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Ray-theory approach to electrical-double-layer interactions
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A novel approach is presented for analyzing the double-layer interaction force between charged particles in
electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and
particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields
a simple asymptotic approximation limited to neither small zeta potentials nor the “close-proximity” assumption
underlying Derjaguin’s approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-
layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid
in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as
superposed contributions conveyed by “rays” emanating normally from the boundary layers. On a special curve
generated by the centers of all circles maximally inscribed between the two particles, the bulk stress—associated
with the ray contributions interacting nonlinearly—decays exponentially with distance from the center of the
smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace’s
method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin’s approximation, with
numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and
Derjaguin’s approximation, the interaction force is provided at arbitrary interparticle separations. Our theory
can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical
scenarios where exponentially decaying fields give rise to forces.
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I. INTRODUCTION

Solid surfaces become charged when brought in contact
with an electrolyte solution. Ionic diffuse-charge layers, where
counterions are in excess, concurrently form in the adjacent
liquid phase through a balance between electromigration and
ionic diffusion. Two such surfaces in proximity experience a
force due to the interaction between their diffuse layers. While
this force generally decays exponentially with separation, it
is well known that even a slight diffuse-layer overlap often
gives rise to an appreciable effect [1,2]. Electrical-double-
layer forces thus play a fundamental role in a wide range
of physical scenarios including solution stability [3], particle
dynamics near electrodes [4], colloidal crystals [5,6], atomic
force microscopy measurements [7], coal flotation, swelling
of clays [8], and numerous biological applications [9–12].

In the framework of mean-field dilute-solution theory, the
interaction force may be calculated by solving a nonlinear
Poisson-Boltzmann (PB) equation for the electric potential,
followed by integration of the electric stress and hydrostatic
(osmotic) pressure over the particle surface [13]. This problem
is nonlinear and exhibits multiple scales in the common case
where the Debye length is small compared to system dimen-
sions. In particular, calculating the force requires resolving
the electric potential to exponential order in both the thin
diffuse layers and the bulk. The classical one-dimensional
parallel-plate configuration is relatively simple to handle.
A numerical solution becomes straightforward, and analytic
solutions exist in some cases [14,15]; more importantly,
simple approximations are available for low voltages, where
the problem can be linearized, or for Debye lengths small
compared with the distance between the plates, in which case
the contributions of two opposing semi-infinite diffuse layers
can be superposed.

In most practical scenarios, however, the geometry is
nonplanar. For low voltages, the problem can be lin-
earized, paving the way to simplified numerics and vari-
ous analytic methods, though the latter tend to be rather
cumbersome and limited to specific idealized geometries
[16–18]. Much more useful is Derjaguin’s (or Deryagin’s)
“close-proximity approximation,” where the force between
generic (convex) nonplanar surfaces is provided by multiply-
ing the one-dimensional parallel-plate interaction potential by
an “effective radius” depending on the local radii of curvature
of the surfaces at minimum separation. The approximation
holds when both the Debye length and the separation distance
are small compared to the radii of curvature characteristic
of the surfaces [19]. Toward having useful analytic formulas
at hand, it is common to employ one of the approximate
forms of the one-dimensional solution, thereby further limiting
Derjaguin’s approximation to either low voltages or diffuse
layers thin compared with separation (the latter being still
small compared with particle size) [1]. A popular descendant of
Derjaguin’s approximation is the surface element integration
(SEI) method [20]. Its justification and the asymptotic nature
of that approximation are not clear to this author; a stated
assumption of the SEI method is that the traction acts normal
to the surface, which is not in general the case in electrical-
double-layer interactions.

We present here a new approach to analyzing double-
layer interactions. It yields—for a general geometry and
arbitrary potentials—a simple approximation not limited to
close proximity. To this end, we systematically consider the
limit where the Debye length is small compared with both the
separation distance and the characteristic radii of curvature.
The theory is developed for a general geometry consisting of
two convex two-dimensional particles of otherwise arbitrary
shape. Our methodology builds on what is known as the
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superposition approximation, in which for thin double layers
the potential is provided by adding single-particle potential
distributions [13]. We further follow Refs. [21,22] where
the latter distributions are constructed, in the special case of
spheres, by matching a nonlinear boundary-layer solution to
a linear approximation of the bulk. We introduce here two
new ideas which together facilitate obtaining a closed-form
approximation for a general geometry: (i) the bulk potential is
described by a multidimensional WKBJ “ray solution” and (ii)
a special surface is identified on which stress is localized, and
thus the leading force is extracted using Laplace’s integration
method.

