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Molecular organization of nematic liquid crystals between concentric cylinders:
Role of the elastic anisotropy
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The orientational order in a nematic liquid crystal sample confined to an annular region between two concentric
cylinders is investigated by means of lattice Monte Carlo simulations. Strong anchoring and homeotropic
orientations, parallel to the radial direction, are implemented at the confining surfaces. The elastic anisotropy is
taken into account in the bulk interactions by using the pair potential introduced by Gruhn and Hess [T. Gruhn
and S. Hess, Z. Naturforsch. A 51, 1 (1996)] and parametrized by Romano and Luckhurst [S. Romano, Int. J.
Mod. Phys. B 12, 2305 (1998); Phys. Lett. A 302, 203 (2002); G. R. Luckhurst and S. Romano, Liq. Cryst. 26,
871 (1999)], i.e., the so-called GHRL potential. In the case of equal elastic constants, a small but appreciable
deformation along the cylinder axis direction is observed, whereas when the values of K11/K33 if K22 = K33 are
low enough, all the spins in the bulk follow the orientation imposed by the surfaces. For larger values of K11/K33,
spontaneous deformations, perpendicular to the polar plane, increase significantly. Our findings indicate that the
onset of these deformations also depends on the ratio K22/K33 and on the radius of the cylindrical surfaces.
Although expected from the elastic theory, no tangential component of the deformations was observed in the
simulations for the set of parameters analyzed.
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I. INTRODUCTION

Lattice simulations where a small cluster of neighboring
molecules is represented simply by a headless vector (spin)
have been employed in investigating orientational properties
of liquid crystals since the pioneering work of Lebwohl
and Lasher [1]. Simple lattice models are particularly useful
for the investigation of confined systems [2] and complex
geometries, where the analytical treatment with the elastic
theory may be prohibitive and sometimes has to be restricted
to a few approximate situations [3]. In these cases, potentially
relevant from the applicative point of view, lattice simulations
employing suitable chosen potentials are helpful and can
be implemented in a very efficient way [4,5]. Likewise, the
study of defects is particularly suitable to being attacked by
computer simulations [6,7]. The aim of the present paper
is to use Monte Carlo simulations to investigate the role
of the elastic anisotropy on the spontaneous deformations
of nematic liquid crystals trapped between two concentric
cylinders. Systems of this type can be relevant for tribological
applications [8–10], where a change in the viscosity and
friction properties of a liquid crystal depend on a variation
of its molecular organization, and can be also important in
photonics in which the confinement of power is improved in
clad liquid crystal optical fibers [11–13]. Some special cases
have been investigated analytically by many authors [14–21].
Various features of nematics confined between two coaxial
cylinders have also been studied by computer simulations
[22–25]. Here we have used a Hamiltonian that takes into
account the elastic anisotropies as parameters to analyze the
dependence of the spontaneous deformations of the nematic
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on the relative strengths of these elastic constants and other
system variables such as the radii of the cylinders. After a brief
description of the simulation model, we present Monte Carlo
results obtained for some values of the ratio between bulk
elastic constants as well as some values of the thickness of the
sample. In addition to quantitative observables, we have also
simulated the different polarized microscopy optical patterns
that can be expected for the different cases represented by the
choice of the parameter values.

II. SIMULATION DETAILS

The sample cell is the annular region between two con-
centric cylinders, aligned along the Z direction, which is
filled with nematic liquid crystals. To represent the particles
of the uniaxial system to be simulated, N three-dimensional
spins ui are placed at the sites of a simple cubic lattice and
usual periodic boundary conditions are considered along the
Z direction. The radial boundary conditions are imposed by
using two sets of ghost spins, which are kept fixed during
the simulations. These sets are built by collecting all the
spins that are at distances r1 and r2 (largest integer) from the
cylinder axes, giving rise to the boundary surfaces S1 and S2.
In both surfaces, the ghost spins are oriented along the radial
R direction. The spins in the annular region inside the surfaces
F are free to reorient in any direction. The Hamiltonian of the
system has the form

U = 1

2

∑
i,j∈F

i �=j

�B
ij + J1

∑
i∈F

j∈S1

�
S1
ij + J2

∑
i∈F

j∈S2

�
S2
ij , (1)

where the first term �B
ij refers to the bulk spin-spin interaction

and the second and third terms �
S1
ij and �

S2
ij refer to spin
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interaction with the internal and external surfaces, respectively.
In addition, Ji is the ratio between the strength of the
interaction with the surface and the strength of the bulk
interaction. For simplicity, in the calculations performed in
this paper these values are assumed to be J1 = J2 = 1.

