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Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles
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We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological
membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence
of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction
on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits
of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give
the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit,
which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can
convert only these substrates which remain in contact with opposing enzymes. In the most studied regime
of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the
reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated
substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted
substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction
rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for
the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or
decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are
controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more
abundant enzyme.
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I. INTRODUCTION

Cellular information is transmitted and processed by com-
plex networks of coupled biochemical reactions. Dynamics
of these networks is governed by reaction rates, which are
strongly influenced by diffusivity of reactants [1], their subcel-
lular localization, and nonspecific molecular crowding [2–4].

The aim of our study is to analyze the dependence of
effective macroscopic reaction rate coefficients on diffusion
in cycles of coupled antagonistic reactions. Such cycles,
exemplified by the phosphorylation-dephosphorylation cycle
or the GTPase cycle (Fig. 1), are crucial for cellular signal
transduction. In the ubiquitous motif of the phosphorylation-
dephosphorylation cycle, substrate molecules are phospho-
rylated and dephosphorylated by kinases and phosphatases,
respectively. For example, in the GTPase cycle [5], GTPases
such as Ras exist in either of two signaling states: GTP-bound
Ras is active (as it can recruit Raf and trigger MAPK kinase
cascade signaling), while GDP-bound Ras is inactive. GTPase-
activating proteins (GAPs) assist in the transition from the
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GTP-bound to GDP-bound forms, while guanine nucleotide-
exchange factors (GEFs) facilitate GDP dissociation followed
by reloading of Ras with GTP. Overall, reversible regulatory
motifs allow for substrate reuse and signal amplification, thus
enabling rapid transmission of extracellular signals to effector
proteins such as transcription factors.

In this study we focus on chemical kinetics in two-
dimensional systems such as biological membranes. The
two-dimensional (2D) systems have their own peculiarities and
significantly differ from 3D systems but are very important for
signal transduction. Signal transduction in numerous pathways
is initiated by cytokine binding to membrane receptors,
which transmit signal to secondary messengers, often by
phosphorylation. Plasma membrane is a very crowded and
nonhomogenous environment where reactions are expected to
be diffusion controlled. This distinguishes plasma membrane
from the cytoplasm, which is characterized by at least one order
of magnitude faster diffusion and in which the characteristic
reaction time scale is longer.

Since the seminal work of von Smoluchowski on kinetics
of diffusion-limited association [6], there have been numerous
attempts to derive effective macroscopic reaction rate coef-
ficients (EMRRCs) that govern processes in a macroscale
chemical reactor. These derivations were based mostly on
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FIG. 1. (Color online) (a) A simple phosphorylation-
dephosphorylation cycle; Su, dephosphorylated substrate; Sp ,
phosphorylated substrate. (b) Ras GTPase cycle; GEF, guanine
nucleotide-exchange factor; GAP, GTP-ase activating protein.

microscopic models having a single-molecule resolution, con-
tinuous in space and time. Halfway between, the system can
be described by means of a reaction-diffusion master equation,
referred to as mesoscopic, as it averages out the kinetics over
the microscopic length and time scales [7,8]. We will approach
the microscopic limit by means of on-lattice kinetic Monte
Carlo simulations, assuming that each lattice site can be either
occupied by one molecule or empty. This approach, in contrast
to mesoscopic description-based simulation methods, provides
us with the single-molecule and single-reaction resolution, but
simplifies the continuous space to a discretized lattice.

Reaction schemes studied thus far can be divided into
reversible and irreversible. For the reversible case, even in
equilibrium, reactions still take place and the steady state may
be nontrivial. For the irreversible case, the system converges in
most cases to a well-defined state in which all reactions cease;
but the determination of time-dependent behavior still remains
a challenging problem.

Irreversible reaction systems are as follows:
A + B → C: Collins and Kimball [1] determined the

time-dependent reaction rate in the case when only a fraction of
collisions leads to dimer formation (extending the study of von
Somoluchowski [6]) and analyzed two limits corresponding
to diffusion control and reaction (activation energy) control.
Further works by Naqvi [9], Emais and Fehder [10], and Tor-
ney and McConnel [11] showed essential differences between
two- and three-dimensional systems. In three dimensions, the
reaction rate “quickly” stabilizes at some positive value, while
in two dimensions it decreases to zero as 1/ ln(t) [11]. A very
similar reaction, A + B → ∅, was considered by Toussaint and
Wilczek in the context of particle-antiparticle annihilation [12]
(see also Ref. [13]).

A + B → A + C and A + B → AB → A + C: Szabo
considered this unidirectional reaction in the context of
fluorescent quenching, where A is a quencher and B (C)
are in excited (relaxed) states [14]. By employing various
approaches, including that of von Smoluchowski, mean-field,
mean first-passage time, he calculated the reaction rate to find
that the agreement between these approaches is satisfactory
only in the limit of small concentration and fast diffusion.
For the Michaelis-Menten scheme, A + B � AB → A + C,
Kim et al. found that the long-time asymptotic relaxation of
the deviation of the bound enzyme concentration from the
steady-state value shows the power-law behavior ∝ (Dt)−1/2,
where D is the diffusion coefficient [15]. The same scheme

has been analyzed by Park and Agmon [16,17]. In the latter
work, Park and Agmon determined substrate concentration
profiles developing near a static enzyme molecule. Also Zhou
developed theoretical approaches and performed simulations
to quantify the diffusion influence on binding and unbinding
rates [18].

Reversible reaction systems are as follows:
A + B � C: Classical mass-action theory in the limit

of infinite diffusion predicts exponential relaxation to the
steady state. For diffusion-influenced kinetics, Zel’dovich
and Ovchinnikov showed that the system follows power-law
relaxation ∝ (Dt)−3/2 in 3D [19]. Then Berg calculated the
diffusion-controlled dissociation constant [20], and, later,
Agmon and Szabo determined the time-dependent kinetics for
the fraction of dissociated A and B molecules for various
initial and boundary conditions [21,22]. Szabo discussed
three different approaches to the relaxation kinetics of the
reversible association reactions that lead to nonexponential
relaxation in the diffusion-limited case [22]. Sung and Lee
provided an accurate theory of the diffusion-influenced re-
versible association reactions [23] which is in agreement with
numerical results of Edelstein and Agmon [24] and correctly
reduces to the von Smoluchowski’s result in the irreversible
limit. Takahashi et al. [25] considered a more complex
double phosphorylation-dephosphorylation cycle based on this
simple reaction scheme. They found that substrate rebindings,
which arise more likely for slow diffusion, turn a distributive
phosphorylation mechanism into a processive one leading to
the loss of ultrasensitivity in the MAPK cascade. Processive
phosphorylation is the mechanism of double phosphorylation
happening at a single enzyme-substrate encounter. This phos-
phorylation mode is favored in the case of slow diffusion. In
the distributive phosphorylation mechanism, occurring more
likely for faster diffusions, the subsequent phosphorylations
happen at different enzyme-substrate collisions and may be
performed by different enzyme molecules. Recently, substrate
rebinding was considered by van Zon et al., who found that
repressor-promoter rebindings slow down gene switching and
therefore increase gene expression noise [26]. In the context
of T-cell receptor (TCR) activation it was found that fast
TCR-pMHC rebindings of shortly bound ligands can allow
for kinetic proofreading-based TCR activation similar to that
induced by ligands which bind for longer times [27].