II. PROBLEM FORMULATION

Consider two planar convex particles of otherwise arbitrary
shape, placed in an unbounded binary symmetric electrolyte of
valency ±Z , far-field concentration c∗, and dielectric constant
ε∗ (Henceforth an asterisk denotes a dimensional quantity).
We consider either of the following two surface-charge models
[23]: (i) “fixed potential”: a voltage ψ∗i is prescribed between
the surface of particle i = 1,2 and the far-field potential;
(ii) “fixed charge”: a uniform surface-charge density σ∗i is
prescribed. Our interest is in the force acting on the particles in
the case where their position and orientation are prescribed and
fixed. The fluid is then at rest, and the solid-electrolyte system
attains a state of equilibrium wherein the ionic distributions
are Boltzmann distributed [24].

We shall henceforth employ a dimensionless formulation
wherein ionic concentrations are normalized by c∗; potentials
by the thermal voltage ϕ∗ = k∗T∗/Ze∗ (k∗T∗ being the Boltz-
mann temperature and e∗ the fundamental charge); lengths by
a∗, a typical length scale characteristic of the particles; and
stresses and pressures by ε∗(ϕ∗/a∗)2. The dimensionless ionic
concentrations and electric potential are, respectively, denoted
as c± and ϕ. Taking the latter to decay at large distances, we
substitute Boltzmann’s distribution c± = e∓ϕ into Poisson’s
equation, yielding the nonlinear PB equation

δ2∇2ϕ = sinh ϕ, (1)

where δ is the dimensionless Debye length given by

δ = λ∗/a∗, λ2
∗ = ε∗ϕ∗

2Ze∗c∗
. (2)

On the boundary of each particle (i = 1,2), we have one of the
two conditions

ϕ = ψi or
∂ϕ

∂n
= −δ−1σi, (3)

corresponding, respectively, to the cases of fixed potential
and fixed charge. In the first, ψi is the normalized surface
potential. In the second, σi = σ∗iλ∗/ε∗ϕ∗ is the normalized
surface charge [25]. The problem for the electric potential
is closed by the decay condition ϕ → 0 far away from both
particles.

Once the potential is determined, the force per unit length
(normalized by ε∗ϕ2

∗/a∗) on particle i is found by integrating
the stresses on the particle boundary Ci ,

Fi =
∮
Ci

n̂ · T ds. (4)

Here n̂ is the local outer normal to Ci , and T is the total stress
tensor

T = −pI + ∇ϕ∇ϕ − 1
2 |∇ϕ|2I, (5)

which includes a hydrostatic pressure term and the electrical
(Maxwell) stress tensor; I denotes the unit tensor. The pressure
distribution is found in terms of the potential by integrating
the momentum balance ∇ · T = 0, or ∇p = ∇2ϕ∇ϕ, in
conjunction with (1). Choosing the pressure to decay at large
distances then yields

p = δ−2(cosh ϕ − 1). (6)

Since the total stress (5) is divergence free, the integration
boundary in (4) can be deformed to any other closed boundary
enclosing particle i that does not intersect or encloses the other
particle.

III. THIN-DOUBLE-LAYER ANALYSIS

A. Single particle

We first consider the potential distribution around a single
particle, dropping the i subscript for now. Our scheme is
based upon exploiting the thin-double-layer limit δ � 1. In
this singular limit, a thin diffuse-charge layer of thickness
O(δ) forms about the particle boundary. The leading-order
boundary-layer solution of (1), in conjunction with (3), and
with attenuation at distances � δ from the boundary, is well
known [26–28]. It is given by ϕ ∼ 	 + O(δ), where

tanh
	

4
= e−l/δ tanh

ζ

4
. (7)

Here l = O(δ) denotes the normal distance from the surface,
and ζ is the leading-order voltage across the layer. A
familiar feature of this thin-double-layer solution is that it is
asymptotically insensitive to the choice of boundary condition
in (3). We shall thus henceforth regard ζ as the prescribed
surface property; it is asymptotic to the surface potential ψ

and related to the surface charge σ by the Gouy-Chapman
relation σ = 2 sinh(ζ/2).

