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Formation and liquid permeability of dense colloidal cube packings
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The liquid permeability of dense random packings of cubic colloids with rounded corners is studied for
solid hematite cubes and hollow microporous silica cubes. The permeabilities of these two types of packings are
similar, confirming that the micropores in the silica shell of the hollow cubes do not contribute to the permeability.
From the Brinkman screening length

√
k of ∼16 nm, we infer that the relevant pores are indeed intercube pores.

Furthermore, we relate the permeability to the volume fraction and specific solid volume of the cubes using the
Kozeny-Carman relation. The Kozeny-Carman relation contains a constant that accounts for the topology and
size distribution of the pores in the medium. The constant obtained from our study with aspherical particles is of
the same order of magnitude as those from studies with spherical and ellipsoidal particles, which supports the
notion that the Kozeny-Carman relation is applicable for any dense particle packing with (statistically) isotropic
microstructures, irrespective of the particle shape.
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I. INTRODUCTION

Water through a sand bed, oil in a subsurface reservoir, and
feed flow through filtration membranes are all examples of
viscous flow through a porous medium [1–3]. Already in 1856,
Darcy formulated an empirical relation between the permeated
mass flow velocity U (in g/s) through a porous medium and
the liquid permeability k of the medium [4,5]

U = k
ρ0

η0

�PA

L
, (1)

with ρ0 the solvent mass density, η0 the solvent viscosity,
�P the excess pressure applied over the medium, and A

and L the cross-sectional area and the thickness of the
medium, respectively. Later this empirical relation was derived
theoretically from the Stokes equations for viscous flow
[1,6,7].

In the case of porous media composed of densely packed
particles, the liquid permeability k in Eq. (1) of such a packing
can be connected to its porosity by the Kozeny-Carman (KC)
relation

k = (1 − φ)3

C+φ2
ν2, (2)

where φ is the solid volume fraction of particles and C+
a numerical constant determined by the topology and size
distribution of the pores [5,7–10]. Here ν is defined as the
specific solid volume of a particle

ν = Vparticle

Sparticle
, (3)

with Vparticle and Sparticle the volume and the surface area of a
particle, respectively. Although the KC relation was originally
derived for a porous medium comprising capillary tubes, it was
found to also predict the permeability of particle assemblies
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well and is therefore often employed in soil research and
inorganic membrane technology [3,5,9,11–15]. Insight as to
why the KC relation still holds despite the great variety in
geometries can be gained by studying model systems, i.e.,
packings of particles with well-defined shape and size and
known packing behavior [7,8,16–19]. Studies on (binary) hard
spheres have demonstrated that the KC relation is adequate for
ordered as well as random dense packings [7,8,18]. From these
studies, it can be deduced that the main requirements for the
KC relation to apply are that the packing is sufficiently dense
and (statistically) isotropic [7,8]. These main requirements
were also deduced from experimental and numerical studies
with aspherical particles such as spiky particles [16] and
ellipsoids [19]. The studies indicate that C+ is quite insensitive
to the particle shape.

In this work, we investigate the liquid permeability of
packings of nonspheres in the form of cubes. In doing this, we
benefit from the shape and size control in recently developed
synthesis methods for micron-sized colloidal cubes [20,21].
The aspherical colloids used in our experiments actually have
a superball shape, i.e., cubic with rounded corners (Fig. 1).
Particles with this cubic shape have gained interest in the
past due to the remarkable packing behavior arising from
the rounded corners, in both experimental and computational
studies [20,22–30]. The volume fraction these colloidal cubes
can achieve when packed randomly is ∼0.74, which is
markedly higher than for randomly packed spheres (∼0.64) or
even ellipsoids (∼0.71) [28,31,32]. In addition to the packing
behavior, the superball shape affects the particle volume and
particle surface area. Therefore, in order to arrive at a correct
expression for the specific solid volume ν and consequently
at a correct permeability via Eq. (2), we derive mathematical
expressions for the superball volume and surface area (see
Appendix B).

The cubic colloids we use in this research are about 1 μm
in edge length and are composed of hematite (α-Fe2O3). From
these hematite cubes, hollow microporous silica cubes (pore
diameter <2 nm [33]) can be prepared by first growing a
shell of microporous silica around the hematite core and
subsequently dissolving the core [20,21,34]. In this work,
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FIG. 1. Representative TEM images of the cubic colloids used for
the packing formation and permeation experiments: (a) solid hematite
cubes without silica coating (1477 nm) and (b) hollow microporous
silica cubes (940 nm). The scale bars represent 2 μm.

both the solid hematite cubes and hollow silica cubes are
applied for cube packings. The advantage of these large
cubes over nanosized cubes is that they can overcome the
surface roughness and porosity of a substrate more easily.
Consequently, they can be conveniently applied in permeation
experiments using a permeable filter substrate.