A + B � C + D: In a series of papers, Agmon and
colleagues obtained analytical solutions for the Green function
and survival probabilities of the reversible reaction. They
found that the asymptotic state (in three dimensions) is reached
as (Dt)−1/2, as in the irreversible case [28–30]. Recently, for
the reversible Michaelis-Menten scheme, A + B � AB �
A + C, Szabo and Zhou calculated the steady-state reaction
rates in the case when substrate and product concentrations
are effectively fixed, so bimolecular reactions can be treated
as pseudo first order [31]. They found that, similarly to the
irreversible Michaelis-Menten kinetics, the relaxation of free-
and bound-enzyme concentrations to steady state follows the
power law ∝ (Dt)−1/2.

The molecular crowding effect was studied and discussed
in a considerable number of papers and reviews [2–4]. To-date
results state that crowding, acting through volume exclusion,
influences the reactions rates differently in different regimes.
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In the diffusion-controlled regime it decreases the effective
rate coefficients, whereas it increases them in the reaction-
controlled regime. Also, it creates microdomains that can
transiently cage substrates or enzymes [3,32–34]. In particular,
it was shown experimentally and analyzed theoretically that
substrate caging can change the distributive phosphorylation
mode into the processive one [35]. Recently, it was shown
by Weiss that molecular crowding renders fluids viscoelastic,
which in turn leads to subdiffusion of tracer particles [36].

In this work we investigate the phosphorylation-
dephosphorylation cycle consisting of two opposing reactions:
K + Su → K + Sp and P + Sp → P + Su, and analyze how
EMRRCs and steady states depend on the diffusion and con-
centrations of enzymes (kinases, K , and phosphatases, P ). In
the considered model, the nonuniformity in spatial distribution
of phosphorylated and dephosphorylated substrates is inherent
to the system. At small densities of enzymes, each enzyme
molecule is surrounded by a cloud of converted substrates.
Since the scale of nonuniformity is controlled simultaneously
by both enzymes, the effective phosphorylation and dephos-
phorylation rate coefficients are expected to be coupled.

The paper is organized as follows: In Sec. II we define our
models and outline the methods used for numerical analysis;
in Sec. III we provide analytical solutions for limiting cases;
and in Sec. IV we present numerical results and highlight
interesting effects. Discussion follows in Sec. V.

The paper is supplemented with four appendices: In
Appendix A we show that EMRRCs are independent of the
lattice size for sufficiently large lattices; in Appendix B we
analyze the dependence of macroscopic diffusion on motility
and density of molecules; in Appendix C we analyze nonequi-
librium dynamics of the system of two opposing reactions (i.e.,
the basic model) and the system without the dephosphorylation
reaction; and in Appendix D we consider a model variant
in which phosphorylation and dephosphorylation proceed via
formation of a transient enzyme-substrate complex.

II. MODELS AND METHODS

A. Numerical methods

All of the considered models introduced hereafter are
analyzed by means of spatial kinetic Monte Carlo (KMC)
simulations [37,38]. Molecules are placed on discrete sites
of a two-dimensional triangular lattice which forms a square
domain with periodic boundary conditions. The molecules
diffuse freely by hopping to adjacent empty lattice sites. Their
state can be modified due to chemical reactions, either uni-
molecular or bimolecular (involving two molecules occupying
adjacent lattice sites). Diffusion and reaction events occur at
defined rates called motilities and (microscopic) reaction rate
constants, respectively. Motilities, m, are assumed to be equal
for molecules of all types (unless otherwise specified). The
propensity of hopping to a neighboring empty site on the
triangular lattice is m/6. All allowed chemical reactions are
defined together with their respective reaction rate constants.

At each step of the KMC simulation, a list of all events
possible on the lattice is available. Time step is drawn
at random from the exponential distribution with the rate
parameter equal to the sum of the rates of all possible events. A

diffusion or reaction event is selected from the complete events
list at random, with probability proportional to its rate. This
approach is equivalent to a stochastic simulation according
to the Gillespie algorithm [39] extended to account for
additional diffusive events. Such construction allows for direct
comparison of motility with reaction rate constants. After
every event, the list of all events is updated. However, since
the change in the system configuration after every simulation
step is local, only a partial update of the list is necessary.
By drawing events from the always-complete list, there is
no need to simulate trial events that would be subsequently
rejected, rendering the method efficient. The overall algorithm
is essentially equivalent to the Bortz-Kalos-Lebowitz method
applied previously to, e.g., studying dynamics of Ising spin
glasses [40].

Initial distribution of molecules on the lattice is uniformly
random. Simulations were performed on the 100 × 100 lattice
to estimate EMRRCs in equilibrium; in the nonequilibrium
case, the 300 × 300 lattice was used in order to obtain
better statistics, while the spatial correlation functions were
determined based on simulations performed on the 500 × 500
lattice. As shown in Appendix A, simulations performed on
lattices of sizes equal or larger than 30 × 30 with a number of
molecules of each type exceeding 50, give the EMRRCs esti-
mates independent of the lattice size. EMRRCs in equilibrium
were determined by averaging over 10 independent, long-run
simulations of the system in equilibrium (assessed by invari-
ance of nontrivial radial distribution functions or correlation
length-based considerations [41]). Unless stated otherwise,
the simulations were preceded by equilibration phase of 1000
and lasted at least 1000 each. In the nonequilibrium case we
performed 1000 independent simulations to obtain satisfactory
statistics (see Appendix C for further details).

Numerical results are supplemented by analytical expres-
sions obtained in two extreme cases of zero and infinite
motility. We also analyze how the steady states and effective
motilities are influenced by nonspecific molecular crowders of
varying motilities.

B. Phosphorylation-dephosphorylation cycle

We consider a phosphorylation-dephosphorylation cycle
assuming that these processes are unidirectional reactions,
occurring at their respective rates; the free energy expenditure
featuring reaction cycles is neglected. Substrates are phospho-
rylated and dephosphorylated by kinases and phosphatases
according to the following set of reactions:

K + Su
c−→ K + Sp, (1a)

P + Sp
d−→ P + Su, (1b)

where Su and Sp stand for dephosphorylated and phospho-
rylated substrates, respectively, and K represents the kinase
and P the phosphatase. The symbols ρK , ρP , ρSu

, and ρSp

will denote surface densities, i.e., the fractions of lattice sites
occupied by respective molecules. Coefficients c and d are the
microscopic rate constants of phosphorylation and dephos-
phorylation reactions catalyzed by adjacent enzymes. In other
words, c and d are propensities of respective reactions when
an enzyme molecule is in contact with a substrate molecule.
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Equations (1) should not be read as exact chemical balance
equations; instead, they conform to an approximation in which
the concentration and diffusion coefficient of ATP (phosphate
donor) are sufficient to assume that ATP accessibility does
not limit the phosphorylation reaction rate. Also the inorganic
phosphate molecules produced in dephosphorylation reactions
are not taken into account.

As a reference to the basic model defined by Eqs. (1) we
also consider a model variant in which dephosphorylation is a
first-order reaction, i.e.,

Sp

d0−→ Su, (2)

whereas phosphorylation still occurs via Eq. (1a). The first-
order dephosphorylation (FOD) reaction is a simplification but
it serves as an approximation when a particular phosphatase or
its level are unknown. In order to compare FOD approximation
with the basic model, we set d0 = 6ρP d, which assures equal
dephosphorylation efficiencies in the limit of infinite motility,
as will be shown later.

The basic model does not account explicitly for the
formation of the enzymatic encounter complex: Both the
phosphorylation and dephosphorylation are considered to be
single-step reactions. In reality, these reactions are multistep
processes (enzyme-substrate binding, catalytic reaction, and
enzyme-product dissociation). As shown in the Appendix D,
this simplification does not significantly affect our key find-
ings, at least when the enzyme sequestration is weak.

