
PHYSICAL REVIEW E 91, 022306 (2015)

Active swarms on a sphere
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We show that coupling to curvature nontrivially affects collective motion in active systems, leading to motion
patterns not observed in flat space. Using numerical simulations, we study a model of self-propelled particles
with polar alignment and soft repulsion confined to move on the surface of a sphere. We observe a variety
of motion patterns with the main hallmarks being polar vortex and circulating band states arising due to the
incompatibility between spherical topology and uniform motion—a consequence of the “hairy ball” theorem.
We provide a detailed analysis of density, velocity, pressure, and stress profiles in the circulating band state. In
addition, we present analytical results for a simplified model of collective motion on the sphere showing that
frustration due to curvature leads to stable elastic distortions storing energy in the band.
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I. INTRODUCTION

Active systems, where each particle is equipped with its
own source of energy that enables motility, have recently
attracted a flurry of interest [1,2]. These systems are char-
acterized by constant input of energy at the individual particle
level, rendering them out of equilibrium. Local energy input,
many-body effects, and dissipation result in a variety of motion
patterns. Examples span multiple length scales ranging from
the microscale, e.g., bacterial colonies [3], migration of tissue
cells [4], and motion of the cytoskeleton [5] to the macroscale,
e.g., fish schools [6], bird flocks [7], and migrating mammals
[8]. Important examples on the nonliving side include active
nematic fluids [9,10], active colloidal swimmers [11], vibrated
granular disks [12], and traffic [13]. Active systems where
curvature plays an important role range from biology to
physics. On the biological side there are a few prominent
examples: curvature and tissue folding are crucial during
gastrulation [14], epithelial and endothelial cells move on
constantly growing, curved crypts and vili in the gut [15,16],
and the mammalian corneal epithelium grows in a steady-state
vortex pattern [17]. On the physics side, droplets coated
with actively driven microtubule bundles show active nematic
patterns [18] that are affected by the underlying curvature of
the droplet.

Being far from equilibrium limits the statistical mechanics
description of active systems. Instead, one resorts either to
hydrodynamic models [2] or to simulations [1]. Despite a large
diversity of systems that exhibit active behavior they can be
broadly classified based on the particle head-tail symmetry
(nematic or apolar), the propulsion symmetry (polar, nematic,
or apolar), and momentum conservation (wet) or lack thereof
(dry) [2]. A lot of insight was gained by studying toy
systems beginning with Vicsek et al. [19], who constructed
a model of constant velocity self-propelled particles (SPP)
that noisily align with their neighbors. In two dimensions, at
low noise a state with true long-range order characterized by a
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finite net velocity appears, in striking contrast to equilibrium
systems with continuous order parameter symmetry for which
thermal fluctuations destroy long-range order at any finite
temperature [20]. Soon after, a hydrodynamic description was
constructed using symmetry arguments [21] and later derived
microscopically [22,23]. In the Vicsek model, disordered and
ordered states are separated by a kinetic phase transition. The
nature of this transition has been subject to a long debate [1]
with a strong evidence that it is first order [24].

A silent point in the Vicsek model is that particles are
pointlike and align instantaneously. The model can be extended
to include excluded volume, but its effects remain poorly
understood, especially at high densities [25–29]. The phase
diagram of active Brownian particles [30] which combines
short-range repulsion with angular diffusion has only been
characterized recently [31,32]. One distinguishes three phases:
at low density and/or small Péclet number (Pe = v0/aνr , a

is particle radius and νr is strength of rotational noise) the
system is spatially homogeneous. At higher Péclet numbers,
collisional interactions due to volume exclusion reduce the
effective velocity, which is proportional to local density
[27,33,34]. This leads to a density instability and eventually
phase separation via a spinodal decomposition mechanism.
The left phase boundary scales with Péclet number, with a
suspected lower critical point around Pe = 10. The phase-
separated region persists at higher density, until at the right
spinodal boundary it gives way to a dense liquid phase [31]. At
even higher density or lower active driving speeds, the system
freezes and forms an active glass or crystal for polydisperse
and monodisperse systems, respectively [25,28,29]. It is also
known that models with volume exclusion can form stable
vortex states in two- and three-dimensional flat space [35,36].

Geometry can play an important role in many systems.
One of the most widely studied examples is the structure of
the ground states of crystals on surfaces with positive [37]
or negative [38] Gaussian curvature. While packing identical
particles in plane is straightforward, the ground state is a
triangular lattice with each particle having exactly six equidis-
tant nearest neighbors, this is not the case in the presence
of curvature. In order to accommodate a nonzero Gaussian
curvature one needs to introduce topological defects, i.e. sites
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FIG. 1. (Color online) Two possible vector field configurations
around a +1 topological defect on a sphere: (a) source and (b)
whirlpool vortex. (c) Motion pattern of active particles on a sphere.
Colored (shaded) arrows indicate velocity vectors, vi , with the
color (shading) proportional to |vi |. Yellow (gray) arrows represent
particles’ direction vectors, ni . We have labeled the positions of the
two +1 defects velocity field [red (dark)] and of the director field
[golden (light)]. For low activity vi and ni are not necessarily aligned.
Only the whirlpool (b) is consistent with polar active motion on the
sphere.

with coordination numbers other than six. This incompatibility
between order and curvature leads to geometric frustration.
Determining the total number and distribution of the defect
in the ground state of a geometrically frustrated system is a
complex problem that depends on many details such as global
topology of the surface, defect core energy [39], presence and
nature of boundaries [40], and so on. Geometry is expected
to also affect the flow. For example, it is not possible to have
a steady, uniform velocity flow of a fluid on the surface of
a sphere. Formally, flow velocity v (r) is a vector field on
S2 and as a direct consequence of the Poincare’s “hairy-ball
theorem” [41], there has to be at least one point on S2 for
which v = 0. Vector field configurations that are compatible
with the spherical geometry are shown in Figs. 1(a) and 1(b).
A similar reasoning should apply to active systems in curved
geometries, and thus a flock on a sphere will not be able to take
a conformation with all particles traveling at the same speed,
like in flat space. Instead, curvature is expected to frustrate
dynamics thus leading to complex motion patterns even in the
absence of noise.

All SPP models to date have assumed a flat geometry. In this
paper, we examine a model of self-propelled particles confined
to move on a sphere subject to a realistic alignment rule and
white noise. We draw inspiration from recent experiments of
Sanchez et al. [18] and Keber et al. [42]. Our goal here is not
to describe those experiments, which requires consideration of
hydrodynamic effects but to construct a minimal model that
provides clear insight into the interplay between activity and
geometry. Our main result is a robust band traveling around the

equator, with a +1 defect at either pole, similar to the ring state
found at small vesicle radii in Ref. [42]. The main difference
is that due to the polar nature of our model, the ring is rotating,
while the ring in Ref. [42] is not.

The paper is organized as follows. In Sec. II we construct
a model of active particles confined to move on a sphere.
We derive equations of motion for particle positions and
orientations subject to the spherical constraint and discuss
how those equations are integrated numerically. In Sec. III A
we discuss collective motion patterns of this system and in
Sec. III B we analyze a steady-state rotating-band pattern
unique to the spherical topology. We provide both numerical
(Sec. III C) and analytical solutions (Sec. III D) of an effective
one-dimensional model for the rotating-band state. In Sec. III F
we explore robustness of the rotating-band state with respect
to noise and system size. Finally, in Sec. IV we summarize
our results and provide an outlook on potential experimental
realizations as well as future directions.