On the surfaces, a Lebwohl-Lasher (LL) [1] pair po-
tential between the spins is assumed in order to represent
an anisotropic interaction such as the well-known Rapini-
Papoular approximation [26]. Thus, the interaction of the
molecules with the surfaces may be governed by a potential of
the form

�
S1,2

ij = −P2(bij ), (2)

where bij = ui · uj and P2 is a second-rank Legendre polyno-
mial.

To account for the elastic anisotropy effects, the bulk
interaction is assumed to be governed by the pair potential
proposed by Gruhn and Hess [27] and extensively applied
in computer simulations by Romano and Luckhurst [28–30],
known as the GHRL potential. It has the form

�B
ij = εij {λ[P2(aj ) + P2(ak)] + μ[ajakbjk − 1/9]

+ νP2(bjk) + ρ[P2(aj ) + P2(ak)]P2(bjk)}, (3)

where εij = 1 if i and j are nearest neighbors and 0 otherwise.
The scalars ai and aj are defined as ai = ui · s and aj =
uj · s, where s = r/|r| and r = xi − xj , with xi and xj being
dimensionless coordinates of the ith and j th lattice points,
respectively. The parameters of the potential may be written
as [27]

λ = 1
3�(2K11 − 3K22 + K33),

μ = 3�(K22 − K11),

ν = 1
3�(K11 − 3K22 − K33),

ρ = 1
3�(K11 − K33),

(4)

where � is the length of the lattice unit cell. All the parameters
are scaled with |ν|, which allows one to recover the LL
approximation when K11 = K22 = K33. This potential enables
us to rescale the elastic constants with one of them (K33, for
instance), while the parameters λ, μ, and ρ remain unchanged.
Thus, hereafter the elastic constants will be scaled as K11/K33

and K22/K33.
The initial condition corresponds to a sample aligned along

the R direction. The simulation technique is the standard
Metropolis Monte Carlo procedure [31]. A spin i in F is ran-
domly selected and an angular move is performed. The move
is accepted with probability p = min[1, exp(−�E/kBT )],
where kB is the Boltzmann constant, T is the absolute
temperature, and �E is the energy difference between the
new sample configuration and the old one. The angular
move is attempted by applying a rotation of an angle α to
one of the axes, randomly chosen. The angle α is fixed at the
beginning of the simulations as π/2 and it is adjusted during the
running in order to keep the percentage of the accepted moves
around 50%. One Monte Carlo cycle is completed when all
the molecules in F have attempted to move once.

To investigate the molecular orientation in the sample,
several parameters are evaluated during the simulations. The

ordinary second-rank orientational order parameter, defined as

〈P2〉 = 3
2 〈cos2 β〉 − 1

2 , (5)

with β representing the angle formed by one spin and a
hypothetical global nematic director of the sample, can be
obtained by taking the highest eigenvalue of the matrix:

Qkl = 3

2N

N∑
i=1

(
uikuil − 1

3
δkl

)
,

where uik is the component k of the spin i. This parameter may
often be inadequate for inhomogeneous or confined systems.
For instance, if the sample has a uniform radial orientation,
it assumes a value around 0.25, which is equal to its value in
the case of a completely disordered two-dimensional system.
Therefore, we also find it useful to determine an order param-
eter with respect to a certain specific direction c, defined as

P2c = 3

2N

N∑
i=1

(
(ui · c)2 − 1

3

)
.

This value tends to 1 if the spins are parallel to c and tends
to −1/2 if the spins are perpendicular to it. In the present
calculations, c will assume in turn the direction of R, Z, and
θ , which are the unit vectors defining the usual cylindrical
coordinate system [32].