C. Macroscopic description and effective reaction
rate coefficients

Time evolution of systems of reacting molecules is usually
described by chemical mass-action kinetics equations, i.e.,
systems of ordinary differential equations for densities of
substrates and products. Here we take into account the spatial
and discrete nature of biochemical reactions and simulate
numerically processes involving individual molecules. Our
aim is to determine—based on the microscopic rate constants
c and d—the effective reaction rate coefficients, which can be
then used in the macroscopic description of the system.

We define the effective macroscopic phosphorylation rate
coefficient ceff and effective macroscopic dephosphorylation
rate coefficient deff accordingly:

ceff = n

ρSu
ρKV �t

, (3a)

deff = n

ρSp
ρP V �t

, (3b)

and refer to them collectively as to EMRRCs. In Eqs. (3), n is
the number of (de)phosphorylation reactions that fired during
a time interval �t and V is the lattice surface area (i.e., total
number of lattice sites). The densities of kinases, phosphatases,
and substrates are denoted by ρ with a respective subscript:
ρK , ρP , ρSu

, and ρSp
.

For the most part in our study, we will focus on the
steady-state analysis where EMRRCs can be estimated based
on long-run simulations, in which the number of reactions is
determined over a satisfactorily long time interval �t . Only in
Appendix C will we perform simulations for the system which

is initially far from equilibrium to show that for the reversible
phosphorylation-dephosphorylation cycle EMRRCs converge
to their steady states. In this case, we will estimate EMRRCs
within short time intervals by averaging over 1000 independent
KMC simulations.

When the number of molecules present in the system is
large we can write the following system of ordinary differential
equations:

d

dt
ρSu

= −ceffρKρSu
+ deffρP ρSp

, (4a)

d

dt
ρSp

= ceffρKρSu
− deffρP ρSp

. (4b)

These two equations are complementary, since their solutions
satisfy ρSu

(t) + ρSp
(t) = ρS = const. The steady-state solu-

tion of Eqs. (4) reads:

ρSu
= deffρP

ceffρK + deffρP

ρS, (5a)

ρSp
= ceffρK

ceffρK + deffρP

ρS. (5b)

In the next section we will analyze the dependence of the
steady-state solutions and EMRRCs on motility. EMRRCs
provide more information than steady states alone; for exam-
ple, they give the ATP turnover which can be measured by
radioactively labeled ATP (γ -32P-ATP). First, we will provide
analytical results in the limits of zero and infinite motility.
Then we will analyze numerically our model for finite, nonzero
motilities.

III. ANALYTICAL RESULTS

A. Infinite-motility limit

We assume that in the infinite-motility limit the probability
of finding a given molecule is uniform on the lattice. Thus, at
any time the density of enzyme-substrate pairs is given by the
product of densities multiplied by the number of potential
neighbors, e.g., the kinase-dephosphorylated substrate pair
density is equal to 6ρKρSu

. Therefore, the phosphorylation
rate, i.e., the number of phosphorylation reactions per reactor
volume per time, is equal to 6cρKρSu

, which in light of Eq. (4)
gives c∞

eff = 6c. The limit of infinite motility will be compared
later with simulations performed for high motilities.

B. Zero-motility limit

The zero-motility limit is a singular limit, since without
mixing the whole process is determined by initial positions
of enzymes and substrates. For an arbitrarily small motility,
however, the system relaxes after a sufficiently long time.

The zero-motility limit approximates the behavior of dense
systems, in which diffusion is substantially reduced, but
reactions still occur for substrates in the close vicinity of
opposing enzymes. Increased density, together with reduced
diffusion, features receptor clusterization, necessary, for ex-
ample, for the initiation of B-cell receptor signaling [42–
45] and TLR4-CD14 cluster formation preceding receptor
internalization [46]. Formation of dense ordered patterns of
proteins and other molecules has been intensively modeled in
recent years (see Ref. [47] and references therein).
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We start the analysis of this limit by calculating the
steady-state densities of phosphorylated and dephosphorylated
substrates, ρSp

and ρSu
:

ρSp
= p+ · ρS, ρSu

= ρS − ρSp
, (6)

where p+ is the probability that a substrate molecule is in the
phosphorylated state.

When the motility is zero, the probability that a given
substrate molecule is phosphorylated depends solely on the
number of neighboring kinases, i, and the number of neigh-
boring phosphatases, j , and is equal to

p+
ij = ic

ic + jd
. (7)

The probability of having exactly i kinase and j phosphatase
neighbors is

pij =
(

6

i

)
ρi

K

(
6 − i

j

)
ρ

j

P (1 − ρK − ρP )6−i−j ,

i,j ∈ {0,1, . . . ,6}, 1 � i + j � 6 (8)

and the probability that the substrate is in the phosphorylated
state without contact with any enzyme molecule is equal to
the probability that the substrate is in the phosphorylated
state while in contact with at least one enzyme molecule.
The Eq. (8) is exact only on infinite domains with infinite
number of kinases and phosphatases; however, it serves as
a good approximation when the number of enzymes of each
type is much larger than 1. The infinitely small but nonzero
motility means that substrates equilibrated in contact with the
enzyme diffuse away maintaining their phosphorylation status
which cannot change without a subsequent contact with an
appropriate enzyme molecule.

Therefore, the probability p+ is given by the conditional
probability that a substrate molecule is phosphorylated when
in contact with at least one enzyme molecule,

p+ =
∑

1�i+j�6

pijp
+
ij

/ ∑
1�i+j�6

pij , (9)

where the sum runs over all substrate molecules having contact
with at least one enzyme molecule.

Now we will calculate EMRRCs in the steady state.
Let us notice that in the zero-motility limit reactions occur
only for the substrate molecules which have neighbors of
different types (i.e., at least one kinase and one phosphatase).
Let us recall that the probability that the substrate which
has i neighboring kinases and j neighboring phosphatases
is dephosphorylated is jd/(ic + jd). The phosphorylation
propensity is ic for the unphosphorylated substrate, while it is
0 for the phosphorylated substrate. Thus the effective phospho-
rylation propensity is ic jd/(ic + jd). In the stationary state
the number of the phosphorylation and dephosphorylation
reactions per reactor volume per time must be equal, and thus
the reaction rates are equal to ρS

∑
i,j�1,i+j�6 pij (ic jd)/(ic +

jd) and, correspondingly, the effective phosphorylation and

dephosphorylation rate coefficients are equal to

c0
eff = ρS

ρKρSu

∑
i,j � 1

i + j � 6

pij

ic jd

ic + jd
, (10a)

d0
eff = ρS

ρP ρSp

∑
i,j � 1

i + j � 6

pij

ic jd

ic + jd
, (10b)

where ρS/ρSu
= 1/(1 − p+) and ρS/ρSp = 1/p+, with p+

given by Eq. (9).
One should keep in mind that rate coefficients c0

eff and d0
eff

were derived under the steady-state assumption and, therefore,
far from equilibrium their values can be substantially different.
The phosphorylation and dephosphorylation rate coefficients
obtained in the limit of zero motility give the lower bounds
for EMRRCs. In the limit of ρK → 0 and ρP → 0, Eq. (8)
implies pij ≈ p11 = 30ρKρP (the probability of having more
than one enzyme of each kind is negligibly small, so pij = 0
for i,j > 1) and therefore in this limit c0

eff and d0
eff are

c0
eff = 30

1 − p+ ρP

cd

c + d
, (11a)

d0
eff = 30

p+ ρK

cd

c + d
. (11b)

Constants c0
eff and d0

eff can be large in systems characterized
by high densities of both kinases and phosphatases; however,
according to Eqs. (11), they decrease to zero with the density
of the opposing enzyme decreasing to zero.