II. MODEL

A. Equations of motion

Our model consists of N spherical particles of radius σ

confined to the surface of a sphere of radius R [Fig. 2(a)].
Particle velocity vi and direction ni are constrained to the
tangent plane at every point. Each particle is assumed to be
actively moving, i.e., it is subject to an internally generated
active force Fact

i .
In the overdamped limit the equations of motion are (for a

derivation, see Appendix A)

γ ṙi = Fact
i − (

r̂i · Fact
i

)
ri +

∑
j

Fij − (r̂i · Fij )ri , (1)

where γ is the friction coefficient and Fij is the short-range
nonactive two-body force. [Explicit forms of Fact

i and Fij will
be defined below.] If we define the projection operator at a

FIG. 2. (Color online) (a) Spherical particles of radius σ are
confined to the surface of a sphere of radius R. A unit-length polar
direction vector ni confined to the tangent plane is assigned to each
particle. The velocity vector vi is in general not parallel to ni but is
also confined to the tangent plane; then the torque τ i exerted on a
particle points along the normal vector at position ri . The Euclidean
distance rij between particles is computed in the embeddingR3 space.
(b) Particles interact via a short-range soft potential, which is finite
for any value of rij . (c) Particle alignment is assumed to follow the
XY model with ferromagnetic coupling constant J .
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point ri on to the tangent plane of the sphere acting on a vector
a as PT (ri ,a) = a − (r̂i · a)r̂i , the overdamped equations of
motion are simply

γ ṙi = PT

(
ri ,Fact

i +
∑

j

Fij

)
. (2)

In order to fully describe motion of the particles, we
need to also specify dynamics for the internal degree of
freedom, i.e., the direction vector ni . Here we use simple
two-dimensional XY -model type dynamics, where a particle
aligns explicitly with the surrounding particles within a given
radius of interaction. In two dimensions, using first-order
dynamics, we have

φ̇i = −J
∑

j

sin(φi − φj ) + ξi, (3)

where φ is the angle of the polar director n with the x axis, i.e.,
ni = (cos φi, sin φi) and the first term on the right-hand side is
simply the torque. We have also added a scalar delta-correlated
angular noise with distribution 〈ξi(t)ξj (t ′)〉 = νrδij δ(t − t ′); νr

is the noise strength or rotational diffusion constant. On the
sphere, it is not possible to define φ globally (i.e., uniquely for
each tangent plane), so we need to write the equation in terms
of ni directly. In the plane, the right-hand side of Eq. (3) can
be written as a curl projected along the ez axis orthogonal to
the xy plane to obtain its magnitude:

φ̇i = −J

⎛
⎝∑

j

ni × nj

⎞
⎠ · ez + ξi . (4)

If we define the normal projection of a vector on the
unit normal to the tangent plane as PN (r̂i ,a) = (a · r̂i), the
deterministic part of the right-hand side of Eq. (4) is simply
PN (r̂i , − J

∑
j ni × nj ). The derivative of a unit vector is an

angular rotation, and we have dni

dt
= φ̇i(r̂i × ni), that is, the

time derivative is orthogonal to both the axis of rotation and
the vector itself. Then the XY -like angular dynamics on the
sphere is given by:

dni

dt
=

⎡
⎣PN (r̂i , − J

∑
j

ni × nj ) + ξi

⎤
⎦ (r̂i × ni). (5)

We note that the fully vectorial approach is as well
beneficial from the point of view of numerical simulations
as it is straightforward to generalize to an arbitrary surface,
unlike working with local parametrizations, which often have
singular points (e.g., for θ = 0) and can be costly to compute
numerically.

B. Integrating the equations of motion

In this study we assume that the active force has a simple
form, Fact

i = v0ni , with magnitude v0 pointing along ni , and
define the mobility μ = γ −1, leading to the following equation
of motion:

ṙi = PT

⎛
⎝ri ,v0ni + μ

∑
j

Fij

⎞
⎠ . (6)

The interaction force Fij is modeled as a short-range repulsion
between spheres of radius σ , Fij = −k(2σ − rij ) rj −ri

rij
for

rij < 2σ and Fij = 0 otherwise, with k being the elastic
constant; rij is the Euclidean distance computed in R3. For
the alignment dynamics we consider only the “ferromagnetic”
case where the coupling constant J > 0 and the j−sum in
Eq. (5) is carried over all neighbors within a 2.4σ cutoff radius,
i.e., the first shell of neighbors. Particle orientation is subject
to delta-correlated noise ξi acting in the tangent plane with
rotational diffusion constant νr .

An important feature of our model is the separate dynamics
of ni and vi [4]. In the absence of interactions, ni and vi will
eventually align. The interparticle forces, however, allow for
permanent deviations of vi from ni , a key mode for active
elastic energy storage [25]. The coupling constant J sets an
alignment time scale, τal ≈ 1/J . Similarly, the collision time
scale is set by k as τcol ≈ 1/μk
, where 
 is the maximum
overlap with respect to σ . In the following, length is measured
in units of σ , energy in units of kσ 2, time in units of τ =
1/μk, velocity in units of σ/τ ≡ μkσ , and νr in units of τ−1.
Finally, Eqs. (6) and (5) were integrated numerically. Instead
of choosing a curvilinear parametrization of the sphere we kept
the equations in vector form and imposed constraints after each
step. Each time step has two stages: (1) unconstrained move
according to Eq. (6) and (2) projection of the position onto the
sphere and its velocity and orientation onto the tangent plane
at the new position. Similarly, torques were projected onto the
surface normal at ri and, finally, ni was rotated by a random
angle around the same normal.

All simulations except Sec. III F were performed with N ≈
3 × 103 particles at packing fraction φ = 1 (defined as the
ratio of the area occupied by all particles to the total area of
the sphere, i.e., φ = Nπσ 2/4πR2), resulting in R ≈ 28.2σ .
For comparison, we performed a series of simulations in the
plane with the same N and φ by imposing periodic boundary
conditions onto a square simulation box of size L = 100σ . In
all cases, the equations of motion were integrated for a total
of 104τ with time step δt = 10−3τ using a standard Euler-
Maruyama method. Initially, particles were placed at random
on the sphere, then initial large overlaps were removed by
using a simple energy relaxation scheme.

III. RESULTS AND THEORY

A. Collective dynamics

In Fig. 3 we show snapshots of typical motion patterns
for v0 = 0.03σ/τ , 0.1σ/τ , and 1.0σ/τ (we also include
movies in the Supplemental Material [43]). Here we focus
on the low-noise (νr = 0.002τ−1) and large-packing-fraction
(φ = 1) regime. Effects of a stronger noise will be addressed
in Sec. III F. For low v0 one observes a polar vortex pattern
[Fig. 3(a)]. In this state, spherical symmetry is spontaneously
broken and two vortices form at opposite poles [see Fig. 1(b)].
The entire flock rotates around the axis passing through those
poles. This circulating band has neither sources nor sinks, as
required for a particle conserving fluid, and is consistent only
with the pattern in Fig. 1(b). Linear velocity within the flock is
not uniform, gradually decreasing from ≈v0 at the equator to
zero toward the poles. In general, ni is not aligned with vi and
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FIG. 3. (Color online) Steady-state configurations at t = 104τ

for (a) v0 = 0.03σ/τ , (b) v0 = 0.1σ/τ , and (c) v0 = 1σ/τ , with
J = 1τ−1 and νr = 0.002τ−1. The length and color (shading) of
velocity vectors reflect the magnitude of |vi |. Thinner yellow (bright)
vectors indicate the directions of the orientation vectors ni . Panels
(d), (e), and (f) show trajectories of two randomly selected particles
colored according to |vi |; vectors along the trajectory indicate ni

at these positions. (g) is a snapshot of the v0 = 0.1σ/τ periodic
flat system of size L = 100σ ; here vi [red (dark)] is uniform and
completely aligned with ni [yellow (bright)]. Panel (h) shows the
order parameters for the flat (pF ) and spherical (pS) systems as a
function of v0 for a range of values of J . Please see the Supplemental
Material for movies of the band and flat states [43].