The simulations allow one to reproduce or predict
experimental observations of liquid crystals such as the
polarized microscopy optical textures. These patterns can
be simulated by means of a Müller matrix approach [7,33],
assuming that the molecular domains represented by the spins
act as retarders on the light propagating through the sample
[34]. The procedure is described in Ref. [35] and the following
parameters were employed for computing the optical textures:
sample thickness d = 5.3 μm, ordinary and extraordinary
refractive indices no = 1.5 and ne = 1.66, respectively, and
light wavelength λ0 = 545 nm.

For all the cases analyzed here, the reduced temperature,
defined as TR = kBT /|ν|, was set at TR = 0.2, far enough
from the nematic-isotropic transition in the bulk, which is
TR = 1.1232 [36] for the Lebwohl-Lasher model. At this low
temperature we expect the Monte Carlo simulation to give
results similar to those that would be obtained by numerical
minimization of the Frank elastic energy, but without the limits
on sample size.

III. RESULTS

We focus on analyzing the effects of changing the elastic
constants on the spontaneous deformations in this particular
cylindrical sample. To accomplish this task, different sets of
elastic constants were considered. The height of the cylinders
studied was taken to be constant (ten layers with periodic
boundary conditions). The external radius used was r2 = 40
(lattice units), but the value r2 = 60 (lattice units) was also
considered in order to control possible finite-size effects
connected to the external surface. The effects of thickness were
instead studied by changing the values of the inner cylinder
radius. For each set of elastic constant and cylinder sizes,
the simulations were started with all the spins parallel to the
R direction and were allowed to evolve for 106 Monte Carlo
cycles. A few cases have been followed for longer time to check
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FIG. 1. Profiles for equal elastic constants (LL model) of (a) P2R , (b) P2Z , (c) P2θ , and (d) P2 as a function of the distance from the cylinder
axis for various inner cylinder radii r1 boundaries. The maximum observed in P2Z has a minimum correspondent in P2R , but no change in P2θ

is detected. The P2 profiles present values very close to 0.25. Profiles for different elastic constants (GHLR model) of P2Z as a function of
the distance from the cylinder axis for the sets (e) K11/K33 = 0.5 and K22/K33 = 1.0 and (f) K11/K33 = 3.0 and K22/K33 = 1.0. In the latter
case, a more evident maximum is observed for P2Z for a larger value of the scaled splay elastic constant.

the stability of the state. The mean value of the parameters
were monitored to check if the equilibrium state had been
reached. In general, the profiles were practically unchanged
after 5 × 105 of these cycles.

In the first case to be considered, all the elastic constants
are alike. Thus, the potential given in Eq. (3) reduces to the
Lebwohl-Lasher one. Simulation data with the LL model
are presented in Figs. 1(a)–1(d) for several values of the
inner radius. The cylinders’ gap is divided into r2 bins of a
specific thickness. This causes a greater statistical error in
the inner bins. We estimate the worst case error to be around
7%. We observe that the values of the orientational order
parameters P2R , P2Z , and P2θ are very close to their imposed
surface boundary values, except for the lowest value of the
internal radius studied, r1 = 2, in which a small but noticeable
(∼10%) deformation appears in the Z direction. In that case,
while practically the whole sample has a radial configuration,

a small region has a more prominent deformation in the
direction of the Z axis. This phenomenon is known as escape
to the third dimension, or a Fréedericksz-like transition [15].
This increase of order in the Z direction is accompanied by a
decrease in order along the R direction. However, the order in
θ remains unchanged. The values of P2 are very close to that
of total disorder in two dimensions, i.e., around 1/4.

The results are slightly different for lower values of the ratio
K11/K33. In this case, no major deformation is observed in all
cases, as shown in the data presented in Fig. 1(e), where it is
possible to note the absence of a pronounced maximum of the
order parameter along the Z direction. Since a similar profile
is found for the order parameter along the R and θ directions,
these plots are omitted.