C. Finite motility

We have analyzed two extreme cases of zero and infinite
motility. In the infinite motility limit, also known as the
reaction-controlled limit, the EMRRCs are proportional to the
microscopic reaction propensities (for molecules in contact).
In this limit, since m � c and m � d, the probability that
an enzyme reacts with a substrate at a single encounter is
negligibly small and proportional to the microscopic rate
constants c and d.

The small motility limit arises when the microscopic
reaction rate constants c and d are fast when compared to
motility. Processes characterized by low motility and large
reaction propensities are called diffusion limited. For such
processes the probability that an allowed reaction fires at
every collision of molecules is close to 1. Therefore, for such
processes EMRRCs are proportional to the collision frequency,
which in turn is proportional to the motility m. Here the
situation is more complex since even in the limit of zero
motility the reaction rates are nonzero, as discussed in the
previous section. Accordingly, one could expect the following
macroscopic equation:

d

dt
ρSp

= (
λm + c0

eff

)
ρK ρSu

− (
λm + d0

eff

)
ρP ρSp

, (12)

where λ is some coefficient. In fact, the considered case
is even more complicated, since, especially at low enzyme
densities, the spatial distribution of the phosphorylated and
dephosphorylated substrates is nonuniform. That is, the
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FIG. 2. (Color online) (a) Fractional density of phosphorylated substrates, ρSp
/ρS , as a function of the enzymes density ratio for different

values of motility, m. Analytically computed limits of zero and infinite motility are marked with dashed and dotted lines. Parameters are:
ρS = 0.3, ρK = 0.1, c = 1/6ρK , and d = 1/6ρP . In this series of simulations, the density of kinases was kept constant, while the density of
phosphatases was varied from ρP = ρK/0.25 = 0.4 to ρP = ρK/12 ≈ 0.008. By setting d = 1/6ρP , the change of phosphatases density was
compensated by the proportional change of the microscopic dephosphorylation rate constant. (b) Fractional density of phosphorylated substrates
as a function of m, in the case when the more abundant enzyme (kinase) has much lower catalytic activity. Simulations were performed for
ρS = 0.3, ρK = 0.1, ρP = 0.01, c = 1, and d = 100. (c) Fractional density of phosphorylated substrate as a function of m for different values
of phosphatase density ρP as well as for the first-order dephosphorylation model marked as FOD, with d0 = 1. Simulations were performed
for ρS = 0.2, ρK = 0.1, c = 1/6ρK , and d = 1/6ρP .

phosphorylated substrate molecules are more likely to be
present in the vicinity of a kinase, while the dephosphorylated
substrate molecules are more likely to be present in the vicinity
of a phosphatase. As a result, even in the symmetric case
of c = d and ρK = ρP , in which the overall probability that
a substrate is phosphorylated is 1

2 , kinase molecules collide
much more often with phosphorylated substrates, which re-
duces the effective phosphorylation rate. Intuitively, this effect
increases with decreasing density of enzymes which causes
that each phosphatase molecule is surrounded by a cloud of
dephospshorylated substrates and each kinase molecule by a
cloud of phosphorylated substrates. We will analyze this effect
in Sec. IVB by means of spatial correlation function.

As we will show below, in the general case of finite motility,
EMRRCs are controlled simultaneously by the motility, both
contact reaction propensities, and densities of both enzymes.
Therefore, analytical determination of these rate coefficients
is a challenging problem.

IV. NUMERICAL RESULTS

A. Steady-state dependence on enzyme density and motility

In this section we analyze numerically the dependence of
the steady-state density of phosphorylated and dephospory-
lated substrates and EMRRCs on motility and densities of
the opposing enzymes. The convergence of EMRRCs to their
steady state in the phosphorylation-dephosphorylation cycle
is demonstrated in Appendix C. In the same appendix the
nonreversible dynamics of phosphorylation in the absence of
phosphatase is considered.

Let us recall that in the infinite-motility limit the effec-
tive macroscopic phosphorylation and dephosphorylation rate
coefficients are c∞

eff = 6c and d∞
eff = 6d and, correspondingly

[due to Eq. (5)], the density of phosphorylated substrates is

ρSp
= cρK

cρK + dρP

ρS. (13)

To keep the steady-state densities of phosphorylated and
dephosphorylated substrates equal to 1

2 in the limit of the
infinite motility, we keep cρK = const and dρP = const, that
is, we set c = 1/6ρK and d = 1/6ρP . We found that for
finite motilities the phosphorylated substrate fraction increases
with ρK/ρP (in the analysis we keep ρK = 0.1 and vary
ρP ), and we show that the smaller the motility is, the more
pronounced this effect is, see Fig. 2(a). The dashed line for
m = 0 tends to 1 with ρK/ρP tending to infinity. For low
motility, m = 1, the numerically estimated ρSp

matches closely
the zero-motility limit. Similarly, for large motilities, ρSp

is
close to the infinite-motility limit. Because of the symmetry,
for ρK = ρP the phosphorylated substrate fraction is equal to
1
2 for all motilities.

In Fig. 2(b) we show that when kinases are more abundant
than phosphatases, but at the same time have much lower
catalytic activity, the dependence of ρSp

/ρS on motility is
strongly pronounced. At low motilities, substrates remain
mostly in the phosphorylated state, ρSp

/ρS ≈ 0.9, while at high
motilities they are mostly dephosphorylated, ρSp

/ρS ≈ 0.1.
The above shows that, generically, in the regime of low
motilities (diffusion limited) it is the density of enzymes
that decides about the state of the system and for large
motilities (reaction-controlled limit) crucial is the product of
the microscopic reaction rate constants and densities.

In Fig. 2(c) we show that the density of phosphorylated sub-
strate can either decrease or increase with motility depending
on the enzyme densities ratio. For a fixed density of kinases
(ρK = 0.1) we analyze the dependence of ρSp

on motility
for four values of phosphatase densities, as well as for the
FOD model. Since, as in Fig. 2(a), phosphatase microscopic
reaction rate constant is set d = 1/6ρP , for increasing motility,
ρSp

/ρS tends to 1
2 , regardless of the phosphatase density.

However, for small motilities ρSp
/ρS depends strongly on the

phosphatase density and, in general, differs from that for the
FOD model. Only for a very high density (ρP = 0.3) does
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FIG. 3. (Color online) Three simulation snapshots of the 300 × 300 lattice showing spatial inhomogeneities of the distribution of the
phosphorylated (red) and dephosphorylated (blue) substrates. For all panels c = d = 100, ρS = 0.1, and ρK = ρP = 0.001.

the fraction ρSp
/ρS closely match the FOD model prediction

with d0 = 1. This is due to the fact that for ρP = 0.3 the
probability that a given substrate molecule is in contact with at
least one phosphatase is high [equal to 1 − (0.7)6 = 0.88] and
therefore the dephosphorylation is effectively of first order.
This demonstrates that the FOD model cannot serve as a good
approximation across a broad range of motilities.