forms separate vortices [gray (light) arrows in Fig. 1(c)]. The
motion is heavily frustrated with short-lived localized velocity
spikes and rearrangements [longer arrows in Fig. 1(c)], leading
to substantial mixing as can be seen by tracking individual
particle trajectories [Fig. 3(d)]. As v0 increases, the system
develops “bald” spots at the poles. Particles are compressed
toward the equator and the flock takes the configuration of a
spherical belt. ni and vi are more closely aligned and there
are fewer jumps in velocity. Finally, as v0 is increased to
1.0σ/τ , the flock is squeezed further toward the equator. The
velocity distribution within the flock is nearly uniform and ni

and vi are almost aligned. Particle trajectories are very regular
[Fig. 3(f)].

Local reductions of velocity due to volume exclusion and
decoupling of ni and vi lead to active phase separation [26,27],
an effect distinct from the banding observed here: We have
examined the flat-space counterpart of our system in the same
range of values of v0 and J as in the spherical case. It remains
in the homogeneous phase (Fig. 3(g) and Supplemental
Material movie [43]). Using a Vicsek order parameter pF =

1
Nv0

∣∣∑
i vi

∣∣, we show that this flat system is also consistently
in the polar phase, with pF ≈ 1 independent of v0 [Fig. 3(h)].
In the spherical case, we measure alignment on the surface of
the sphere. We define pS = 1

NRv0
| ∑i ri × vi |, pS → 1 for a

circulating ring moving at v0. pS transitions from a low value
for small v0 to near perfect alignment at larger v0 [Fig. 3(h)].
The dip in pS at intermediate v0 is potentially indicative
of curvature-influenced active phase separation. Conditions
that lead to such effects will be addressed elsewhere [44].
These results shows that the transition to the polar vortex and
a moving band is a purely curvature-driven effect, with no
equivalent in the planar model.

The phenomenon is similar to the ring structures found
in the plane [35] and in three dimensions [36], with the
important difference that in here it occurs in the absence of
attraction. Active contractile elements have also been studied
in a continuum model on a cylinder and show banding [45].
We note that without the self-avoidance (i.e., at k = 0), our
model reduces to a continuum Vicsek model. In contrast to the
polar ordered state observed on the plane, on the sphere after
a long relaxation period the entire flock collapses into a ring
spanning one of the great circles. The effect again differs from
the density banding close to the Vicsek transition [46] since it
occurs deep inside the polar regime.

We focus only on the high-velocity regime with a developed
band. The system spontaneously breaks spherical symmetry
along an arbitrary axis. Therefore, in order to produce the
angular profiles (Fig. 4), for each snapshot we first determined
the direction of the total angular velocity and then performed
a global rotation that aligned it with the z axis in R3. In
Figs. 4(a) and 4(b) we present such profiles for the density
and pressure in the established band for J = 1τ−1 and a range
of v0. The density has been normalized to that of a uniformly
covered sphere, and we measure pressure by computing the
trace of the local force moment tensor, �̂i = ∑

j rij Fij , with
units of energy (see Sec. III E). The band has a relatively
complex structure. For example, the discrete particles lead to
a distinct layering pattern in the density profiles. Similarly,
a change of slope in the pressure profiles stems from double
overlaps among very compressed particles, though, overall,
the band narrows and the pressure increases with growing v0.
The influence of J is at first counterintuitive (Fig. 4, insets):
The lower values of J where the alignment is weaker lead to
more pronounced banding.

FIG. 4. (Color online) (a) Density profiles for increasing v0 at
J = 1τ−1. Inset: Density profiles as a function of J for v0 = 0.5σ/τ .
(b) Pressure profiles (virial part), same parameters as in (a). Curves
are ordered from flat to peaked with increasing v0 and from peaked
to flat with increasing J .
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FIG. 5. (Color online) Linked spring chain model for a slice of
the rotating-band solution. We assume that the band is moving with a
constant angular velocity ω = v0/R, i.e., the velocity of each particle
is locally aligned with eφ . In this case, we can extract a “column” of
particles along the polar direction, leading to the effective model for
the band state. Particles are assumed to be connected to their nearest
neighbors via harmonic springs of stiffness k. Each particle is subject
to a force in the eθ direction resulting from the motion on the small
circles on the sphere. In general, particle orientation ni is not aligned
with the velocity vi but instead deviates from it by an angle αi .

B. Steady-state rotating solution

In the simulations, we also observe a steady-state rotating
solution (the rotating-band state) where particles cluster
symmetrically around the equator and the entire flock performs
a solidlike rotation with angular velocity ω around an axis
through the poles.

To understand this, we use a simplified one-dimensional
model to analyze the active mechanics of an already-formed
band. We consider a one-particle wide “orange” slice cut out
of the sphere in the polar direction as shown in Fig. 5. The par-
ticles in the slice all move in the same tangential direction, eφ ,
with constant angular velocity ω = v0/R, i.e., with decreasing
speed toward the poles. In local spherical coordinates the
particle position is ri = R(cos θi cos φi, cos θi sin φi, sin θi),
where the z axis is aligned with the axis of rotation, θi is
the angle from the xy plane along a meridian, and φi is the
azimuthal angle. Since the active force Fact

i = v0ni is always
in the tangent plane, we can write ni = cos αieφ − sin αieθ .
Here αi is the (signed) angle between the polar direction and
the band velocity parallel to the equator. We derive a simple
relation between rotation speed and active forces by projecting
Eq. (6) onto the eφ direction. We have ṙi = Rω cos θieφ ,
leading to:

cos αi = Rω

v0
cos θi . (7)

In this simplest case, the solution is radially symmetric. It
corresponds to a symmetric vector field pointing inwards to
both sides of the equator [visible in Fig. 3(c)]. In Fig. 6(b),
we show simulation results for α versus θ profiles for three
different values of the alignment parameter J . All profiles are
linear and nearly independent of v0, with a slope that depends
only on J . Since αi is also the angle between the polar direction
and the velocity, it now makes sense that α reduces for large
values of J . With s the slope of the graph, we have α = sθ ,

FIG. 6. (Color online) (a) Velocity profiles (
√

〈v2〉/v0) for
increasing v0 and three values of J. From peaked to flat: J =
0.1τ−1,J = 1τ−1 and J = 10τ−1. (b) Simulation results for α, the
angle with the velocity direction, as a function of θ , for different
v0 (legend) and J . From steep to shallow: J = 0.1τ−1, with fitted
s = 1.25; J = 1τ−1 with s = 0.45; and J = 10τ−1 with s = 0.15.

with s ≈ 1.25,0.45, and 0.1 for J = 0.1τ−1,1τ−1, and 10τ−1,
respectively [we use s = 0.55 for the fits of the J = 1 profiles
in Figs. 7(a) and 7(c)].

