , standard deviation δJ = 0.2J̄ ) [Fig. 4(a)]. Figure 4(b)
shows that the concentration at x = 0 (normalized by the
value when J = J̄ ) increases rapidly (faster than equivalent
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normalized by their value for the mean insertion rate, denoted by
J̄ , ρ̄0, and λ̄. (c) Positional error of the clustering model relative to
the SDD model with equivalent kinetic parameters. The black line
corresponds to the clustering model with equal disassociation rate in
all clusters, rμ = 0. The gray line corresponds to the clustering model
with rμ = 1. (d) The positional accuracy of the clustering model in
the presence of intrinsic fluctuations, Eq. (10), normalized by the
equivalent accuracy of the SDD model at x = 0. Equivalent result for
SDD model shown as the gray line.

SDD model) as J increases; as expected, the fluctuations at
the source are increased in the clustering model. Following
Ref. [9], we define the characteristic length scale of the profile
as

λeff(x) = ρ(x)/|ρ ′(x)| . (11)

λeff is a function of position and henceforth we consider
the mean λeff in the range 2 μm < x < 3 μm, 〈λ〉2−3μm. In
Fig. 4(b), we see that 〈λ〉2−3μm scales inversely with increasing
J (unlike the SDD model). Therefore, the increased variation
at x = 0 is compensated for by adaptation in the characteristic
profile length. This results in the cluster model providing
precise spatial information, Fig. 4(c), compared to the
SDD model. In Fig. 4(c) we also show that the positional
accuracy of the clustering model is significantly reduced when
clustering stabilizes the protein. Therefore, the clustering
model is only robust if individual monomers only spend a
relatively short period in each cluster: If they are too stable,
then the robustness is lost.

The trend of λeff being inversely proportional to J can be
derived using a two-state (monomer or clustered) model [29].
However, in such a model fluctuations at the source increase
especially quickly with increasing δJ . Here our more precise

analysis shows that clustering results in a robust gradient
when comparing the competing effects of ρ(x = 0) and λeff

fluctuations with changing J (note that the particular effect is
position dependent). Furthermore, we see that the robustness
is due to the effective spatial adaptation of the diffusion
coefficient, which is highly dependent on β̃, Fig. 2(b), as well
as on the scaling of the disassociation rate with cluster size.
The simplifications used in the two-state model meant that the
critical relationship between fragmentation and disassociation
rates was not appreciated, highlighting a further advantage of
our more detailed approach.

Finally, we compare the effects of intrinsic fluctuations on
the robustness of the clustering model. The processes of clus-
tering are nonlinear and therefore the Poisson approximation
is less valid. However, direct experimental measurement of
intrinsic fluctuations in a subcellular gradient [29] suggest that
away from the source region (x � 2 μm), where diffusion is
the predominant dynamic mechanism, intrinsic fluctuations are
approximated closely by Poisson statistics. Therefore, Eq. (10)
is a reasonable approximation to the intrinsic noise here,
though it likely represents a lower bound on the true intrinsic
noise due to neglected nonlinear effects from clustering
processes. In Fig. 4(d) we show the positional accuracy of the
cluster model given Poisson distributed intrinsic fluctuations
compared to the SDD model with similar profile shape and
protein disassociation rate. The two models have qualitatively
similar sensitivity to intrinsic fluctuations due to their similar
profile shape, Eq. (10). The clustering model is less sensitive to
intrinsic fluctuations than the CDD and NLD models discussed
above as the latter two models have algebraic, rather than
exponential-like, profiles [47].

IV. POM1P SUBCELLULAR GRADIENT

We apply our clustering model to the specific case of
pom1p in fission yeast and its repression of the downstream
target cdr2p [15,16,48]. We incorporate spatially distributed
pom1p insertion in the polar region [27,29]. The formation
of the pom1p subcellular gradient has been modelled previ-
ously [29,49,50]. However, these approaches either did not
consider clustering [49,50] or presented only a qualitative
model of clustering with only two states [29].