B. Spatial correlation functions

The results shown in Fig. 2 can be explained as follows:
for a decreased phosphatase density (compensated by a
proportionally increased dephosphorylation rate constant d),
phosphatases are surrounded by dephosphorylated substrates
and therefore the effective dephosphorylation rate coefficient
decreases. Intuitively, this effect becomes stronger for low
motilities, for which substrates have a higher chance to be
dephosphorylated after a single encounter with a phosphatase
and vanishes in the limit of infinite motility, when the
probability that a substrate molecule is in the phosphorylated
state does not depend on its position.

It is well known that the rate of diffusion controls the
steady state of the system in the case when opposing enzymes
are spatially separated. As shown and discussed by Brown

and Kholodenko, when substrate phosphorylation occurs at
the plasma membrane and dephosphorylation occurs in the
cytoplasm, gradients of phosphorylated substrates arise, and
the effectiveness of the phosphorylation process depends
on diffusion [48,49]. Later, van Albada and ten Wolde
demonstrated that the sharpness of the response decreases
with the spatial separation of opposing enzymes [50]. It was
also found that although clustering reduces signal for linear
reaction kinetics, it can dramatically increase signal strength
in the cases when substrates require double modification [51]
or there exists a positive feedback between enzymes and
substrates [42,52].

Here the spatial separation of enzymes is not imposed but
results from the discreteness of the matter. Park and Agmon
found time-dependent concentration profiles of unconverted
substrate around a solitary nonmoving enzyme molecule for
the Michaelis-Menten scheme [17]. The effect of formation
of inhomogeneities is visualized in Fig. 3 for three different
motilities, m ∈ {10,1000,10 000}. For small motilities clouds
of phosphorylated and dephosphorylated substrates are clearly
visible, whereas for larger motilities the spatial distribution
of phosphorylated and dephosphorylated substrates is nearly
uniform. This effect is quantified in Fig. 4 where the
normalized spatial correlation functions between kinases

FIG. 4. (Color online) Spatial correlation functions. (a) Spatial correlation function between kinases and phosphorylated substrates
fK,Sp

(r)/ρS for motility m = 100 and three enzyme densities. (b) fK,Sp
(r)/ρS for fixed enzyme densities ρK = ρP = 0.001 and six motilities

m. (c) Spatial autocorrelation function for phosphorylated substrates fSp,Sp
(r)/ρS . For all panels c = d = 100 and ρS = 0.1. Results shown

come from averaging over 250 snapshots from independent numerical simulations on the 500 × 500 lattice.
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and phosphorylated substrates, fK,Sp
(r)/ρS , and between

phosphorylated substrates, fSp,Sp
(r)/ρS , are plotted (r being

the distance). Function fK,Sp
(r)/ρS is calculated based on

250 snapshots from independent numerical simulations on
the 500 × 500 lattice, long enough to reach the equilibrium
distribution. From each snapshot, fK,Sp

(r) is calculated as
1

NK

∑
K NSp

(r)/N (r), where NK is the number of kinase
molecules on the lattice, NSp

(r) is the number of phospho-
rylated substrates at the distance between r and r + �r from
a given kinase, and N (r) is the number of lattice sites at the
distance between r and r + �r . Then fK,Sp

(r) is averaged over
all snapshots. Function fSp,Sp

(r)/ρS is calculated analogously
(i.e., the sum is over all pairs of phosphorylated substrate
molecules).

As one could expect, the correlation length as well as
the amplitude of the correlation function fK,Sp

increase with
decreasing enzyme density, Fig. 4(a). Correlation length is of
the order of the average distance between enzymes 1/

√
ρK =

1/
√

ρP . For small motilities fK,Sp
(1)/ρS ≈ 1, i.e., substrates

adjacent to kinase are phosphorylated with probability close to
1. The fSp,Sp

(r) correlation function is smaller but the correla-
tion length is longer. The fSp,Sp

(r)/ρS function may not reach
1 even for the smallest m, since phosphorylated substrates
that are at the borders of clouds are in the close vicinity
of dephosphorylated ones. The larger correlation length of
fSp,Sp

(r) can result from fluctuations in kinase distribution.
They can cause formation of transient, large “superclouds”
of phosphorylated substrates surrounding several kinases.
These clouds contribute to long-range correlation between
phosphorylated substrates.

C. Effective macroscopic reaction rate coefficients

In this section we estimate EMRRCs on the basis of
long-run numerical simulations. As was already discussed
under Models and Methods, ceff can be estimated according
to Eq. (3). In Fig. 5 we show ceff/c

∞
eff for three values of

dephosphorylation rate constant d, as well as for the FOD
model with d0 = 1.

Effective macroscopic phosphorylation rate coefficient, ceff ,
increases with reagents’ motility and this effect is more visible
for small dephosphorylation reaction rate constant d. This
shows that the phosphorylation kinetics is strongly coupled
with the dephosphorylation kinetics and therefore the effective
macroscopic phosphorylation and dephosphorylation reaction
rate coefficients cannot be estimated separately. Figure 5 shows
that ceff is a function of ρK , ρP , c, d, and m. The dependence
of ceff on motility is the strongest at the smallest considered
enzyme densities, ρK = ρP = 0.01, see Fig. 5(c), and the
weakest for the highest considered densities, ρK = ρP = 0.2,
see Fig. 5(a), where c0

eff/c
∞
eff is large. This, consistently with

Fig. 2, is due to the fact that at high enzyme densities, substrates
are constantly in contact with both kinases and phosphatases,
and thus the phosphorylation and dephosphorylation reactions
can occur almost independently of the diffusion. As shown
for ρK = ρP = 0.2 and ρK = ρP = 0.05, Figs. 5(a) and 5(b),
numerically estimated ceff for m = 0.1 matches well the
analytically calculated limit of c0

eff ; for ρK = ρP = 0.01,
Fig. 5(c), the agreement is worse since the convergence of
ceff(m) to c0

eff is slower.

FIG. 5. (Color online) Scaled effective macroscopic phosphory-
lation rate coefficient ceff/c

∞
eff as a function of motility m. Densities

of enzymes are ρK = ρP = 0.2 in (a), ρK = ρP = 0.05 in (b), and
ρK = ρP = 0.01 in (c). First-order dephosphorylation model marked
as FOD, with d0 = 6ρP , which corresponds to d = 1 in the basic
model. Analytically calculated c0

eff are marked by respective arrows
next to the vertical axis. For all panels ρS = 0.3, c = 1.

We will now analyze these effects in the limit when phos-
phorylation is a diffusion-driven process. As discussed above,
such a limit can be achieved when diffusion-independent
reactions are very infrequent compared to those driven by
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diffusion, i.e., when

c0
eff 
 λm, d0

eff 
 λm. (14)

Simultaneously, the microscopic reaction rate constants, c and
d, should be much larger than motility, so the probability of a
reaction firing at a collision is close to 1,

c � m, d � m. (15)

These conditions are difficult to satisfy in numerical simula-
tions, therefore to estimate the diffusion-limited contribution,
λm, we subtract the analytically calculated zero-motility
rate constant c0

eff from the numerically estimated ceff . We
will here assume high reaction propensities, c = d = 1000,
and consider motilities m ∈ [0,1000] and enzyme densities
ρE ∈ [0.0001,0.1]. The EMRRC is estimated, as previously,
from long-run numerical simulations on the 100 × 100 lattice,
based on Eq. (3).