In Fig. 6(a) we show the velocity magnitude profiles for
three values of J and a range of v0. In all cases, velocities
reach near or above v0 at the center of the band and then
reduce toward the edges but are more complex than the simple
parabolic profile predicted by Eq. (7). However, they retain
sufficiently close similarity to a parabolic profile in the region
where the density is nonzero for the approximation ω = v0/R

to remain valid.
In order to further analyze the single-slice model we

suppose that the chain consists of Np particles pole to pole.
We chose Np such that pσ 2 ≈ 0.5k in the absence of activity,
consistent with the low velocity and flat value of the pressure
[see Fig. 4(b)]. Assuming overlapping particles, the force
an adjacent particle j exerts on particle i in the chain is
given by Fij = −kr̂ij (2σ − |rj − ri |). If we expand around θi ,
we can approximate rj − ri = −R(θj − θi)êθ . To first order,
interparticle forces are along êθ , and the forces acting on
particle i from its neighbors i − 1 and i + 1 are Fi,i−1 =
k[2σ − R(θi − θi−1)] and Fi,i+1 = −k[2σ − R(θi+1 − θi)],

FIG. 7. (Color online) Simulation results (solid) and full chain
calculation (dashed) compared to each other, for J = 1τ−1 and s =
0.55 (a) and (c) and J = 0.1τ−1 and s = 1.25 (b) and (d). Top row:
pressure, and bottom row: density. Curves are ordered from flat to
peaked with increasing v0, for both pressure and density, and also
simulation and calculation results.
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respectively. Finally, we can write the set of equations of
motion along the chain:

v0 sin α1 = −μk [2σ − R(θ2 − θ1)]

v0 sin αi = −μkR(θi − θi−1) + μkR(θi+1 − θi) (8)

v0 sin αNp
= μk[2σ − R(θNp

− θNp−1)].

We solve these equations using two approaches.

C. Numerical energy minimization approach

First, we treat Eqs. (8) as Euler-Lagrange equations of an ef-
fective energy functional. Formally, even though our physical
system conserves neither energy nor momentum, if we assume
α = sθ , the active force components in Eq. (8) derive from an
effective potential V i

act = v0 cos(sθi) which can be added to the
interparticle repulsive term V i

rep = kR
2

∑
j∈N (θj − θi)2. Then

setting the gradients of V i = V i
act + V i

rep to zero is equivalent
to Eq. (8). We then minimize the potential by using the
standard L-BFGS-B conjugate gradient method [47] including
boundary constraints and compute strain and pressure from the
numerically evaluated displacements.

The alignment parameter J only appears through its influ-
ence on the parameter s, with s decreasing for larger alignment
strengths. Then the main remaining dynamical parameter
is just v0. Another important quantity is the dimensionless
curvature κ(=2σ/R = 0.0708982). An important point is to
determine the correct initial state for the chain. Because of
the unit packing fraction (φ = 1), one might expect that just
touching spheres with no prestress are the correct initial state.
However, it is known that φ = 1 corresponds to the jammed
or crystalline region of phase space, where soft particles
interpenetrate [48]. In Fig. 8(b), we show the mean pressure
(or, to be precise, the trace of the force-moment tensor) in
the spherical system as a function of v0 and compare it to the
pressure in an equivalent flat system. For the flat system, the
pressure is very close to constant, indicating no strain-inducing
distortions due to activity, consistent with the observed
collective block translation in these cases. The constant value
p0 = 0.5k/σ 2 stems purely from the overlaps of the particles
due to the initial packing. If we assume z̄ = 6 neighbors

FIG. 8. (Color online) (a) Averaged profiles of the components
of the force moment tensor in the local frame er , eθ , eφ , for J = 1τ−1

and v0 = 1σ/τ . The stress tensor is close to isotropic on the sphere,
with �θθ ≈ �φφ , the off-diagonal components are much smaller. Due
to the projection, all components involving er are zero. (b) Mean
pressure for the spherical and flat cases as a function of v0. The active
part of the pressure is only significant compared to the overlap part of
the pressure p0 ≈ 0.5 for the spherical case; in other words activity
does not induce energy-storing distortions in the flat case.

on average, we can estimate an initial overlap of roughly
δ0 = 0.1σ . To make a quantitative comparison between the
one-dimensional chain model and the simulation, we need the
same starting value of p0. Therefore we prepare the chain with
initial overlaps of δ = 0.25σ . For the sphere radius used in
the simulation, this is equivalent of a chain with Np = 59. In
order to be able to reliably use a one-dimensional model for
our two-dimensional system, we need to show that the local
stresses are homogeneous [see Fig. 8(a) and Sec. III D].

When comparing simple chain “energy” minimization
results to the simulations, it becomes apparent that it dramat-
ically underestimates the pressure in the center of the band.
This points to a larger effective stiffness constant k̄ > k in
the center. A straightforward explanation is double or even
multiple overlaps of particles, i.e., next-nearest neighbor and
further interactions. We have confirmed their existence in
the simulated bands and incorporate them into the chain
minimization procedure by counting all neighbors in the
repulsive term V i

rep = kR
2

∑
j∈N (θj − θi)2. Due to the initial

compressed state, we also add a constraint 0 � θi � π to the
L-BFGS-B minimization routine. Finally, with this amount of
detail, the continuum formulations p = k̄us and ρ = 1 + us

lose their meaning and we directly compute the pressure via
the force moment tensor and the density through a histogram.
Figure 7 shows the numerical stress and density profiles
for J = 0.1τ−1 and J = 1τ−1, overlaid with the full chain
minimization results. We have used s = 1.25 for J = 0.1τ−1

as fitted but had to adjust s = 0.55 for J = 1τ−1, indicating
that the chain model approximations work better for a narrowly
peaked band. The model provides a good quantitative fit for
both sets of simulation (Fig. 7).

For large values of J (J ≈ 10τ−1), the peaked density
profile is slow to develop, and the pressure profile remains very
broad at all values of v0. We were not able to satisfactorily fit
them with any value of s. At low v0 and large values of J ,
we reach an intermediate phase where the recently discovered
density instability in repulsive self-propelled particles (see,
e.g., Ref. [33]) influences the behavior, and we do not obtain a
symmetric band but rather a circulating patch [44]. This is also
visible in the order parameter graph, Fig. 3(h), where there is
a consistent dip in the order parameter at intermediate values
of v0 for the higher values of J .

D. Continuum model

The second approach to solving Eqs. (8) is based on
taking the continuum limit and is less straightforward but a
bit more physically insightful. If our system is large, i.e., if
κ = 2σ/R 	 1, where κ is the dimensionless curvature of the
sphere, the angular differences can be written in differential
form. Let the ui be the displacement of the particle i from its
rest position, i.e.,

θi = θ0
i + ui, (9)

with θ0
i = 2σ i

R
− σN

R
.

This transformation needs to be performed carefully, and we
can use either an absolute reference frame or the coordinates
of the particles themselves, corresponding to Eulerian and
Lagrangian pictures, respectively. Details of the calculation
are given in Appendix B. In the Lagrangian reference frame,
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the equation for the displacement u is

d2u

dθ2
0

= α sin (sθ0 + su) , (10)

with boundary conditions

du

dθ0

∣∣∣∣
∓θm,0

= ±β sin (sθ0 + su) . (11)

In the Eulerian reference frame, the right-hand side term is
simpler; however, additional derivatives arise on the left-hand
side: (

1 + du

dϑ

)2
d2u

dϑ2
= α sin(sϑ), (12)

with boundary conditions(
1 + du

dϑ

)
du

dϑ

∣∣∣∣
∓ϑm

= ±β sin(sϑ). (13)

Here α = 1
R

[ R
2σ

]2 v0
μk

and β = v0
2σμk

, and the boundary condi-
tions have to be taken at the original position of the chain
edges θm,0 in the Lagrangian case but at the final position ϑm

for the Eulerian equations. Note that the two approaches are
strictly equivalent, as can be seen by applying a change of
variable θ0 = ϑ − u and dθ0 = (1 + du

dϑ
)dϑ to the Lagrangian

equations.
We briefly summarize the results derived in Appendix B.