Consider next the bulk domain outside the thin diffuse layer.
The decay of the Debye-scale potential,

	 ∼ 4e−l/δ tanh
ζ

4
as l/δ → ∞, (8)

implies that the bulk potential is exponentially small in δ. We
can therefore linearize (1):

δ2∇2ϕ = ϕ, x ∈ bulk. (9)

This linearity suggests expanding the bulk potential according
to the WKBJ ansatz [29]

ϕ ∼ [A(x) + O(δ)] e−u(x)/δ. (10)

From (8), asymptotic matching of the bulk expansion with the
nonlinear Debye-scale potential requires

u ∼ l, A ∼ 4 tanh
ζ

4
; δ � l � 1. (11)
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Substitution of (10) into (9) yields at leading order the
“eikonal” equation

|∇u|2 = 1. (12)

This equation is typically solved by the method of charac-
teristics (Charpit’s method [30]). The present case is a trivial
application of this method: The solution u(x), satisfying the
first matching condition given in (11), is just the minimum
distance of x from the particle boundary. Explicitly, if the par-
ticle boundary and outer normal are respectively parametrized
as x = xp(s) and n̂p(s), then the solution can be written
parametrically as

u(s,l) = l on x(s,l) = xp(s) + ln̂p(s). (13)

We say that, at any given boundary point, a straight ray
emanates in the direction of the local outward normal. Since
the particle is convex, there is a unique ray passing through
any given point in the bulk.

The next order of (9) yields the “transport” equation

∇u · ∇A = −A

2
∇2u. (14)

By noting that ∇u = n̂p(s), (14) can be written as

∇ · (A2n̂p) = 0; (15)

this, together with the matching condition (11), implies that
[31]

A [ρ(s),l; ζ ] = 4 tanh
ζ

4

√
ρ(s)

ρ(s) + l
, (16)

with ρ(s) denoting the local radius of curvature of the particle
boundary at x0(s).

The leading-order potential distribution in the entire domain
external to a single convex particle has been determined. As
depicted in Fig. 1, it is given by the nonlinear distribution (7)

s

O(δ)

ρ(s)

Δϕ ∼ ζ

l

ϕ ∼ A [ρ(s), l; ζ] e−l/δ

FIG. 1. Asymptotic solution for the electric potential around a
single particle.

l1

l2

s2

s1

O(δ)

D

ϕ ∼ A1 [ρ1(s1), l1; ζ1] e−l1/δ

+A2 [ρ2(s2), l2; ζ2] e−l2/δ

FIG. 2. (Color online) The thin-double-layer solution for two
particles, with δ � D, obtained by superposing two single-particle
solutions.

within the thin diffuse layer and by the ray solution

ϕ ∼ 4 tanh
ζ

4

√
ρ(s)

ρ(s) + l
e−l/δ (17)

in the bulk domain.

B. Two particles

We return now to the original problem of two convex
particles, one of which we allow to extend to a wall. Our
interest is in the thin-double-layer limit δ � 1, with D � δ. In
this limit the asymptotic solution for the potential distribution
in the bulk between the particles is obtained simply by
superposing two ray solutions like (17),

ϕ ∼ A1 [ρ1(s1),l1; ζ1] e−l1/δ + A2 [ρ2(s2),l2; ζ2] e−l2/δ, (18)

where Ai is provided by, respectively, replacing s, l, ρ, and
ζ , by si, li , ρi and ζi , in (16). This is valid because each of
the two single-particle contributions separately satisfies (9),
in an asymptotic sense, and since matching with the diffuse
layer of one particle is unaffected by rays emanating from the
other particle. The parametric construction of the solution is
depicted in Fig. 2.