Cdr2p itself is known to cluster; indeed, it forms signif-
icantly larger clusters with around 80–100 molecules in the
clusters localized to the cell center [51]. Pom1p has a dual
effect on cdr2p. First, it is involved in cdr2p dephosphory-
lation, resulting in cdr2p membrane disassociation. Second,
it inhibits cdr2p cluster formation. This double mechanism
of repression helps produce the sharp response of cdr2p
to pom1p inhibition [48] [Figs. 5(a) and 5(b)]. We use a
phenomenological model of cdr2p cluster formation since our
focus is on pom1p and how accurately it can define the cdr2p
boundary. Therefore, we use a two-state model for cdr2p
(monomeric or clustered, similar to that in Ref. [29]) with
additional interactions between pom1p [where [P ] denotes the
total pom1p concentration at a particular position, regardless
of the particular cluster distribution, Eq. (6)] and cdr2p (where
[C1,2] denotes cdr2p concentration in monomeric and clustered
forms respectively) [Fig. 5(b)]. Cdr2p is assumed to be inserted
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FIG. 5. (Color online) (a) Experimentally measured (normal-
ized) intensity profiles for pom1p (red) and cdr2 (green) on the cortex
of fission yeast cells (n = 14), see Ref. [51] for details. Distance
defined as the distance around the cortex of the cell starting from
the tip, as shown by the white line in inset. Inset: Midplane confocal
image of fission yeast expressing pom1p-tomato in the tip (red) and
cdr2-GFP at the cell center (green). (b) Interactions between pom1p
and cdr2p on the membrane. Pom1p actively disassociates cdr2p
from the membrane (yellow box) and also inhibits the ability of
cdr2p to cluster (orange box). (c) Normalized concentration profiles
for pom1p (red) and cdr2p (green) generated from Eqs. (1)–(3), (12),
and (13). Parameters for pom1p as Fig. 1. For cdr2p, γ1 = γ2/2 =
10−3μm s−1, Jc = 2.6 s−1, [P ]0 = 20 μm−1, Dc,1 = 0.5 μm2 s−1,
Dc,2 = 0.01 μm2 s−1, μc,1 = μc,2/2 = 2.5 × 10−3 s−1, αc = 0.1α1,
and βc = 0.1β1. (d) Positional error in the cdr2p profile when
the pom1p insertion rate has 25% Gaussian variation. Results for
clustering model (triangles) and equivalent SDD model (circles)
shown.

uniformly (rate Jc) across the membrane [51],

∂[C1]

∂t
= Dc,1

∂2[C1]

∂x2
−μc,1[C1] − 2αc([P ])[C1]2 + 2βc[C2]

+μc,2[C2] − [P ](γ1[C1] − γ2[C2]) + Jc, (12)

∂[C2]

∂t
= Dc,2

∂2[C2]

∂x2
− μc,2[C2] + αc([P ])[C1]2

−βc[C2] − γ2[P ][C2]. (13)

The direct inhibition of cdr2p on the cortex by pom1p is
approximated by the term −γ1,2[C1,2][P ] and the aggregation
factor αc is now dependent on the concentration of pom1p
[Fig. 5(b)]. We assume a Hill-like behavior: αc([P ]) =
αc,0(1 + ([P ]/[P ]0)4)−1. This simplified model recapitulates
the observed pom1p and cdr2p profiles [Fig. 5(c)]. The fitting
from the above model to the measured pom1p and cdr2p
profiles represents a significant improvement over previous
models [29,49,50] both in replicating the spatial profiles
and reproducing the dynamics of clustering and gradient
formation.

To test the system robustness we created 200 pom1p
profiles, with insertion rate normally distributed with standard
deviation 25% of the mean and subsequent cdr2p profiles using
Eqs. (12) and (13). At each position investigated we found the
mean total cdr2p concentration and used this to define the
threshold concentration for that position. For each individual
cdr2p profile we then measured the position where it had
each particular threshold concentration and hence calculated
the positional precision of cdr2p specification by calculating
the standard deviation in these positions. Near the source
there is large variation due to the big intensity changes in
pom1p between cells. Near the cell center there is large
error due to the pom1p profile becoming increasingly flat.
However, around 2–3 μm from the source which corresponds
to the region where the boundary between pom1p and cdr2p
is defined: We see that the cdr2p can be positioned more
accurately (compared with equivalent SDD model) by pom1p
when it clusters [Fig. 5(d)]. Of course, including intrinsic
fluctuations would decrease the positional precision so the
given accuracy represents a best-case scenario (experimen-
tally, errors of around 1 μm are typically observed [29]). In
conclusion, a dynamic clustering mechanism for concentration
gradient formation can provide robust positional information
on relevant time and spatial scales for a biologically plausible
scenario.