The Eulerian solution at the zeroth order is

u(ϑ) = −α/s2 sin sϑ + (α/s cos sϑm − β sin sϑm)ϑ, (14)

where we have only an implicit equation for the band edge
ϑm [Eq. (B14)]. In the Lagrangian case, at the zeroth level the
solution is simpler:

u(θ0) = − α

s2
sin sθ0 +

[α

s
cos

sπ

2
− β sin

sπ

2

]
θ0; (15)

however, to compare to simulation results, all expressions have
to be evaluated at the new positions ϑ = θ0 + u(θ0).

The Eulerian strain is given by

uE
s (ϑ) = du

dϑ
− 1

2

du

dϑ

du

dϑ
≈ − 1

2R

[
R

σ

]2

× v0

μk

[
1

s
(cos sϑ − cos sϑm) + 2σ

R
sin sϑm

]
,

(16)

where we have only kept the first-order strain term du
dϑ

in the
second equation. In Lagrangian coordinates, at the first order,
we have the exact same expression, except using θ0 instead of
ϑ and π/2 instead of θm.

E. Predicting strain, pressure, and density profiles

We can estimate the pressure profile within the dense
phase by noting that the interparticle forces are related to the
derivative of the displacement profile:

Fi,i+1 = −k [2σ − R(θi+1 − θi)] = 2kσ
du

dθ
. (17)

This is assuming that all the Fi,i+1 = 0 before any displace-
ments were applied, or, in other words, we have no prestress

in the system. The interaction part of the stress tensor at the
local scale is given by

σ̂i = 1

Ai

∑
j

rij ⊗ Fij , (18)

where the rij reach from the center of each particle to the
contact and Ai is the part of an area tessellation (e.g., Voronoi
diagrams) belonging to particle i [49,50]. Ignoring second-
order contributions in u, we estimate rij ≈ σ and Ai ≈ 4σ 2.
If each particle has four contacts, and horizontal forces equal
vertical forces (i.e., the stress field is isotropic), the pressure
is given by pi = Trσ̂i = 2k du

dϑ
(note the units of force divided

by length, or stiffness, appropriate to two dimensions). This is
really just a microscopic derivation of the stress-strain relation,
and we should write p = k̄us(ϑ), with a possibly effective
stiffness constant k̄.

To test our assumption of an isotropic stress field, we
analyzed the components of the force moment tensor in the
local frame er , eθ , eφ (�̂i = Aiσ̂i is the additive version of
the stress tensor, with units of energy). Here the components
�θθ and �φφ correspond to stresses along a meridian and
perpendicular to it, respectively, and the components �θφ are
the off-diagonal components. For an isotropic stress tensor
�θθ ≈ �φφ , the off-diagonal components are much smaller
and, due to the projection, all of the components involving er

are zero. Figure 8(a) shows that in a developed band, these
approximations hold to a very high degree.

Then the predicted pressure profile for |ϑ | < ϑm is (again,
neglecting the second-order contributions to the strain)

p(ϑ) = − v0R

2μσ 2

[
1

s
(cos sϑ + cos sϑm) − 2σ

R
sin sϑm

]
,

(19)

with an equivalent expression for the Lagrangian pressure
profile.

Finally, we can also compute the angular density profile:
We define the local density to be ρ = 1 when particles are
just touching (i.e., the unperturbed chain). Then, assuming
again isotropic compression like for the pressure profile above,
ρ ≈ 1 + | du

dθ̄
|, or, more precisely, using the strain ρ(ϑ) = 1 −

us(ϑ). The density profile is ρ = 0 for |ϑ | > ϑm and to first
order we have

ρ(ϑ) = 1 − 1

2R

[
R

2σ

]2
v0

μk

×
[

1

s
(cos sϑ − cos sϑm) + 2σ

R
sin sϑm

]
, (20)

within the band and ρ = 0 otherwise. Interestingly, unlike the
pressure, the density depends on k and does not seem to be
universal. Again, there is a similar equivalent equation for the
Lagrangian density prediction.

Figures 9(a) and 9(b) show the analytical predictions for
the pressure profiles (plotting −p) using the full Eulerian
and Lagrangian strain tensors, evaluated at the simulation
parameters for R, σ , and v0 and using MATHEMATICA to
numerically solve the implicit equation for ϑm. We have also
used s = 1 and ignored any prestress contributions. While the
profiles agree with each other at low v0, there are considerable
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FIG. 9. (Color online) Comparing the analytical solution to en-
ergy minimization. (a) Analytical zeroth-order Eulerian solution
using the full Eulerian strain tensor. (b) Analytical zeroth-order
Lagrangian solution, starting from the full Lagrangian strain tensor.
(c) Predicted pressure of the single-overlap chain with N = 44 (just
touching) particles. Note the good agreement at low values of v0. The
remaining parameters are s = 1, p0 = 0, R and σ as in the simulation.
Curves are ordered from flat to peaked with increasing v0.

differences at higher v0; the Lagrangian solution also stops
being single valued due to u � θ0 in evaluating ϑ .

In summary, the form of the strain us , to leading order in
either the Lagrangian or Eulerian picture, is

us(θ ) = − v0

σμk

[
cos(sθ ) − cos(sθm)

κs
+ sin(sθm)

]
, (21)

which we use to extract density and pressure profiles. Here
θm is the location of the band edge, itself a model output.
Assuming a homogeneous system, the pressure (virial part) is
given by the stress-strain relation p = k̄us (k̄ is an effective
stiffness) and density ρ/ρ0 ≈ 1 − us , where ρ0 is the initial
density. κ = 2σ/R is the dimensionless curvature of the
sphere. Negative strain indicates increased density and inward
pressure, consistent with a compressed band. The inward
pressure at the edges, p = − v0

σμ
sin(sθm), is equal and opposite

to the active force per unit length, v0
σμ

sin α, due to the
self-propulsion, that is, pressure balance reminiscent of active
phase separation [26,27] and a first-order phase transition.
From our analysis, four important dimensionless parameters
emerge: the reverse alignment strength s, the underlying
curvature κ ≈ 0.07, the active pressure v0/σμ, and the density
through θm.

FIG. 10. (Color online) Scaling of the band properties with ra-
dius R. Left: Pressure profiles over two decades in system size, from
R = 8σ to R = 60σ , for v0 = 0.5σ/τ , φ = 1 and J = 1τ−1. Right:
The α − θ profile is independent of system size. Inset: Fit of the
pressure profile with the chain minimization method for s = 0.55.
Curves are ordered from flat to peaked with increasing R on the left
and in the inset, and from wide to narrow on the right.

F. Robustness and scaling of the band pattern

The band pattern explored in Secs. III A through III D is
remarkably robust against perturbations and the central result
of our continuum model, Eq. (21), has a wide range of validity.
The band structure is the simplest topologically allowed state
and can only be destroyed by a select number of effects. First, if
the noise strength is too high, the alignment between particles
disappears, and with it the polar order pattern, both in the flat
case and on the sphere in what is essentially a Vicsek transition,
translated to our model. Second, if the velocity is too low or if
the alignment strength J is too low, the system explores states
with different topologies. These include moving patches with
a single defect and complex states with a dynamically folding
band. These very intriguing new states will be explored in
detail elsewhere [44].