First we investigate the symmetric case of ρK = ρP =: ρE .
In Fig. 6(a) we show the dependence of ceff/c

∞
eff on enzyme

densities in a log-log scale for seven values of motility. The
numerical predictions for small motilities, m = 1 and m = 3,
lie close the theoretical prediction of the zero-motility limit
(dashed line). It shows that for relatively small motilities
and large enzyme densities the zero-motility contribution is a
substantial part of the overall effective rate. The theoretically
predicted c0

eff is the lower bound for the effective rate
coefficient. The zero-motility contribution is proportional to
the enzyme density and thus for intermediate motilities, m ∈
{10,30}, it becomes dominant as enzyme density increases.

In order to eliminate the zero-motility contribution from the
effective rate coefficient, we show (ceff − c0

eff)/c
∞
eff with respect

to enzyme densities [Fig. 6(b)] and with respect to motility
[Fig. 6(c)]. In light of Eq. (12) we would expect ceff − c0

eff =
λm and therefore (ceff − c0

eff)/c
∞
eff to be proportional to m for

fixed densities of enzymes, which is confirmed in Fig. 6(c). The
average of gradients of lines on the log-log plot is equal to 0.99.
We therefore numerically confirmed our heuristic prediction
that in the small motility limit:

ceff = c0
eff + λ(ρE)m. (16)

Figure 6(b) confirms that the coefficient λ decreases
(weakly) with decreasing enzyme density. As discussed in
Sec. IVB, this dependence follows from the fact that, at
low enzyme densities, enzymes are surrounded by clouds of
converted substrates. This effect is quantified in Fig. 4(a)
showing that spatial correlation function between kinase
and phosphorylated substrate increases (in both amplitude
and correlation length) with decreasing density of enzymes.
The effective reaction rate is proportional to the density of
unconverted substrates in lattice sites adjacent to the enzyme
site. Therefore, it decreases to zero when the correlation
function tends to 1 in r = 1 (adjacent sites).

D. Molecular crowding: Steady-state dependence
on crowders’ motility

Here we investigate the molecular crowding effect, i.e., we
analyze how the densities of active substrates in the stationary
state change due to the presence of additional molecules,

FIG. 6. (Color online) (a) Scaled effective macroscopic phospho-
rylation rate coefficient ceff/c

∞
eff as a function of enzyme density

ρK = ρP . (b) Scaled effective macroscopic phosphorylation rate
constant with subtracted zero-motility contribution: (ceff − c0

eff )/c
∞
eff

with respect to enzyme density. (c) (ceff − c0
eff )/c

∞
eff with respect to

motility. For all panels c = d = 1000.

crowding agents, which do not react but occupy space and
diffuse with a given motility mC , not necessarily equal to m.

As shown in Fig. 9 in Appendix B, the presence of
crowding agents leads to the decrease of effective motility of
reacting molecules and this decrease is more pronounced for
small motilities of crowding molecules and large motilities of
reacting molecules [Fig. 9(b) versus Fig. 9(a)]. The reduction
of the effective substrate motility either increases the fraction
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FIG. 7. (Color online) Phosphorylated substrate fractional den-
sity with respect to the density of crowding agents ρC . Reagents
motility mR = 100 in (a), mR = 1000 in (b), and for four values of
crowding agents motility mC. Dashed lines refer to the simulations
without crowding agents, with scaled reagents motility m̃, see
Eq. (17). Other parameters are ρS = 0.2, ρK = 0.09, ρP = 0.01,
c = 1/6ρK , and d = 1/6ρP .

of phosphorylated substrates in the stationary state, provided
that ρK > ρP , or, because of the symmetry of the model,
decreases this fraction for ρP > ρK . As shown in Fig. 7(b),
the effect of crowding agents can be almost fully reproduced
by the appropriate scaling of reagents motility,

m̃R := mR

meff(ρR,ρC,mR,mC)

meff(ρR,mR)
, (17)

where ρR = ρS − ρK − ρP is the fractional density of all
reacting molecules assumed to have the same motility mR .
In the numerator of Eq. (17) there is the effective motility
of reacting molecules of density ρR and motility mR in the
presence of crowding agents of density ρC and motility mC ,
estimated in numerical simulations and given in Fig. 9(b).
In the denominator of Eq. (17) there is the effective motility
of reacting molecules of density ρR and motility mR in the
absence of additional molecules, given by the approximate
Eq. (B5). This shows that the presence of chemically inert
molecules can substantially change the balance between
opposing reactions.

V. DISCUSSION

We investigated the correspondence between microscopic
and macroscopic reaction rate coefficients in the model of
the phosphorylation-dephosphorylation cycle with respect to
diffusion (motility). The biological membrane is simplified
to a two-dimensional triangular lattice where molecules are
allowed to move with given motilities and react when in
adjacent lattice sites with given propensities: microscopic
reaction rate constants. Based on numerical simulations we
estimated the steady state of the system (fraction of phospho-
rylated substrates) as well as EMRRCs as functions of reaction
propensities, fractional densities of substrates, and motility.
There are two opposing limits of infinite and zero motility, for
which the EMRRC steady states were calculated analytically
and confirmed numerically.

In the infinite motility limit, the positions of molecules
are independent and therefore the macroscopic reaction rate

is proportional to the product of enzyme and substrate
densities and reaction propensities. This implies that the
macroscopic reaction rate coefficients are equal to the mi-
croscopic propensities multiplied by the number of potential
neighbors (which is 6 in our case of the triangular lattice). In
this limit of infinite motility, the probability that a reaction
fires at a substrate-enzyme collision is (infinitely) small and
proportional to reaction propensity, and therefore the process
can be considered as reaction limited.

In the limit of zero motility, reactions can occur only for the
substrates which remain in contact with the opposing enzymes
and therefore the zero-motility reaction rate coefficients
decrease to zero with enzyme densities decreasing to zero, but
can be significant for dense systems. In realistic conditions the
limit of zero motility can be approached in very dense systems
in which the effective diffusion is very low due to molecular
crowding, and the probability that a substrate is trapped in
contact with the opposing enzymes is high. This limit gives
the lower bound for the effective reaction rate coefficients for
nonzero motility.

For finite (small, but nonzero) motility we have shown
the emergence of the contribution (proportional to molecules’
motility) stemming from diffusion-limited reactions. In this
regime (almost) all enzyme-substrate collisions lead to re-
actions. The most challenging is the regime of intermediate
motilities, in which we found (based on numerical simulations)
that the EMRRCs (and steady states of the system) depend
in a nontrivial way on all microscopic reaction propensities
and fractional densities of substrates. Precisely, the effective
phosphorylation rate coefficient depends not only on the mi-
croscopic phosphorylation rate constant and kinase density but
also on the dephosphorylation rate constant and phosphatase
density. The parameters describing the activity and density of
opposing enzymes influence the spatial distribution of phos-
phorylated substrate and, consequently, the probability that,
e.g., a kinase molecule will collide with a dephosphorylated
substrate. Generally, small enzyme densities give rise to clouds
of phosphorylated and dephosphorylated substrates surround-
ing respective enzymes. However, the analytical estimation
of macroscopic parameters for intermediate motility requires,
and in our opinion deserves, more effort.

The analysis of the influence of molecular crowding on the
steady state of the system showed that the presence of crowding
molecules can be accounted for by modifying effective motility
of reagents. Quite surprisingly, a system without crowding
molecules but with appropriately reduced reagents motility
predicts almost the same steady state as the system with
crowding molecules. We have quantified the influence of
molecular crowding on the effective motility of reagents and
provided a semianalytical formula for the mentioned scaling.