This paper is organized as follows. First, we discuss the
experimental setup used for the cube packing formation and
the permeation experiments. Second, we present the results
of these experiments and calculate the permeabilities of the
formed packings as a function of the amount of cubes using
Darcy’s law (1). Subsequently, we calculate the C+ value by
correlating the found permeabilities to the Kozeny-Carman
relation in Eq. (2).

II. EXPERIMENT

A. Cubic colloids

For the permeation experiments, two different types of
cubic colloids were applied: solid hematite cubes and hollow
microporous silica cubes (Fig. 1). In the case of the solid cubes,
liquid can only flow alongside the particles, whereas for the
hollow cubes liquid can also flow through the particles using
the micropores. The cubes were synthesized following the
procedures described in Refs. [20,21,34] and were dispersed

TABLE I. Specifications of the applied cubic colloids regarding
their average edge length (size), size polydispersity (pd%), silica shell
thickness, m value, and semiaxis aspect ratio (a/b).

Size pd% Silica shell
Cubes (nm) (%) (nm) m value a/b

Solid hematite 1477 4 3.8 0.99
Hollow silica 940 3 50 3.1 1.00

in Millipore water. Table I shows their average edge length and
size polydispersity.

In short, the hematite cubic colloids were synthesized
by aging a highly condensed mixture of aqueous solutions
of iron chloride [2.0M , iron(III) chloride hexahydrate, p.a.,
Sigma-Aldrich] and sodium hydroxide (5.4M , p.a., Emsure)
at 100 ◦C for eight days. Subsequently, the resulting sol was
washed by centrifugation and redispersion in Millipore water
until pH ∼ 7 was reached. For the synthesis of the hollow
microporous cubes, 2.4 g (dry weight) of hematite cubic seed
particles were first dispersed in 110 mL of aqueous solution
of polyvinylpyrrolidone [90 g/L, 40 kg/mol polyvinylpyrroli-
done (PVP), Aldrich] and stirred overnight to let the PVP
adsorb effectively onto the hematite cubes. Afterward, the ex-
cess of PVP was washed away and the cubes were redispersed
in ethanol (100%, Interchema). A smooth and uniform silica
coating was then grown onto the PVP-functionalized hematite
cubes by slowly adding the silica precursor tetraethoxysilane
(10 mL of tetraethoxysilane in 10 mL ethanol, purum, Fluka)
in a mixture of ethanol and Millipore water. The reaction
was catalyzed by the base tetramethylammonium hydroxide
(25% in water, Fluka). The entire reaction was conducted
under mechanical stirring and ultrasonication at a constant
temperature of 20 ◦C to prevent aggregation of the particles
during synthesis. Finally, the hematite core was dissolved us-
ing hydrochloric acid (6M , Merck). Since the silica coating is
porous, the acid can access the hematite core and the ions from
the dissolved hematite can diffuse away to the surrounding
water. The hollow cubes were then washed by centrifugation
and redispersion in ethanol until pH 6–7 was reached.

Since these cubic colloids are not perfectly cubic but have
rounded corners, their shape is best described by a superball
[30] ∣∣∣x

r

∣∣∣m +
∣∣∣y
r

∣∣∣m +
∣∣∣z
r

∣∣∣m � 1, (4)

where r is the particle radius and m the deformation parameter.
For a sphere, m = 2 and the particle radius is the sphere radius,
while for a perfect cube, m approaches infinity and the particle
radius is half the edge length (Fig. 2). Between these two m

values, the shape of the particle resembles that of a cube with
rounded corners [Fig. 2(a)]. The particle radius of exemplary
superball shapes between m = 2 and m → ∞ is indicated in
Fig. 2(b).

We cannot simply assume a perfect cubic shape for these
colloids because their superball shape influences the packing
behavior, particle volume, and particle surface area. These
parameters should be known in order to analyze the liquid
permeability of cube packings correctly. The m values for the
applied cubes were determined by examining the shape of

022311-2



FORMATION AND LIQUID PERMEABILITY OF DENSE . . . PHYSICAL REVIEW E 91, 022311 (2015)

FIG. 2. (Color online) The colloidal cubes in this study have
a superball shape of which the precise shape depends on the
deformation parameter m. (a) The shape changes from a sphere
(m = 2) via cubes with rounded corners to a perfect cube (m → ∞).
(b) Cross-sectional views of superballs at given m values indicating
the particle radius r; d = 2r with d the edge length of a cube.

an ensemble of cubes using transmission electron microscopy
(TEM) images of single cubes. Because the TEM images give a
two-dimensional projection of the particles, the circumference
of the cubes was fitted with

∣∣∣x
a

∣∣∣m +
∣∣∣y
b

∣∣∣m = 1, (5)

with a and b the semiaxes of a particle. Ideally, for a cube
a = b = r , but the semiaxes are explicitly defined to take into
account the deviations from the ideal edge length ratios of
the colloidal cubes [35]. The TEM images can be fitted quite
precisely to Eq. (5). The average m values and the aspect ratios
of the semiaxes a/b for the used cubes are listed in Table I.