We first explore the influence of system size. From our
analytical results, Eq. (21), we see that the radius R enters
only through the curvature κ = 2σ/R and indirectly through
the value of the band edge angle ϑm determined using the
value of the parameter α ∼ R from (B15) in (B14). In Fig. 10,
we show the pressure profiles [Fig. 10(a)] and the α − θ

profiles [Fig. 10(b)] for a range of radii, R = 8 to R = 60,
equivalent to almost two decades in system size N . Snapshots
of a R = 5 and a R = 60 system can be seen in Fig. 11(a) and
11(b). It becomes clear that the reverse alignment parameter
s is independent of R: It is a function of J only, with the
universal value s = 0.45 for J = 1 [compare to Fig. 6(b)].
The band narrows with R (i.e., the edge angle decreases; the
physical width does increase), and the peak pressure increases,
consistent with the predictions of Eq. (21). As before, the
general nonlinear elasticity introduced by double overlaps
makes a quantitative comparison difficult; we rely on the chain
energy minimization instead. In Fig. 10(b) (inset) we show the
fitted values for the pressure profile at s = 0.55, the same
value used above for J = 1, showing good agreement. The
edge pressure p = − v0

σμ
sin(sθm) depends on curvature only

through the location of the band edge; our observed values
barely depend on R, both in the simulation and the chain
minimization fit. Consistent with the narrowing of the band,
the order parameter increases with radius [Fig. 12(a), inset].

As a function of noise, we expect to see the disappearance
of the band in the curved analog of the Vicsek transition. In
Fig. 11(c) through 11(f), we show snapshots of the system with
increasing noise strength. An invaluable tool to determine the
motion pattern on the sphere is the tracking of defects in both
the velocity and order parameter field (to be explored in more
detail elsewhere [44]). All the examples above except Fig. 11(f)
have a band-type location of defects; that is, two +1 defects
each in both the velocity and order parameter field at opposite
poles, with the locations of these defects for the two fields close
to or identical to each other. The snapshot at the highest noise
has a larger number of defects, consistent with a pattern where
opposite-sign defect pairs nucleate in regions where the order
breaks down. In Fig. 12(b), we show the number of defects
in both fields as a function of noise strength. At low noise
amplitudes, we observe two defects in each field (dotted line).
The velocity field (especially at the lower v0 = 0.1σ/τ ) is the
first to nucleate defect pairs, followed by the order parameter
field around νr = 2τ−1. We then see a rapid transition to a
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FIG. 11. (Color online) Evolution of the band as a function of radius and noise strength; all snapshots for v0 = 0.5σ/τ , J = 1τ−1 and
φ = 1. From left to right: bands for R = 5σ and R = 60σ for low noise strength νr = 0.002τ−1, followed by bands at R = 28.2σ and noise
strength increasing from νr = 0, νr = 0.3τ−1 to νr = 1.0τ−1 and through the transition to νr = 2τ−1. Velocity is blue (dark), and the polar
vector is colored yellow (light). The location of the velocity defects (red) and order parameter defects (yellow) is indicated by colored spheres;
all snapshots except the highest noise one are topologically a band structure.

completely disordered system with dozens of defects (note the
logarithmic scale on the y axis).

The order parameter pS = 1
NRv0

∣∣∑
i ri × vi

∣∣ is another
useful tool to track the disappearence of the band. It decreases
nearly linearly as a function of νr , as can be seen in Fig. 12(a),
and has overall smaller values for lower v0 (consistent with
a broader band). This is quite unlike the first-order transition
observed in the original Vicsek model [24], or even a second-
order transition, and indicates a more complex process. For
example, at νr = 2τ−1, where we begin nucleating defect
pairs, the order parameter is still quite substantial ps ≈ 0.6,
and we can also see substantial remaining local alignment in
Fig. 11(f). The band has long been destroyed by the time the
order parameter finally reaches 0, at νr ≈ 5τ−1.

While the band is still present, we can again investigate
pressure and α profiles, shown in Figs. 13(a) and 13(b).
The band broadens systematically with noise strength and
the pressure eventually becomes homogeneous. Partially, we
can explain this effect through the α − θ relation shown in
Fig. 13(b). From a value s = 0.45 at the lowest noise value, s

decreases with noise and the fluctuations in the profile increase,
until we eventually recover a homogeneous system. Here s is
then a measure of the alignment strength of ni with the band
geometry, opposite its role as a reverse alignment strength as

FIG. 12. (Color online) (a) Order parameter as a function of noise
strength and velocity v0. The order linearly decreases with noise,
but with no sign of a clear order-disorder transition. For the lowest
v0, more complex band folding dynamics can be observed at low
noise strengths, to be explored in detail elsewhere [44]. Inset: Order
parameter as a function of radius. (b) Number of defects of the velocity
field (solid) and the order parameter field (dashed) as a function of
noise strength and velocity. From a value of 2 corresponding to the
band state, first the velocity field and finally the order parameter field
nucleate defect pairs until the band pattern abruptly disappears around
νr = 2.5τ−1.

a function of J . The full situation is more complex, though:
For all but the lowest noise value, the clearly defined pressure
jump at the band edge disappears. This indicates that we lose a
distinct band edge due to inward pressing particles stuck at the
interface; we can also see particles invading the bald spot in
Figs. 11(d) and 11(e). Again, this situation is reminisicent
of the mechanism of phase separation in nonaligning soft
active particles [26,27], where the phase separation disappears
at sufficiently low Péclet numbers Pe = v0/σνr . At the low
noise strengths investigated in the main part of this paper,
we have Pe = 250, well in the phase-separated regime, and
our order-disorder transition here occurs around Pe = 1. At
these highest noise strengths, we also observe an overall active
contribution to the pressure p ≈ 0.8, well above the p0 ≈ 0.6
due to only the passive overlaps.

IV. SUMMARY AND CONCLUSIONS

In this paper we have constructed a model of soft spherical
active particles confined to move on the surface of a sphere.
Our goal was to devise the simplest possible nontrivial model
that would allow us to identify and characterize the effects of
curvature and topology on active motion. Using numerical
simulations and analytical arguments we have shown that
activity and curvature combine to produce interesting types
of active patterns: a polar vortex and a stable rotating-band
structure. These states are purely consequence of nontrivial
topology and do not have simple planar counterparts.

FIG. 13. (Color online) Scaling of the band properties with noise
strength σ . Left: Pressure profiles starting from low noise levels (red),
crossing through the transition around νr = 3τ−1, until the system
becomes homogeneous at νr = 5τ−1, for v0 = 0.5σ/R, φ = 1 and
J = 1τ−1. Right: The α = sθ relation is still valid, however s(νr )
decreases systematically; the dashed line is s = 0.45. Curves are
ordered from peaked to flat with increasing νr on the left, and from
steep to shallow on the right.
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Here, for simplicity, we have only focused on overdamped
polar active particles and neglected all hydrodynamic effects.
However, we retained steric effects in order to prevent collapse
into a trivial linelike equatorial ring state if steric repulsion
were absent.

Many open questions still remain to be answered. In
particular, the nonzero Gaussian curvature of the underlaying
surface induces topological defects in the vector fields attached
to it (e.g., velocity or particle direction), and these can be used
to classify the dynamical structures observed, as we showed
with the order-disorder transition. We have tracked defects, but
we still have to fully explore the wealth of curvature-induced
active states, especially in the low-activity regime, where
we observe misalignment between defects in the v and n
fields. It will be intriguing to develop an understanding of
the interplay between elasticity and driving in the dynamics of
these topological defects. The sphere is special for its uniform
curvature. At present nothing is known about how varying
curvature would affect motion patterns. Would the flock move
along the path with the lowest curvature or maybe along
geodesics? What happens if the system is dilute and active
phase separation prevents the elongated band states from form-
ing? What happens if we change the internal symmetry of the
active agents, e.g., from polar to nematic? Finally, what would
be the effects of hydrodynamic interactions? A full description
and understanding of the recent experiment nematic active
systems on a droplet [42] would likely require addressing
hydrodynamic effects in detail. This would ultimately require
generalizing hydrodynamic descriptions of active systems [2]
to curved spaces, which is both conceptually and technically a
formidable task. Some of these question will be addressed in
the subsequent publications.