On the other hand, for larger values of the ratio K11/K33

the spontaneous deformations become more evident, as shown
in Fig. 1(f). However, large deformations emerge only in
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(a) (b)

(c) (d)

FIG. 2. (Color online) Snapshots of the configuration of the spins
at the end of the simulations for r1 = 4, K22/K33 = 1.0, and
(a) K11/K33 = 1, (b) K11/K33 = 2.0, (c) K11/K33 = 3, and (d)
K11/K33 = 3.5. We can verify that there are significant deformations
only for high values of the ratio K11/K33. These deformations are
more concentrated near the inner cylinder and their size increase as
K11/K33 increases.

the Z direction, while in the polar plane the spins remain
parallel to R. Even in this case, no deformation is observed
in the θ direction. Despite theoretical results indicating the
possibility of observing spontaneous deformations in the θ

direction, when K11/K33 is higher than a critical value [21],
the deformations along Z are energetically favorable. This
statement can be checked by comparing the energy of two
small deformations, one along θ and another one along Z,
showing that the latter is the lowest one.

These results can also be checked by observing Fig. 2, with
colored snapshots for two different values of the ratio K11/K33.
The color scheme corresponds to yellow for small values of the
component parallel to Z, blue for higher values, and shades of
red near unity. No distortion is observed for K11/K33 = 1.0,
while strong deformations are observed for higher values for
the scaled splay elastic constant.

Another qualitative way to visualize the deformations is
to observe the simulated polarized light microscopy textures.
Here we assume the direction of the incoming light to be along
Z with transmission observed between crossed polarizers.
Figure 3 shows the textures obtained for a set of values
of the inner radius, in the case where K11/K33 = 3.0 and
K22/K33 = 1.0. One can verify that the escape to the third
dimension strongly affects the textures of the sample. Another

FIG. 3. Microscopic texture between linear crossed polarizers for
K11/K33 = 3.0 and K22/K33 = 1.0 for a few values of inner radius
(a) r1 = 2, (b) r1 = 4, (c) r1 = 8, and (d) r1 = 12. The circular dark
rings indicate the presence of a deformation in the Z direction.

conspicuous feature is the lack of deformation in the direction
of θ . Deformation in this direction would cause the dark spots
to deviate to the right or left, as noted in Ref. [19], which is
not observed for these textures.

Although the data indicate that the distortions remain
only in the R-Z plane and there is no indication of twist
distortion on the results, the constant K22 seems to have a
crucial role in the deformation, as can be seen in Fig. 4.
One can verify that for values such that no deformations
can be found when K22/K33 = 1.0, no deformations are also
observed for K22/K33 = 2.0, while they are actually observed
for K22/K33 = 0.5. However, even in this case, the spins
remain with no θ component, as can be seen in Fig. 4(c).

To promote a more detailed check of the effects of the
elastic constant anisotropy on the deformation, simulations
with larger sets of elastic constants have been carried out.
In each obtained profile, the highest value for the parameters
P2θ and P2Z , defined as P2θ-max and P2Z-max, respectively, are
considered. As expected, no value significantly greater than
−0.5 was found for P2θ-max; consequently, these plots have
been omitted. The profile of P2Z-max as a function of K11/K33

for a few values of K22/K33 is shown in Fig. 5(a) for r1 = 2.
One clearly observes the presence of a critical value of the
elastic constant for which a deformed state becomes stable,
which also depends on K22/K33. The data seem to suggest
that the critical value of the ratio K11/K33 has a nonlinear
relation with the ratio K22/K33.

Following the same procedure of taking the maximum
values of the order parameters with respect to θ and Z, we build
the profiles of PZ-max versus the radius of the inner surface. The
results are shown in Fig. 5(b) for a few values of K11/K33 when
K22/K33 = 1.0 and in Fig. 5(c) for several values of K22/K33
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FIG. 4. Profiles of (a) P2R , (b) P2Z , (c) P2θ , and (d) P2 as a function of the distance from the cylinder axis for K11/K33 = 2.0, r1 = 4, and
a few values of K22/K33. The scaled twist elastic constant seems to induce some relevant deformation parallel to the Z axis.
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FIG. 5. (a) Maximum amplitude of P2Z (P2Z-max) as a function of the scaled splay elastic constant. A critical behavior is observed for a
given ratio K11/K33, which varies according to the values of the scaled twist elastic constant. (b) P2Z-max as a function of the radius of the inner
cylinder for a few values of K11/K33 and K22/K33 = 1.0. (c) P2Z-max versus the radius of the inner cylinder when K11/K33 = 2.5 for several
values of K22/K33. Both cases indicate that the inner surface can induce the deformation. (d) P2Z-max as a function of r1/r2 for two sets of the
elastic constant and two values of the radius of the external cylinder. This plot suggests that, in contrast to predictions from the elastic theory,
the Fréedericksz-like transition may depend on the absolute values of the radius of the surfaces.
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when K11/K33 = 2.5. In the theoretical work of Williams and
Halperin [15], the authors determine a relation for the set of
parameters for which one can find a deformed configuration,
namely, r2/r1 = exp(π/