B. Packing formation and permeation experiments

To determine the liquid permeability of an assembly of
cubic colloids, first a packing of cubes was formed by
forced convection onto a permeable Millipore polymeric
filter (VCWP02500, pore diameter equal to 0.1 μm) as the
substrate. The used setup is schematically depicted in Fig. 3
and consists of a glass solvent reservoir (II), which is attached
to a nitrogen gas source (I) and a glass dispersion cell (III).
The cylindrical dispersion cell (length 21 cm, inner diameter
1.9 cm, and approximate volume 67 mL) contains the aqueous
dispersion of particles and, at the bottom, the Millipore filter
supported by a metallic grid. The solvent (Millipore water from
Synergy Purification Systems) can flow through the setup by
opening the valves (vI and vII) and by applying an excess
pressure �P using nitrogen gas. The pressure of the nitrogen
gas is controlled and measured accurately. The permeated
water is collected in a beaker (IV) and its mass is measured
throughout the experiment with a balance (V). The constant
excess pressure forces the particles in the dispersion cell down,
packing them onto the Millipore filter.

Once a packing was formed, its permeability was deter-
mined with the same setup by flowing water through the pack-
ing at increasing excess pressure. For a typical experiment,
approximately 100 mL of Millipore water was flowed through.
The mass of the permeated water was measured as a function
of time. The permeation experiments were repeated at least
three times at the same conditions and a fit was made through
the data points of all measurements.

FIG. 3. (Color online) Schematic image of the setup used for
packing formation and permeation experiments. A nitrogen gas
source (I) is connected to a glass solvent reservoir (II). The solvent
enters the glass dispersion cell (III) via valve vI. The cubic colloids
inside the dispersion cell are forced down by the excess pressure
exerted by the solvent and packed onto the Millipore filter at the
bottom of the dispersion cell. The solvent passes through the packing
and Millipore filter via valve vII and is collected in a beaker (IV).
The permeated solvent mass is accurately recorded by a balance (V).

C. Characterization

After all permeation measurements were conducted, the
dispersion cell was emptied and the packing was dried in open
air. The morphology of the packings was examined with a
scanning electron microscope (FEI XL30 FEG) operated at
5 kV. The dry packings were stuck to a stub using a conductive
carbon sticker and were then coated with a layer of platinum
of typically 6 nm prior to analysis.

III. RESULTS AND DISCUSSION

A. Packing formation

The formation of a packing is visible in the plot of the
permeated solvent mass as a function of time. Figure 4(a)
shows a typical plot measured during the formation of a
packing. Unlike for flow through a packing of constant
thickness, the permeated mass through a growing packing
does not grow linearly in time due to the increase of the
hydrodynamic friction during packing formation [7,19,36].
From the derivation described in Appendix A, it follows that
for a growing, incompressible and homogeneous packing, the
permeated solvent mass W scales with the square root of the
time t rather than with t according to

W√
�P

∝ √
t, (6)

where �P is the applied excess pressure [7,19,36]. Notably,
the data plotted in Fig. 4(a) do not follow the

√
t-scaling

relation of Eq. (6) throughout the process of packing formation.
The fit of W ∝ √

t displayed in Fig. 4(a) illustrates that
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FIG. 4. (Color online) Typical plots of the permeated solvent
mass W as a function of time, measured during packing formation
and permeation experiments. (a) During packing formation, the
permeated mass deviates from the

√
t-scaling relation of Eq. (6)

(dashed line) due to settling of the cubes. (b) During permeation
experiments, the permeated mass grows linearly in time with a mass
flow velocity of U , which is equal to the slope of the linear fit shown
with the dashed line. From the constant slope it can be inferred that
the microstructure of the packing does not change in time.

the actual permeated solvent mass is consistently lower
than expected from Eq. (6). This result suggests that the
packing is thicker than expected from packing formation by
forced convection only. The deviation from the

√
t-scaling

relation has previously been related to the settling of the
particles during packing formation [36]. Indeed, settling of
both solid and hollow cubes is a process that occurs during
packing formation, owing to their short gravitational lengths
(approximately 24 nm for the solid cubes and 890 nm for the
hollow cubes). Once all cubes have been packed, the permeated
mass grows linearly in time [Fig. 4(b)], as expected.