We hope that this work will stimulate further research
in this largely unexplored field with possible experimental
realizations (e.g., by using self-propelled colloids on droplets).
It will also potentially have considerable applications in cell
and developmental biology, especially concerning the motion
of epithelial cell sheets on curved substrates such as the
intestine or the cornea.
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APPENDIX A: CONSTRAINED MOTION ON A SPHERE

In this Appendix we derive the equations for active, self-
propelled constrained motion on a sphere. The theoretical basis
for the treatment presented here can be found, e.g., in Ref. [51].
Consider the following full set of Newtonian equations of
motion in three dimensions for the spatial variables ri

mr̈i = −γ ṙi +
∑

j

Fij + Fact
i , (A1)

where the active force Fact
i is treated as an independent

parameter.
In standard Hamiltonian dynamics, holonomic constraints

do not depend on the generalized velocities q̇i and can be
expressed as a function of the generalized coordinates qi only.
If such a constraint α is written as an equation gα(q) = 0
(q = {q1, . . . ,qN }, where Ntot is the total number of degrees
of freedom), gα(q) can be interpreted as a potential, and
the constraint trajectories will then lie on the isopotential
surface with potential value 0. The spherical constraint g(r) =
x2 + y2 + z2 − R2 is a classic example of such a constraint.
A reasoning similar to electrostatics or gravitation leads to
the result that the constraint forces keeping the system on
its isopotential surface need to be normal to this surface. In
other words, they must be along the gradient of g, so for each
constraint there exists a constraint force Fα = λα∇qgα(q) that
penalizes any deviations from the isopotential surface.

Then for a set of constraints {gα(q) = 0|α = 1, . . . ,M},
and an explicitly Hamiltonian system, the equations of motion
are [51]

dq
dt

= v

m
dv
dt

= −∇qV (q) −
∑

α

λα∇qgα(q). (A2)

To determine the multipliers λα , we can take further derivatives
of the constraint equations:

d

dt
(gα(q)) = ∇qgα(q) · v = 0. (A3)

As to be expected, this shows that v belongs to the tangent
bundle of the constraint surface gα(q). Finally, to determine
λα , we can differentiate this equation once more and then
substitute the equations of motion, Eq. (A2). We should then
obtain a set of M equations to determine the M multipliers λα .
Depending on our choice of constraints, these equations will
be linearly independent and offer a unique set of λα .

Even though the active part of Eq. (A1) does not derive
from a potential, the steps outlined above remain valid. We
choose the set of positions {ri} ≡ q as generalized coordinates.
The gradient of our constraint g(ri) = x2

i + y2
i + z2

i − R2

is ∇ri
g(ri) = 2ri . Then the constraint equations of motion

become

mr̈i = −γ ṙi +
∑

j

Fij + Fact
i − 2λiri . (A4)

Note that the constraint applies to each particle independently
and, thus, λ has index i. The derivative constraint just leads
to the equation ṙi · ri = 0. If we define the unit normal to the
sphere as r̂i = ri/|ri | = ri/R, this confirms that the velocity
has to be tangential to the surface of the sphere.

The constraint due to the second derivative finally allows
us to determine λi , and after substituting Eq. (A4) we obtain:

2λi = 1

r2
i

⎡
⎣mv2

i + ri ·
⎛
⎝Fact

i +
∑

j

Fij

⎞
⎠

⎤
⎦ . (A5)

Then, after substituting λi back into Eq. (A4), we can
write equations of motion that fully implement the spherical
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constraint:

mr̈i = −γ ṙi +
∑

j

Fij + Fact
i

− ri

r2
i

⎡
⎣mṙ2

i + ri ·
⎛
⎝Fact

i +
∑

j

Fij

⎞
⎠

⎤
⎦ . (A6)

In the overdamped limit, we can see that m → 0 does not
produce any singularities and we can write the valid equations
of motion:

γ ṙi = Fact
i − (

r̂i · Fact
i

)
ri +

∑
j

Fij − (r̂i · Fij )ri . (A7)

APPENDIX B: EULERIAN VERSUS
LAGRANGIAN PICTURES

In this Appendix we derive continuum equations for a
rotating elastic chain on a sphere subject to active forces
(Fig. 5), using Eulerian and Lagrangian pictures, starting from
Eq. (8). Let ϑ be the underlying angular coordinate we would
like to use for our solutions, with ϑ = 0 at the equator. Since
we use an absolute coordinate system, and not the particles
themselves for coordinates, this approach is in the Eulerian
picture [52]. Conversely, if we use the original positions of
the particles, θ0, as a reference, the approach is Lagrangian.
Habitually, Eulerian and Lagrangian elasticity are defined as
follows. Let R be the original positions in the undistorted
material. Then, after distortion, their coordinates are given
by x(R) = R + u(R), where the initial positions R are used
as reference frame. Lagrangian elasticity is based on this
approach: Distances in the distorted material are expressed
as dx2 − dR2 = 2uL

ij (R)dRidRj (assuming the Einstein sum-
mation convention), where uL

ij (R) is the Lagrangian strain
tensor,

uL
ij (R) = 1

2

[
∂ui

∂Rj

+ ∂uj

∂Ri

+ ∂uk

∂Ri

∂uk

∂Rj

]
. (B1)

In a Eulerian approach, we use the new coordinates x in the
absolute reference frame as a basis, and we have to invert the
relation above to have R(x) = x − u(R(x)), which then leads
to the Eulerian strain tensor dx2 − dR2 = 2uE

ij (x)dxidxj .
The Eulerian strain tensor therefore has a minus sign in the
nonlinear term, opposite to the more familiar Lagrangian strain
tensor:

uE
ij (x) = 1

2

[
∂ui

∂xj

+ ∂uj

∂xi

− ∂uk

∂xi

∂uk

∂xj

]
. (B2)

For us, the initial relation x(R) = R + u(R) is simply ϑ =
θi = θi,0 + ui , which we then need to invert to obtain R(x) =
x − u(R(x)), i.e., θi,0(ϑ) = ϑ − u(θi,0(ϑ)). The strain tensor
is affected by the one-dimensional nature of our problem. By
definition, the metric tensor has to be a perfect square for a one-
dimensional problem, dx2 = gL(R)dR2, so gL(R) = (1 +
du/dR)2 and dR2 = gE(x)dx2 with gE(x) = (1 − du/dx)2.

In our coordinates, we then derive the strain tensors:

uL
s = du

dθ0
+ 1

2

(
du

dθ0

)2

, (B3)

uE
s = du

dϑ
− 1

2

(
du

dϑ

)2

. (B4)

To recover the underlying periodicity of the chain (the i

index), recall the standard definition of a reciprocal vector
G for a lattice: GR = 2πm, where m is an integer. For us
Gθi,0 = 2πi. In the ϑ basis, the old positions of the undistorted
lattice points still have to follow G(x − u(x)) = 2πm, that is,
for us then G[ϑ − u(ϑ)] = 2πi, or, using the lattice definition
of the θi,0, θi,0(ϑ) = ϑ − u(ϑ) = 2σ i

R
− σN

R
.