C. Interaction force

While the contributions to the bulk potential “carried” by
the two families of rays superpose, the same does not apply
for the stress (5) there, which is nonlinear in the potential.
Upon substitution of the ray solution for the bulk potential
(18)—with the pressure (6) accordingly expanded for small
ϕ—we find three types of terms: (a) stresses generated by
interaction of rays from particle 1 with rays from particles
2 and (b and c) stresses generated by self-interaction of the
rays from a single particle, either 1 or 2. These terms are,
respectively of order δ−2e−(l1+l2)/δ, δ−2e−2l1/δ , and δ−2e−2l2/δ;
hence, their magnitudes vary immensely with position, and
their asymptotic hierarchy is not spatially uniform. This
apparent difficulty is avoided by choosing in (4) a special
integration curve on which all three estimates are comparable.
Such a curve is generated by the centers of all circles
maximally inscribed between the two particles. This is because
two rays meeting at any point along this curve have traversed
the same distance l1 = l2 = r , r being the radius of the
inscribed circle centered at that point (see Fig. 3). On this
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ξ
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ξ

r(0) = D/2
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k̂

FIG. 3. (Color online) The interaction force calculated by inte-
grating stresses on a bulk curve generated by the centers of all
maximally inscribed circles.

curve, the leading stress reads

T ∼ δ−2e−2r/δ
{−[

A2
1 + A2

2 + (1 + n̂p1 · n̂p2)A1A2
]
I

+A2
1n̂p1n̂p1 + A1A2(n̂p1n̂p2 + n̂p2n̂p1) + A2

2n̂p2n̂p2
}
.

(19)

The stress (19) decays exponentially fast away from the center
of the smallest maximally inscribed circle. We can thereby
extract the dominant contribution to (4), which is localized
about this center, using Laplace’s method [33]. Consider
without loss of generality the force acting on particle 1.
To proceed, we parameterize the integration curve using the
arc-length variable ξ , with r(ξ = 0) = D/2. As ξ → 0, the
outward normal to the integration surface is n̂ ∼ k̂, where k̂ is
a unit vector parallel to the line of minimal distance connecting
particle 1 to particle 2. Also in this limit, n̂p1 ∼ k̂, n̂p2 ∼ −k̂,
and

Ai ∼ 4 tanh
ζi

4

√
ρi

ρi + D/2
, i = 1,2, (20)

where hereafter ρi is understood to denote the radius of
curvature of surface i at minimum separation (see Fig. 3).
Finally, the exponent in (19) is expanded as

r(ξ ) ∼ D

2
+ 1

2

(
d2r

dξ 2

)
ξ=0

ξ 2 + · · · . (21)

The result(
d2r

dξ 2

)
ξ=0

= 1

2

[
1

ρ1 + D/2
+ 1

ρ2 + D/2

]
(22)

follows from a local geometric analysis of the separation
region, as outlined in the Supplemental Material [34]. Sub-
stituting these approximations into (19), the force integral (4)
reduces to a Gaussian integral, yielding

F1 ∼ −32 tanh
ζ1

4
tanh

ζ2

4

√
2πρ1ρ2

ρ1 + ρ2 + D
δ−3/2e−D/δk̂. (23)

IV. DISCUSSION

Formula (23) provides the requisite leading-order approx-
imation for the interaction force between two convex planar
particles [35]. It is apparently the first simple, systematic, and
general approximation to hold beyond close proximity. That
is, it holds for arbitrary D � δ, with δ � 1; as demonstrated
below, (23) is actually a good approximation when D is just
a few times larger than δ. Thus the domain of validity of the
new theory complements the validity regime of Derjaguin’s
approximation: D � 1 and δ � 1. Notably, the validity
regimes overlap when δ � D � 1. It will be demonstrated
below that the new approximation is more accurate in this
overlap domain, which is of particular practical importance.
Moreover, when Derjaguin’s approximation can be given in
closed form for all D � 1 (such as at low potentials), a
uniformly valid closed-form approximation for arbitrary D

may readily be obtained.
A key feature of (23) is that it depends solely on local

physicochemical and geometrical properties of the particles.
While this is a famous feature of Derjaguin’s approximation,
this is far from evident beyond “close proximity.” The
generalization is manifested through the dependence of the
multiplicative prefactor in (23) on D. For D � 1, this
dependence disappears, and (23) degenerates to the closed-
form version of the Derjaguin approximation based on a
thin-double-layer parallel-plate solution. The dependence on
D also disappears, incidentally, in the case of a finite particle
interacting with a plane wall, ρ2 → ∞. That Derjaguin’s
approximation fortuitously applies in this special case has been
previously observed in direct numerical simulations [13].