The dried packings [representative images shown in
Figs. 5(a) and 5(b)] were analyzed with scanning electron
microscopy (SEM) to investigate the structure of the pack-
ings. We assume that the pore structures of dried packings
correspond to those of packings during the permeation mea-
surements. For SEM analysis, the packings were broken into
pieces and placed onto a SEM stub [Fig. 5(c)]. However, the

FIG. 5. (Color online) Representative images at increasing mag-
nification of packings after drying. Photos of dry packings of (a) solid
hematite cubes and (b) hollow silica cubes. The white disk underneath
each packing is the Millipore filter substrate with a diameter of 2.5 cm.
(c) The packings were broken into pieces to analyze them with SEM.
The scale bar represents 500 μm. (d) The solid hematite cubes are
disordered within a layer. Scale bar is 10 μm. (e) High-magnification
SEM image of the upper layers of a dry packing. The tilted square
(left) indicates a shifted squarelike arrangement of cubes. The square
(right) indicates a squarelike arrangement of cubes. The resulting
pores are marked by the red circles. The scale bar is 5 μm.
(f) Magnifications of the arrangements and resulting pores indicated
in (e). Pore diameters are ∼180 nm (left) and ∼300 nm (right). Scale
bars represent 1 μm.

packings were very fragile and brittle, which hampered easy
handling: As soon as a dried packing was touched, it fell apart
into a powder.
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FIG. 6. (Color online) (a) Typical SEM image of the visible top
layer of the bottom of a packing formed by hollow silica cubes. The
cracks were created during drying and were not present during the
permeation measurements. The scale bar represents 20 μm. (b) �4

analysis of the packing in (a). The colors of the dots indicate the
extent of cubic ordering, where yellow to green signifies high cubic
ordering and red to purple low cubic ordering. (c) �6 analysis of the
packing in (a). The colors of the dots indicate the extent of hexagonal
ordering, where red to purple signifies high hexagonal ordering and
yellow to green low hexagonal ordering. Clearly there is significant
short-range cubic as well as hexagonal order within a layer.

The packings were formed from many layers of densely
packed cubes, but because SEM only allows visualization of
the surface of a packing, we could only analyze the cubes in
the visible upper layer or from the side. Typical SEM images
of solid cubes packings are displayed in Fig. 5. For the packing
in Fig. 5(d), it seems that the cubes are disordered. However,
regions that exhibit some ordering are also observed [Fig. 5(e)].
The observed disorder could have been caused by the fast
settling of the solid cubes, as well as by the brittleness of the dry
packings. The packings of the hollow silica cubes also show
signs of ordering, though not of long range. The SEM image in
Fig. 6(a) shows the bottom of a packing, clearly displaying the
difference from the top of a packing. The �4 and �6 analyses
of the visible layer in Fig. 6(a) signify the extent of cubic (�4)

TABLE II. Properties of packings composed of solid hematite
cubes and hollow silica cubes with regard to the dry weight of used
cubes mcubes, the mass flow velocity over the applied excess pressure
Um, the calculated liquid permeability k [Eq. (7)], the Brinkman
screening length

√
k, and the calculated constant C+ [Eq. (2)].

mcubes Um k
√

k

Cubes (g) (kg/s Pa) (nm2) (nm) C+

Solid hematite 0.19 5.6 × 10−10 256 16 8.1
0.39 3.3 × 10−10 306 17 6.8
0.72 1.3 × 10−10 225 15 9.2

Hollow silica 0.12 3.2 × 10−10 223 15 10.7
0.23 2.2 × 10−10 298 17 8.0
0.41 1.1 × 10−10 273 17 8.7

or hexagonal (�6) ordering [37,38]. From Figs. 6(b) and 6(c)
it is clear that both cubic and hexagonal segments are present,
but only in a short range within a layer: Cubic ordering is
indicated with green in Fig. 6(b) and hexagonal ordering is
indicated with red to purple in Fig. 6(c). We believe that the
packings did not contain large cracks that channel the Millipore
water directly through the packing with little resistance. The
cracks seen in Fig. 6 most probably emerged during the drying
of the packing and were not present during the measurements.

B. Permeation experiments

The liquid permeability of the formed packings at different
excess pressures was investigated by flowing Millipore water
through the packings. This procedure was repeated at least
three times for each pressure, after which the data points
were fitted to yield a plot as shown in Fig. 4(b). The applied
pressure remained constant during the measurement, as well as
between each repeated measurement. From the linear increase
of the permeated mass in time shown in Fig. 4(b), we infer the
presence of Darcian flow as described by Eq. (1). The slope of
the permeation plot is the mass flow velocity U and since the
mass flow velocity hardly changes in time, we can conclude
that the packing microstructure does not change in time either.

Figure 7 shows the mass flow velocity U measured at
different excess pressures and amount of cubes, i.e., packing
thickness, for both the solid hematite cubes and hollow silica
cubes. As expected, the mass flow velocity increases for higher
pressures and decreases for larger amount of cubes. The slope
of these plots is the mass flow velocity over the excess pressure,
defined as Um (Um = U/�P ). Evidently, Um decreases with
increasing amount of cubes (Table II).