The phosphorylation-dephosphorylation cycle was ana-
lyzed under the simplifying assumption in which the phos-
phorylation and dephosphorylation are treated as single-step
reactions. In reality these processes involve at least three
steps and require formation of a transient enzyme-substrate
complex. In Appendix D we consider a model in which an
enzyme and substrate can form a transient complex; we show
that while enzyme-substrate binding is relatively short and,
correspondingly, the enzyme sequestration is low, this more
detailed model predicts almost the same steady states as the
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original, more coarse-grained, model. In the case of more
stable enzyme-substrate binding, we found that the level of
enzyme (and substrate) sequestration substantially increases
with motility and that, consequently, the sequestration modifies
(quantitatively) steady-state dependence on motility. Analysis
of this case requires further study.

In summary, our analysis is a step towards the determination
of effective macroscopic reaction rate coefficients and steady
states for ubiquitous cycles of opposing reactions with respect
to the motility of substrates and enzymes and their densities.
The presence of two antagonistic enzymes and discrete-
ness of reacting substances lead to inhomogeneities in the
phosphorylated and dephosphorylated substrate distribution.
These inhomogeneities are large for slow diffusion and
small enzyme densities, as indicated by spatial correlation
functions. As a result, the effective catalytic activities depend
on the diffusivity and enzymes densities: In the example
presented in Fig. 2(b) kinases “win” at low motility, while
at high motility phosphatases dominate, rendering most of the
substrate dephosphorylated.
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APPENDIX A: DEPENDENCE OF EMRRCS
ON THE LATTICE SIZE

Here we analyze the influence of the lattice size on the esti-
mated EMRRCs (see Fig. 8). The simulations were performed
on lattices 300 × 300, 100 × 100, 30 × 30, and 10 × 10. For
each lattice size and each parameter set [corresponding to
parameters chosen for Fig. 5(b)] we performed 10 independent
simulations with simulation times t = 103, t = 9 × 103, t =
100 × 103, t = 900 × 103, i.e., inversely proportional to the
lattice size, which assured that more than 5 × 104 reactions
fired in each simulation. Each simulation was preceded by an
equilibration phase lasting for 1000. We calculated the scaled
effective macroscopic phosphorylation rate coefficient ceff/c

∞
eff

independently for each simulation, and then, based on the set of
10 simulations (for each lattice size and each parameter set),

FIG. 8. (Color online) Scaled effective macroscopic phosphory-
lation rate coefficient ceff/c

∞
eff , estimated in simulations performed

on lattices of different sizes. For all simulations ρS = 0.3, c = 1,
m = 1, and ρK = ρP = 0.05. In the first-order dephosphorylation,
model marked as FOD, d0 = 6ρP , which corresponds to d = 1 in
the basic model. The difference between the 10 × 10 lattice and the
remaining lattices is statistically significant, the differences between
larger lattices are of order of the statistical error.

we calculated the mean value of ceff/c
∞
eff and the error of the

mean. In each case the error of the mean was found smaller
than 10−3. In conclusion, we found that for assumed densities
of molecules the differences between the 10 × 10 lattice and
the remaining lattices are significant, while the differences
between larger latices are of the order of the statistical error.
One could expect that the dependence of EMRRCs on the
lattice size can be stronger for systems of smaller molecule
densities. In the analyzed system there are 45 phosphatases,
45 kinases, and 300 substrates on the 30 × 30 lattice.

APPENDIX B: MACROSCOPIC DIFFUSION
COEFFICIENT AS A FUNCTION OF MOTILITY

AND MOLECULES DENSITY

Here, in order to study the impact of molecular crowding on
the phosphorylation-dephosphorylation kinetics, we analyze
the impact of crowding agents on effective diffusion coeffi-
cient. The macroscopic diffusion coefficient, D, of a single
tracer molecule having motility m depends on the total density
of the crowding molecules ρC (i.e., the fraction of lattice sites
occupied by molecules), their motility mC = m/γ , and the
lattice constant �:

D = f (ρC,γ )(1 − ρC)�2m/4, (B1)

where f is the correlation function that can be approximated
by the following formula [53,54]:

f (ρC,γ ) =
{
[(1 − γ )(1 − ρC)f0 + ρC]2 + 4γ (1 − ρC)f 2

0

}1/2 − [(1 − γ )(1 − ρC)f0 + ρC]

2γ (1 − ρC)f0
, (B2)

where

f0 = (1 − α)/[1 + α(2γ − 1)]. (B3)

The coefficient α depends on the lattice type; for the triangular
lattice (considered here) α = 0.282, for the square lattice
α = 1 − 2/π , and for the honeycomb (or hexagonal) lattice
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FIG. 9. (Color online) Scaled effective motility meff/m as a
function of density of crowding molecules ρC and motility mC =
m/γ . (a) Effective motility of a tracer molecule in the presence
of crowding molecules. Lines correspond to the theoretical result
given by Eq. (B1), and circles mark results of corresponding nu-
merical simulations. (b) Scaled effective motility meff/m of reacting
molecules with fractional density ρR = 0.3 and motility m = 1000
in the presence of crowders. This result is used in simulations shown
in Fig. 7(b).

α = 1/2 [55]. The parameter meff = f (ρC,γ )(1 − ρC)m will
be considered as the effective motility of the tracer molecule in
the presence of crowding molecules of density ρC and motility
mC .

The correlation function f satisfies 0 < f < 1 for 0 <

γ < ∞. In the limit of γ → 0, i.e., when crowding
molecules move infinitely fast and a tracer molecule does
not sense their positions, f → 1; in the limit of γ = ∞, i.e.,
when crowding molecules do not move, the expression for

f reads:

f (ρC) = max

{
0,

(1 − α) − ρC(1 + α)

(1 − ρC)(1 − α)

}
. (B4)

According to the equation above, the diffusion coefficient
of a tracer molecule drops to zero when the fractional density
of immobile obstacles equals ρcrit = (1 − α)/(1 + α) = 0.56,
which agrees reasonably well with the percolation threshold
of 1/2 for the triangular lattice. In the case most interesting to
us, i.e., when all molecules have the same motility (γ = 1),
Eq. (B1) simplifies to

D(ρC,1) =
√

ρ2
C + 4(1 − ρC)

(
1−α
1+α

)2 − ρC

2
(

1−α
1+α

) �2m/4. (B5)

The approximate Eq. (B1) agrees well with our simulation
results presented in Fig. 9(a). In these simulations we esti-
mated the effective motility of the tracer molecule meff :=
〈Dist2〉/�t , based on the mean-square distance 〈Dist2〉 covered
by the tracer molecule in time �t . To obtain reasonable
statistics at a modest computational cost we performed
simulations in which the number of tracer molecules was
larger than 1 but always smaller than 1% of the number of
crowding molecules. Finally, in order to analyze the influence
of crowding molecules with a given motility on the effective
motility of reacting molecules, we performed simulations in
which the density of reacting molecules was 30%, while
different densities and motilities of crowding molecules were
considered, see Fig. 9(b). These results are used in Sec. IV
D to interpret the effect of molecular crowding on the steady
state of the reacting system.