A. Numerical example

To demonstrate the applicability of our theory, and to
compare it with Derjaguin-type approximations, we have
computed the interaction force numerically in what may be
the simplest scenario: two identical parallel circular cylinders,
whose surfaces are fixed at a low voltage, ζ = 0.3; with this
small value, and for the sake of comparison, it is sufficient
to solve the linearized PB equation. Choosing a∗ as the
common radius, formula (23) degenerates to ∼ −2

√
πζ 2(1 +

D/2)−1/2δ−3/2e−D/δ . In Fig. 4, this expression is shown (thick
line) as a function of D, along with the numerical solution for
several small values of δ (symbols). The agreement is excellent
for D just a few times larger than δ, e.g., starting from D ≈ 0.3
for δ = 0.1. Also shown in the figure are two versions of the
Derjaguin approximation. The first (thin line) is the closed-
form expression based on the thin-double-layer solution of
the parallel-plate configuration. As already mentioned, this
is just the D � 1 limit of our approximation, and it is valid
only in the narrow domain δ � D � 1. The second (dotted
lines) is the closed-form expression based on a linearized low-
voltage solution of the parallel-plate configuration, valid for
D � 1 including D ∼ O(δ). This approximation is obtained
by adding the term 2

√
2πζ 2δ−3/2e−2D/δ to the thin-double-

layer Derjaguin approximation [36]. Note that by adding
this term to our approximation instead, we obtain a uniform
approximation for entirely arbitrary values of D.
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FIG. 4. (Color online) Dimensionless repulsion force F , scaled
by δ−3/2e−D/δ , as a function of minimum separation D between two
identical parallel cylinders held at a fixed low potential, ζ = 0.3. See
Sec. IV A for details regarding the data and approximations shown.

B. Generalizations

The method presented here can be considerably general-
ized. In three dimensions, a ray solution for the potential can
be constructed in a similar fashion; in the attenuation formula
(16) for the multiplicative factor A, planar curvatures are
replaced by the respective Gaussian curvatures. The interaction
force then follows by retracing the present calculation via
Laplace’s method, this time in two dimensions, generalizing

the integration surface to the “medial surface” generated by the
centers of all maximally inscribed spheres. Nonuniform zeta
potentials are immediately accounted for; in fact, our theory
remains valid with ζ in (16) understood to depend on s, and
the ζ ’s appearing in (23) being those at minimum separation.
We may also consider the case of nonconvex particles, where
rays emanating from the same particle intersect. Because of the
exponential decay, typically there would be a unique ray that
dominates the contribution at any given point. Pathological
cases, e.g., points where an infinite number of rays intersect
with the same l, can be dealt with through local analysis in the
spirit of the geometric theory of diffraction [37].

Other desirable extensions have to do with the physical
model underlying our calculation. One possible generalization
would be to consider multispecies and multivalent electrolytes.
More fundamentally, it is well known that the Poisson-
Boltzmann formulation breaks down at sufficiently high con-
centrations or surface charge densities and in other scenarios
where ion-ion electrostatic interactions become appreciable
[38–42]. Distributions of the ion concentrations and electric
potential can often still be calculated based on modified
continuum models that, similar to the Poisson-Boltzmann
model, display exponential decay and which reduce in the
bulk to linear equations. Nonideal behavior of that sort will be
manifested in our scheme as a modification to the prefactor A.
A potentially interesting situation arises in highly concentrated
electrolytes or room-temperature ionic liquids, where the
diffuse-layer potential oscillates while attenuating [43].
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