C. Permeability calculations

As described in the Introduction, we can calculate the per-
meability of a cube packing using Darcy’s law. Subsequently,
the permeability is related to the packing porosity, i.e., the
particle volume fraction φ in the packing, from which we
can determine the C+ value in the Kozeny-Carman relation to
assess whether or not C+ is affected by the cube shape.

1. Permeability from Darcy’s law

From the permeation experiments, we obtain the mass flow
velocity over the excess pressure Um (Fig. 7), with which we
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FIG. 7. (Color online) Mass flow velocities U as a function of
the applied pressure �P for packings of (a) solid hematite cubes and
(b) hollow silica cubes. The mass flow velocity increases with
increasing �P and decreasing amount of cubes. The drawn
lines are linear fits through the data points and their slope is
Um (Um = U/�P ) as listed in Table II.

can calculate the liquid permeability k of the packing using
Eq. (1):

k = 4η0LUm

πD2ρ0
, (7)

with η0 the solvent viscosity, D the diameter of the packing,
ρ0 the solvent mass density, and L the packing thickness.
Since the values for the first three quantities are set for
our experiments (η0 = 0.89 mPa s, D = 0.019 m, and ρ0 =
1000 kg/m3), only L and Um vary.

The mass flow velocity over the excess pressure Um was
determined from the permeation experiments and the values
for each packing are listed in Table II. However, the packing
thickness L could hardly be determined accurately due to the
fragility of the dry packings. Therefore, we used predetermined
particle volume fractions φ instead. The volume fraction is
related to the packing thickness L as follows:

φ = Vcubes

Vpacking
= 4Vcubes

πD2L
= 4Vcubemcubes

πD2Lmcube
, (8)

with Vcubes the total volume of all cubes used to form the
packing, Vpacking the volume of the resulting packing, Vcube

the volume of a single cube, mcubes the dry weight of cubes
used to form the packing, and mcube the mass of a single
cube. For Vpacking, we assume a cylindrical packing with
height L and diameter D, which corresponds to the packing
diameter D used in Eq. (7). To calculate Vcube, we used the
expression for the volume of a superball given in Appendix B
[Eq. (B11)]. This expression depends on the precise m value
of the cubes and shows that a cube with edge length 1000 nm
has a volume of approximately Vcube = 7.3 × 10−19 m3 for
m = 3.1, Vcube = 7.9 × 10−19 m3 for m = 3.8, and Vcube =
1.0 × 10−18 m3 for m → ∞. The mass of a single solid
hematite cube and the mass of a single hollow silica cube
are mcube,solid = Vcubeρhematite (ρhematite = 5.25 g/cm3) and
mcube,hollow = Vsilica shellρsilica (ρsilica = 2 g/cm3), respectively.
Combining Eqs. (7) and (8) leads to the following expression
for the liquid permeability of a cube packing dependent on the
volume fraction of cubes:

k = 16η0

π2D4ρ0

UmVcubes

φ
= 16η0

π2D4ρ0

UmVcubemcubes

φmcube
. (9)

The permeabilities listed in Table II are the averages of
permeabilities calculated for volume fractions between 0.65
and 0.74 for the solid cubes and between 0.65 and 0.71
for the hollow cubes, where we assume that the occurrence
of each volume fraction is equally probable. These volume
fraction ranges correspond to dense assemblies of randomly
packed superballs with the m values of the cubic particles
used, m = 3.8 and 3.1, respectively [27,28,39]. At the highest
volume fraction, the cubes form maximally random jammed
packings [28]. These volume fraction ranges are realistic, since
the SEM images of the packings in Figs. 5 and 6 show dense
assemblies without long-range order.

Clearly, the calculated permeabilities are scattered around
an average value of 262 nm2 ± 17 nm2 for the solid hematite
cubes and 264 nm2 ± 12 nm2 for the hollow silica cubes.
Because the liquid permeabilities of both packings do not differ
significantly, we infer that the porosity of the microporous
silica shell of the hollow cubes does not play a significant
role in the permeation properties of the packings formed in
these experiments. Therefore, flow through the packing does
not affect any processes, e.g., catalysis reactions [40], that
may occur inside the hollow cubes; penetration of a substance
into a hollow cube is diffusion controlled, regardless of liquid
flowing through the cube packing.