√
K11/K33). Similar results have been

found recently [21] for a transition along the θ direction.
Both results show that the dependence of the spontaneous
deformation on the dimension of the sample relies only on
the ratio r2/r1 and not on the absolute values of r2 and r1. In
order to verify this, we have carried out other simulations by
assuming r2 = 60. The results are shown in Fig. 5(d), where the
maximum values of P2Z are plotted as a function of r1/r2 for
two different values of K11/K33 and for two different values of
r2 (40 and 60). Since the obtained profiles are quite different,
the resulting plot suggests that the absolute values of the radius
defining the cylindrical region representing the cell also play a
role in the appearance of deformations. The simulations show
for r1/r2 < 0.15 a dependence on the absolute values of the
radius of the cylinders rather than just on the ratio and a more
pronounced dependence on the elastic anisotropy. Indeed, the
elastic anisotropy affects the value of the parameter �, which in
turn is connected to the size of the system. Thus, this behavior,
not predicted by the elastic theory of Williams and Halperin
[15], may be connected not only to the peculiarities of the
GHRL potential but also to the relative small size of the system.
One of the advantages of our treatment is the possibility to go to
the nanoscale, i.e., below the continuum. For very small ratios
r1/r2, the results may be affected by the small number of spins
used to mimic the inner cylinder, which for r2 = 60 results
in r1 < 5, a scale where the deviations from continuum are
not surprising. Preliminary investigations dealing with larger
values of the external radius seem to indicate that the elastic
limit is attained for much large samples, as expected.

This dependence of the deformations on the cylinder radius
is indeed quite reasonable because the number of spins that
are oriented radially is small compared to that of bulk spins.
Therefore, the order is maintained only for a few lattice units
when one moves away from the surfaces. A perhaps surprising
result instead is the observation of a dependence on the scaled
twist elastic constant, even if the no twist deformation is found.
Since the deformations depend on the absolute values of the

cylinders radius, the parameter � also has some importance.
This happens because � can be written as � = 3ν/|K11 −
3K22 − K33|. Thus, it changes according to the elastic constant
values. This implies that, for each set of elastic constants, the
length of the unit cell also changes.

IV. CONCLUSION

We have performed Monte Carlo simulations to investi-
gate the role of the elastic anisotropy in the spontaneous
deformation of a nematic liquid crystal confined to the gap
between concentric cylinders whose facing surfaces impose
homeotropic boundaries. We focused on the effect of the
elastic anisotropy on the onset of spontaneous deformation by
changing the values of the bulk elastic constants of splay, twist,
and bend. When these constants are similar, we have found that
a prominent deformation along the cylinder axis exists, but is
confined to a small region, while practically the whole sample
has a radial configuration. For the cases in which K22 = K33,
with a small enough value for the ratio K11/K33, we observed
that all the spins in the bulk follow the orientation imposed by
the surface. In contrast, for larger values of the ratio K11/K33

conspicuous spontaneous deformations arose perpendicular to
the polar plane. Snapshots and microscopic polarized texture
confirm the presence of the director deformation close to the
inner surface. In addition, we observed that these deformations
are also dependent on the ratio K22/K33 and on the specific
values of the radius of each cylindric surface (not only on
the ratio r1/r2, as theoretically predicted). Finally, it is worth
mentioning that even if twist deformation was not found in
the simulations, the other results were dependent on the scaled
twist elastic constant. This dependence seems to have its source
in the parameter � used here to represent the length of the unit
cell.
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