FIG. 10. (Color online) Scaled effective macroscopic phosphorylation rate coefficient ceff/c
∞
eff and fractional density of phosphorylated

substrates ρSp
/ρS as a function of time with initial density of phosphorylated substrate set zero. Simulations were performed for ρK = 0.001,

ρS = 0.3, m = 1, c = 1, and d = 1. Two cases are considered: nonreversible phosphorylation (a) with ρP = 0 and a reversible phosphorylation-
dephosphorylation cycle (b) and (c) with ρP = ρK and ρP = 3ρK . The curves in panels (a), (b), and (c) result from averaging over 1000
independent simulations performed on the 300 × 300 lattice. In the nonreversible case, the fraction of dephosphorylated substrate drops to
0.5% at the end of simulations, leading to substantial fluctuations in the effective macroscopic phosphorylation rate coefficient. Coefficients of
the fitting function in (a) are a = 5.044 and b = 1.586. In panels (d), (e), and (f) we compare ceff (t)/c∞

eff estimates based on 1000 simulations
(black line) with the estimates based on 333 simulations (three red lines). The trajectories for t > 1000 are shown in the insets.
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FIG. 11. (Color online) (a) Fractional density of phosphorylated substrates as a function of the enzyme ratio for different values of motility
m. We compare the model variant in which the formation of a transient enzyme-substrate complex is explicitly included [the case of weak
enzyme sequestration, Eqs. (D2); dotted lines] with the original model prediction shown in Fig. 2(a) (solid lines). The parameters used in the
simulations of the basic (original) model: ρS = 0.3, ρK = 0.1, c = 1/6ρK , d = 1/6ρP ; the parameters for the model variant considered are
defined by Eqs. (D2). In the calculation of the phosphorylated substrate fraction only free (unbound) substrates are considered. (b) Fractional
density of phosphorylated substrates as a function of m. We compare the original model prediction shown in Fig. 2(b) (black line) with the model
variant in which the formation of a transient enzyme-substrate complex is explicitly included; two cases are considered: weak sequestration,
Eqs. (D2), and moderate enzyme sequestration, Eqs. (D3). The parameters used in simulations are ρS = 0.3, ρK = 0.1, ρP = 0.01, c = 1, and
d = 100. (c) Fraction of sequestered reactants for the weak and moderate sequestration cases as a function of m in simulations performed
for (b). (d) Steady-state densities of all reactants and complexes in the case of moderate sequestration, Eqs. (D3), for three motilities: m = 1,
m = 1000, and m = ∞. Values for finite motility come from simulations performed for (b). Values for infinite motility are given by the steady
state of the corresponding system of ODEs.

APPENDIX C: SYSTEM EQUILIBRATION

In this appendix we numerically analyze system relaxation
to the steady state. Within the framework of our main model we
consider irreversible and reversible dynamics with the initial
condition in which all substrates are dephosphorylated. In the
irreversible case, Fig. 10(a), we assume that phosphatases
are absent, while in the reversible case we assume that the
density of phosphatases is either equal to, or 3 times higher
than, the density of kinases, Figs. 10(b) and 10(c). In both
cases, since at t = 0 all substrates are dephosphorylated,
there is no correlation between the position of a substrate
molecule and its phosphorylation status. Therefore, in the limit
of t → 0, the scaled effective macroscopic phosphorylation
rate coefficient ceff/c

∞
eff → 1; however, on the time scale

of 1/c (when substrates being in contact with kinases are
phosphorylated) it decreases to lower values.

In the irreversible case, Fig. 10(a), ρSp
/ρS → 0, while

the effective macroscopic phosphorylation rate coefficient
decreases slowly with time. Torney and McConnel [11]
showed theoretically that in two dimensions (in contrast
to three dimensions) the reaction rate coefficient of the
irreversible reaction A + B → ∅ decreases logarithmically
in time. The fit shown in Fig. 10(a) suggests that also for
our reaction, K + Su → K + Sp, the reaction rate coefficient

decreases logarithmically as a/ ln(bt), where a = 5.044 and
b = 1.586.

In the reversible case considered in this study [see
Figs. 10(b) and 10(c)], we observe that the effective macro-
scopic phosphorylation rate coefficient, as well as the density
of phosphorylated substrate ρSp

/ρS , converge to the (positive)
steady-state values. Interestingly, the convergence of the
effective macroscopic phosphorylation rate coefficient is about
one order of magnitude faster than the convergence of ρSp

/ρS ,
which shows that the steady-state values of EMRRCs can serve
as a good approximation also when the system is far from its
steady state.

The effective macroscopic phosphorylation rate coefficient
shown in Figs. 10(a), 10(b), and 10(c) was calculated based
on Eq. (3a) by averaging over 1000 independent simulations
on the 300 × 300 lattice. The time interval �t was adjusted
in such a way that the cumulative number of reactions (in
1000 simulations) is not smaller than 50 000. Therefore, in the
reversible case, �t is of order of 1 during the whole simulation,
while in the irreversible case (in which the frequency of
phosphorylation events decreases substantially) �t increases
from 1 to about 200 at the end of simulation time. Since the
time derivative of ceff(t)/c∞

eff also decreases, the increase of �t

does not contribute substantially to the error.
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To demonstrate the accuracy of our ceff(t)/c∞
eff numerical

estimates, in Figs. 10(d), 10(e), and 10(f), we compared the
estimates based on 1000 simulations with three estimates, each
based on 333 simulations. The difference between estimates
based on 1000 and 333 simulations is visible only in the close-
ups (insets).

APPENDIX D: ANALYSIS OF THE MODEL WITH
TRANSIENT ENZYME–SUBSTRATE COMPLEXES

The phosphorylation-dephosphorylation cycle was ana-
lyzed under the simplifying assumption in which the phospho-
rylation and dephosphorylation are treated as single-step reac-
tions. In reality, these processes involve at least three steps and
require formation of a transient enzyme-substrate complex. It
is therefore important to verify whether the analyzed effects are
preserved when the more accurate description is considered.
In the more detailed model, reactions (1) are replaced by

K + Su

c1�
c2

{K · Su} c3−→ {K · Sp} c4−→ K + Sp, (D1a)

P + Sp

d1�
d2

{P · Sp} d3−→ {P · Su} d4−→ P + Su, (D1b)

where curly brackets denote substrate complex.
We consider two sets of reaction rate constants correspond-

ing to the short or longer enzyme-substrate binding, implying,
respectively, either weak or stronger but still moderate enzyme
sequestration. The constants for the two cases are

weak sequestration:

c1 = 2c, c2 = 10c, c3 = 10c, c4 = 100c, (D2a)

d1 = 2d, d2 = 10d, d3 = 10d, d4 = 100d; (D2b)

moderate sequestration:

c1 = 10c, c2 = 9c, c3 = c, c4 = 100c, (D3a)

d1 = 10d, d2 = 9d, d3 = d, d4 = 100d. (D3b)

For these two sets of constants a substrate being initially
in contact with an enzyme molecule is modified with almost
the same probability as in the original model. For this model
variant we performed an analysis analogous to that shown in
Fig. 2 (see Fig. 11). In the case of weak sequestration, we
obtained the quantitatively similar dependence of fraction of
phosphorylated substrate on enzyme density and on motility
[Figs. 11(a) and 11(b)] as in the original model.

For stronger sequestration, for which the fraction of
sequestered kinase exceeds 60% (for large motilities), the
agreement with the original model [Fig. 11(b)] is only
qualitative. Importantly, the fraction of sequestered enzymes
and substrates significantly grows with motility. This is due
to the fact that the increase of motility implies more enzyme-
substrate encounters, and therefore increases their binding rate,
not influencing the dissociation rate.

Overall, the analysis of the above model variant shows
that the reported dependence of steady state on motility
is independent of the details of the phosphorylation and
dephosphorylation processes, as long as the fractions of
sequestered enzymes and substrate are small, and results from
the presence of opposing enzymes in the reaction network.
However, for stronger enzyme-substrate binding, the fraction
of sequestered reactants is higher (and dependent on their
motility), and therefore the quantitative dependence of the
phosphorylated substrate fraction on motility can differ and
requires further study.
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