That liquid flow primarily occurs through intercube pores
also follows from the Brinkman screening length

√
k, which

is a measure for the viscous decay of a disturbance produced
in a liquid [8,41,42]. For a liquid flowing through a porous
medium composed of particles, hydrodynamic screening is
caused by adjacent particles and therefore the Brinkman
screening length is an indication of pore sizes that conduct
the liquid. The Brinkman screening lengths given in Table II
lie for all packings around 16 nm. Filtration experiments with
aqueous dispersions of small silica spheres (Ludox TMA,
Sigma-Aldrich) with a diameter of approximately 16 nm show
that these small silica spheres can indeed pass through the cube
packings. However, their mass flow velocity is considerably
lower than that of pure Millipore water, U = 7.8 × 10−5 and
7.2 × 10−3 g/s at �P = 0.6 bar, respectively. Admittedly,
cake formation of small silica spheres on top of the cubes
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packing could have contributed to the decreased flow velocity.
Nevertheless, the low mass flow velocity reveals that the
silica spheres cannot pass through easily and that the pores
of the packing are not much larger than the silica spheres.
We also verified that dye molecules, on the other hand,
have a permeation velocity similar to that of Millipore water,
signifying that they easily permeate a cube packing.

The typical pore size derived from the Brinkman screening
length is much smaller than the pores created when four cubes
are arranged in a squarelike or shifted squarelike arrangement.
Analysis on high-magnification SEM images of cubes pack-
ings shows that in the former case, a pore of approximately
300 nm in diameter is created while in the latter case, a pore
of ∼180 nm in diameter is formed. In Figs. 5(e) and 5(f), the
two arrangements and the corresponding pores are indicated.
Consequently, from solely the SEM images of the packings, a
larger permeability of the packings is expected compared to the
permeabilities measured in our experiments. This difference
illustrates that a three-dimensional cube packing is composed
of two-dimensional cube layers that are randomly shifted
with respect to each other such that the large pores in the
two-dimensional layers are blocked by cubes from other layers,
resulting in effectively smaller pores.

2. Permeability from the Kozeny-Carman relation

To determine C+ following Eq. (2), we only require ν2,
the specific solid volume squared of the cubes used. An
expression for the volume of a superball dependent on the m

value has been reported previously by Torquato and co-workers
[29,30], to which our expression (B11) corresponds. However,
an expression for the surface area of a superball is lacking.
Our derivation and numerical calculations of the volume and
surface area of superballs from m = 2 to m → ∞ are given
in Appendix B. These calculations show that the specific solid
volume for a sphere (m = 2) and a perfect cube (m → ∞)
both equal ν = 1

3 r and that ν2 increases between m = 2 and
5 (Fig. 8). For the cubes used in this study with m = 3.8 and
3.1, ν2 = 3.4 × 10−14 and 3.3 × 10−14 m2, respectively.

FIG. 8. The specific volume squared ν2 is equal to ( 1
3 r)2 in the

case of a sphere (m = 2) and a perfect cube (m → ∞), as indicated by
the drawn solid line. For m values between m = 2 and 5, ν2 increases.
In these calculations, r = 500 nm, corresponding to an edge length
of 1000 nm. The dashed lines mark the range of m values of the cubes
used in the experiments.

FIG. 9. The C+ values calculated by the Kozeny-Carman relation
(2) for the solid and hollow cubes. The values are scattered around
C+ = 8.1 and 9.1 for solid and hollow cubes, respectively.

Finally, Fig. 9 shows the values for C+ for each packing.
The error bars correspond to the dependence of the C+ value
on the assumed volume fraction: The highest value assumes
the lowest volume fraction, whereas the lowest value assumes
the highest volume fraction. For the solid hematite cubes, the
C+ value averages around 8.1, while for the hollow silica
cubes the average C+ value is 9.1 The rather consistent value
of C+ confirms that the permeability of the cube packings
can be described by the Kozeny-Carman relation. Moreover,
the found values of C+ for cube packings are comparable to
those found for (binary) hard spheres and ellipsoids [7,8,19],
which supports the notion that the essential requirement for the
Kozeny-Carman relation is that the investigated packing has a
dense and (statistically) isotropic microstructure. Apparently,
in dense particle packings, the shape of the particles is of minor
importance: The permeated liquid cannot identify the shape of
the particles because the decay length

√
k of the hydrodynamic

disturbance is much smaller than the particle size.

IV. CONCLUSIONS AND OUTLOOK

Dense cube packings can be formed by forced convection,
leading to randomly packed cubic colloids. The liquid perme-
ability k of these dense random packings follows Darcy’s law
as well as the Kozeny-Carman relation. Packings of solid and
hollow cubes have very similar permeabilities, showing that
the micropores of the hollow silica cubes do not contribute
to the permeability of the packing. Instead, the resulting
packings have an indicative pore size

√
k (the Brinkman

screening length) of 16 nm. From the KC relation, average
C+ values of 8.1 and 9.1 are found for solid and hollow
cubes packings, respectively. Since the found C+ values are
comparable to those previously observed for packings of
(binary) hard spheres and ellipsoids, we conclude that the
KC relation is indeed generally applicable for dense packings
with (statistically) isotropic microstructure and is insensitive to
particle shape: Viscous dissipation by the total particle surface
in a given particle packing volume is hardly affected by the
geometrical details of this surface.