V. DISCUSSION AND CONCLUSIONS

Previous modeling of clustering within cells has predomi-
nantly analyzed receptor clustering. Here we have focused on
the role of clustering in the formation of concentration gradi-
ents and demonstrated that subcellular gradients can be formed
via clustering on realistic spatial and temporal scales. This
work represents a significant advance on previous models of
subcellular concentration gradient formation [29,46,50,52] as
it accounts for protein clustering and diffusion in a mechanistic
(though still relatively straightforward) framework that also
incorporates realistic protein dynamics and allows predictions
to be made about the behavior of specific dynamic components
(see below).

Our modeling enables the following predictions regarding
the clustering of signaling molecules. (i) The process of
clustering does not significantly stabilize (whether that be
by extending protein lifetime or membrane association time)
the individual molecules within the concentration gradient. If
clustering significantly stabilizes the protein in the relevant
system, then the resultant chemical gradient is not robust.
This result is qualitatively consistent with the dynamics of
pom1p, where the cluster lifetime is significantly shorter
than the pom1p lifetime on the membrane [29]. (ii) The
ratio of the fragmentation rate to disassociation rate plays an
important role in the gradient formation. Either too small or
big a ratio results in reduced spatial diffusion modulation and
hence less robust concentration gradients. Therefore, systems
that use clustering in concentration gradient formation are
likely to have carefully tuned fragmentation and disassociation
rates and experimental perturbation of either should result in
significantly reduced robustness. (iii) Clustering is favorable in
systems that have a single decision to make (e.g., placement of
division boundary) but it is less likely to be used in systems that
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specify multiple boundaries. Near the source there is increased
inaccuracy due to larger fluctuations in the concentration and
at very large distances the profile becomes very flat due to
only small, fast, clusters being present. Depending on the
specific parameters, there will likely be an optimal region for
concentration gradient interpretation.

Given the advantages described above, why is clustering
of signaling molecules (i.e., morphogens) not observed more
commonly in multicellular systems? In single cells where a
simple decision is made by the signaling pathway (e.g., where
to define the cell center) clustering may be advantageous as
dynamic parameters can be tuned to maximize precision at the
relevant position but for morphogen gradients (that typically
define three or more threshold positions across their spatial
range) clustering may not be beneficial. Further, multicellular
organisms typically have more time and complexity to adjust
for variation in the input signal, such as via feedback
networks [7,53]. We note that the Hedgehog signaling protein
is observed to cluster [54] but this is likely due to its need for a
chaperone to aid it in traversing through the intercellular space
due to its hydrophobic nature [54].

We have considered a one-dimensional mean-field scenario.
Two-dimensional simulations of the clustering model could be
interesting, as the stochastic noise in such a (plausible) scenario
is nontrivial, particularly near the insertion region. However,
experimental evidence suggests that the approximations used
here are relevant in the signaling region (i.e., away from the
source). Further, extension to Smoluchowski processes where
clusters directly interact with each other may be interesting

but, as noted above, such a scenario is not consistent with
current experimental observations of subcellular concentration
gradients.

Overall, we have presented a quantitative framework for
understanding subcellular concentration gradient formation.
In particular, our model can simultaneously replicate observed
experimental spatial profiles and dynamics. Importantly, de-
spite the apparent complexity of such a clustering model,
through biophysical arguments we reduced our model to two
relevant parameters to describe the concentration gradient. The
resulting concentration profile is robust to relevant biochemical
fluctuations so long as the process of clustering does not
significantly stabilize the signaling molecule.
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