For future experiments, efforts could be put into creating
cube packings with long-range order, which lead to higher
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volume fractions (0.87 for m = 4) [27–29]. Packing the cubes
in an ordered fashion also enlarges the amount of nearest
neighbors from approximately 8 to 12 [27–29]. Since the
permeability of a packing is lower for a larger number of
nearest neighbors [8,18], an ordered cube packing would
very likely lead to a decreased pore size. One method to
achieve long-range order is by adding nonadsorbing depletants
to the dispersion, which cause the cubes to form well
ordered packings, as described by Rossi et al. [20]. Forced
sedimentation of these well ordered arrays onto the Millipore
filter substrate would then lead to packings containing these
well ordered assemblies.
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APPENDIX A: DERIVATION OF
THE

√
t-SCALING RELATION

To derive the
√

t-scaling relation for growing packings in
the experiments described in this study, we briefly review the
derivation reported in Ref. [36]. We consider the situation as
depicted in Fig. 10. Here the cylindrical cell represents the
dispersion cell used in the experiments with a substrate at

FIG. 10. (Color online) Schematic illustration of the dispersion
cell during packing formation. Initially, the cell is filled to height H

with dispersion with particle volume fraction φd. During packing
formation, the liquid level decreases by h(t) and a packing of
thickness L(t) and particle volume fraction φp is formed.

the bottom upon which the particles assemble as the valve is
opened (Fig. 3). The cell is initially filled up to height H with a
dispersion containing a particle volume fraction φd. When the
valve is opened, the solvent flows away, the dispersion level
decreases by h(t), and a homogeneous and incompressible
packing of thickness L(t) is formed. The particle volume
fraction of the packing is given by φp.

The initial total volume of particles is Hφd, which should
equal the total particle volume at time t after opening the
valves. Therefore, the following equality holds, from which the
packing thickness L(t) as a function of time can be deduced:

Hφd = L(t)φp + φd(H − L(t) − h(t)), (A1)

L(t) = h(t)
φd

φp − φd
. (A2)

By combining Eq. (A2) and Darcy’s law, we can relate the
applied excess pressure �P , solvent viscosity η0, solvent mass
density ρ0, and liquid permeability k to the thickness of a
growing packing

U = dh(t)

dt
= kρ0

η0

�PA

L(t)
. (A3)

Substitution of Eq. (A2) in Eq. (A3) yields a differential
equation in h(t), which has the solution

h2(t) = 2k�P

η

(φp − φd)

φd
t. (A4)

Since h(t) is proportional to the mass of permeated solvent W ,
we arrive at the

√
t-scaling relation

W√
�P

∝ √
t . (A5)

If the packing is not growing in time, which is the case in the
permeation experiments, L is a constant and Eq. (A3) simply
reduces to

h(t) = k

η

�P

L
t. (A6)

Therefore, the permeated mass increases linearly in time.

APPENDIX B: SUPERBALL

The shape of the cubic particles is best described by the
shape of a superball

∣∣∣x
r

∣∣∣m +
∣∣∣y
r

∣∣∣m +
∣∣∣z
r

∣∣∣m � 1, (B1)

with which one can interpolate between octahedral-like shapes
and cubiclike shapes with radius r , depending on the deforma-
tion parameter m. For a sphere and a perfect cube, m = 2 and
m → ∞, respectively. The particle shape and corresponding
particle radius for exemplary superball shapes between m = 2
and m → ∞ are indicated in Fig. 2(b). For the synthesized
cubic particles, m lies between 3 and 4. In the following
sections, we will derive expressions for the volume and the
surface area of a superball with deformation parameter m and
radius r = 1, using this parametric representation of an octant
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of a superball

x = t1/ms1/m,

y = (1 − t)1/ms1/m, t,s ∈ (0,1),

z = (1 − s)1/m.

(B2)

1. Volume of a superball

The volume of an object between the surface z = f (x,y)
and region A in the xy plane is given by

V =
∫∫

A

f (x,y)dx dy, (B3)

which for the case of the superball becomes

V =
∫∫

A

m
√

1 − xm − ymdx dy. (B4)

By substituting the x and y for the expressions given by the
parametrization in Eq. (B2), we find

V = 8
∫ 1

0

∫ 1

0

m
√

1 − (t1/ms1/m)m − [(1 − t)1/ms1/m]m

× Jstds dt, (B5)

where Jst is the Jacobian determinant needed when more than
one variable is substituted

Jst =
∣∣∣∣∣

1
m

t1/m−1s1/m − 1
m

(1 − t)1/m−1s1/m

1
m

t1/ms1/m−1 1
m

(1 − t)1/ms1/m−1

∣∣∣∣∣
= 1

m2
(1 − t)(1/m−1) t (1/m−1) s(2/m−1). (B6)

For the volume of a superball, we then arrive at

V = 8
∫ 1

0

∫ 1

0

1

m2
(1 − t)(1/m−1)t (1/m−1)s(2/m−1)

× (1 − s)1/mds dt

= 8

m2

∫ 1

0
s(2/m−1)(1 − s)1/mds

×
∫ 1

0
(1 − t)(1/m−1)t (1/m−1)dt, (B7)

in which we recognize the two integrals as Beta functions
B(x,y),

B(x,y) =
∫ 1

0
q(x−1)(1 − q)(y−1)dq. (B8)

Equation (B7) then transforms to

V = 8

m2
B

(
2

m
,

1

m
+ 1

)
B

(
1

m
,

1

m

)
. (B9)

Since for B(x,y)

B(x,y) = 
(x)
(y)


(x + y)
(B10)

FIG. 11. Numerically calculated volume V and surface area S

of a superball with r = 1 and increasing deformation parameter m.
The analytically known cases are for m = 2 (sphere) and m → ∞
(perfect cube).

holds, where 
 is the Gamma function, the volume of a
superball is given by

V = 8

m2

[
(1/m)]2
(1/m + 1)


(3/m + 1)

= 8

3m2

[
(1/m)]3


(3/m)
. (B11)

Figure 11(a) shows the volume of a superball with radius
r = 1 ranging from m = 2 to 103 calculated numerically
using Eq. (B11). At the extreme cases [m = 2 and 103

(approximately infinity)], the expected volumes of 4.2 [( 4
3π )3]

and 8.0 [(2)3] are found.

2. Surface area of a superball

To obtain an expression for the surface area of a superball,
we again use the parametric representation of a superball with
deformation parameter m and radius r = 1, given in Eq. (B2).
The surface area of an object is defined as

S =
∫∫

‖ 
rs × 
rt‖ds dt, (B12)
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with


rs = ∂x

∂s
ı̂ + ∂y

∂s
ĵ + ∂z

∂s
k̂, (B13a)


rt = ∂x

∂t
ı̂ + ∂y

∂t
ĵ + ∂z

∂t
k̂. (B13b)

In the case of a superball, this expression is

S = 8
∫ 1

0

∫ 1

0
‖ 
rs × 
rt‖ds dt, (B14)

where the cross product is equal to


rs × 
rt =

∣∣∣∣∣∣∣
ı̂ ĵ k̂

1
m

t1/ms(1/m−1) 1
m

(1 − t)1/ms(1/m−1) − 1
m

(1 − s)(1/m−1)

1
m

t (1/m−1)s1/m − 1
m

(1 − t)(1/m−1)s1/m 0

∣∣∣∣∣∣∣
= − 1

m2
(1 − s)(1/m−1)(1 − t)(1/m−1)s1/mı̂ + 1

m2
(1 − s)(1/m−1)t (1/m−1)s1/mĵ

− 1

m2
t (1/m−1)(1 − t)(1/m−1)s(2/m−1)k̂. (B15)

The absolute value of this cross product then is

‖ 
rs × 
rt‖ =
√

(iı̂)2 + (j ĵ )2 + (kk̂)2

= 1

m2

√
(1 − s)(2/m−2)(1 − t)(2/m−2)s2/m + (1 − s)(2/m−2)t (2/m−2)s2/m + t (2/m−2)(1 − t)(2/m−2)s(4/m−2). (B16)

When we substitute Eq. (B16) in Eq. (B14), we find the expression for the surface area of a superball

S = 8
∫ 1

0

∫ 1

0

1

m2

√
(1 − s)(2/m−2)(1 − t)(2/m−2)s2/m + (1 − s)(2/m−2)t (2/m−2)s2/m + t (2/m−2)(1 − t)(2/m−2)s(4/m−2)ds dt. (B17)

This equation can be evaluated analytically for m = 2, for the case of a sphere. Equation (B17) then reduces to S = 4π . For
other values of m, the expression is evaluated numerically. As m approaches infinity, the shape of the superball approaches that
of a perfect cube for which the surface area is S = 24. To confirm the correctness of this equation when evaluated numerically,
we calculated the surface area of a superball with r = 1 for increasing values of m. The known extremes should then correspond
to Sm=2 = 4π and Sm→∞ = 24. Figure 11(b) shows the calculated surface area as a function of m, with m = 103 approximating
infinity. It is clear that the calculated surface area for m = 2 is correct and that it grows to the expected value for high-m values,
indicating that the calculated surface areas can reliably be used.
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