For the Lagrangian coordinates, the transformation
to continuum is then straightforward: We can
approximate the angle differences as θi − θi−1 =
θi,0 − θi−1,0 + u(θi,0) − u(θi−1,0) ≈ 2σ

R
+ 2σ

R
du
dθ0

. The double
angle difference θi+1 + θi−1 − 2θi = θi+1,0 − θi−1,0 −
2θi,0 + u(θi+1,0) + u(θi−1,0) − 2u(θi,0) ≈ [ 2σ

R
]2 d2u

dθ2
0

becomes

now clearly a discrete Laplacian. In Eulerian coordinates,
the complexity arises from the difference in line element
inherent in passing to the new coordinates ϑ . Though
we clearly have above dθ0 = θi,0 − θi−1,0 = 2σ/R,
in the new coordinates we need to express it as a
function of the new line element dϑ , dθ0 =

√
gEdϑ ,

or, more explicitly, dϑ = (1 + du
dϑ

)dθ0(ϑ). Then the angle
differences become θi − θi−1 ≈ 2σ

R
+ 2σ

R
(1 + du

dϑ
) du
dϑ

and

θi+1 + θi−1 − 2θi ≈ [ 2σ
R

]2(1 + du
dϑ

)2 d2u
dϑ2 , a much more

complex set of derivatives.
Finally, in Eq. (8), the resultant force in the polar direction

resulting from the active motion still acts at the distorted
points θi . We can formally write θi = θi,0(ϑ) + u(θi,0(ϑ)) in
Eulerian coordinates to see just as quickly that we get θi = ϑ −
u(θi,0(ϑ)) + u(θi,0(ϑ)) = ϑ , simply the angular coordinate.
This makes sense since the active Coriolis force is solely
due to the constrained motion in the curved reference frame
and completely independent of the initial particle positions.
In the Lagrangian frame, we need to keep track of the
displacements from the origin: θi = θi,0 + u(θi,0). The active
force contribution becomes tractable if we use the results from
Fig. 6 and assume that α = sϑ or, equivalently, α = sθ0 + su.
In the Lagrangian reference frame, we have the equations

d2u

dθ2
0

= α sin (sθ0 + su) , (B5)

with boundary conditions

du

dθ0

∣∣∣∣
−θm,0

= β sin (sθ0 + su)

du

dθ0

∣∣∣∣
θm,0

= −β sin (sθ0 + su) . (B6)

In the Eulerian reference frame, the right-hand side term is
simpler; however, additional derivatives arise on the left-hand
side: (

1 + du

dϑ

)2
d2u

dϑ2
= α sin(sϑ), (B7)
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with boundary conditions(
1 + du

dϑ

)
du

dϑ

∣∣∣∣
−ϑm

= β sin(sϑ)

(B8)(
1 + du

dϑ

)
du

dϑ

∣∣∣∣
ϑm

= −β sin(sϑ).

Here α = 1
R

[ R
2σ

]2 v0
μk

and β = v0
2σμk

, and the boundary condi-
tions have to be taken at the original position of the chain edges
θm,0 in the Lagrangian case, but at the final position ϑm for the
Eulerian equations.

Neither of Eqs. (B5) and (B7), unfortunately, has an
analytical solution. In Fig. 9, we compare the approximate
results to the discrete energy minimization approach for the
chain and show that they are valid in the low-v0 regime. In both
the Lagrangian and Eulerian cases, the zeroth-order equation
that can be solved is

d2u

dθ2
= α sin(sθ ), (B9)

with boundary condition

du

dθ

∣∣∣∣
θm

= −β sin(sθm) (B10)

and equivalently at −θm. The solution to this equation is

u(θ ) = −α/s2 sin sθ + cθ + d, (B11)

where c and d are integration constants. We can immediately
see that the symmetries u(−θ ) = −u(θ ) and u(0) = 0 require
that d = 0. Clearly, the two boundary conditions are equiva-
lent, and we are left with −α/s cos sθm + c = −β sin sθm to
determine c.

We still lack a relation tying θm to the underlying physics
of the chain. In the Lagrangian case, θm,0 is simply the initial
extent of the chain before the active forces are applied. Since
at our high density, the sphere is covered in particles in
the absence of driving, we can safely assume θm,0 = π/2.
In the Eulerian case, this is slightly more tricky. Consider
the elementary differential geometry relation for a curve C
parametrized by l(t) in space S. Its length is given by L =∫
C
√∑

k(dlk/dt)2dt [53]. In our Eulerian approach, ϑ = t ,
the parametrization, and the mapped space S belongs to the
original θ0 = l, and L = π is the original length of the chain.
If this seems backwards, it is compared to a more standard
Lagrangian parametrization, where it would be the other way
round. The set of derivatives are now simply the square root of
the metric tensor, dθ0/dϑ = (1 − du/dϑ) =

√
gE(ϑ). Then

the missing equation linking the original chain length and the
displacement field is

π =
∫ ϑm

−ϑm

dϑ

(
1 − du

dϑ

)
. (B12)

This last equation does not have an analytical solution,
and the approximate solution to the chain profile in Eulerian
coordinates can only be given implicitly:

u(ϑ) = −α/s2 sin sϑ + (α/s cos sϑm − β sin sϑm),ϑ,

(B13)

π = 2α

s2
sin(sϑm)

+ 2θm [1 − α/s cos(sϑm) + β sin(sϑm)] , (B14)

α = 1

R

[
R

2σ

]2
v0

μk
, β = v0

2σμk
. (B15)
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[19] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
Phys. Rev. Lett. 75, 1226 (1995).

[20] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[21] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
[22] E. Bertin, M. Droz, and G. Grégoire, Phys. Rev. E 74, 022101
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[24] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Phys. Rev. E

77, 046113 (2008).
[25] S. Henkes, Y. Fily, and M. C. Marchetti, Phys. Rev. E 84, 040301

(2011).

022306-12

http://dx.doi.org/10.1016/j.physrep.2012.03.004
http://dx.doi.org/10.1016/j.physrep.2012.03.004
http://dx.doi.org/10.1016/j.physrep.2012.03.004
http://dx.doi.org/10.1016/j.physrep.2012.03.004
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/PhysRevLett.98.158102
http://dx.doi.org/10.1103/PhysRevLett.98.158102
http://dx.doi.org/10.1103/PhysRevLett.98.158102
http://dx.doi.org/10.1103/PhysRevLett.98.158102
http://dx.doi.org/10.1103/PhysRevE.74.061908
http://dx.doi.org/10.1103/PhysRevE.74.061908
http://dx.doi.org/10.1103/PhysRevE.74.061908
http://dx.doi.org/10.1103/PhysRevE.74.061908
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1093/beheco/arh149
http://dx.doi.org/10.1093/beheco/arh149
http://dx.doi.org/10.1093/beheco/arh149
http://dx.doi.org/10.1093/beheco/arh149
http://dx.doi.org/10.1016/j.anbehav.2009.07.007
http://dx.doi.org/10.1016/j.anbehav.2009.07.007
http://dx.doi.org/10.1016/j.anbehav.2009.07.007
http://dx.doi.org/10.1016/j.anbehav.2009.07.007
http://dx.doi.org/10.1016/j.anbehav.2006.10.012
http://dx.doi.org/10.1016/j.anbehav.2006.10.012
http://dx.doi.org/10.1016/j.anbehav.2006.10.012
http://dx.doi.org/10.1016/j.anbehav.2006.10.012
http://dx.doi.org/10.1103/PhysRevLett.110.228101
http://dx.doi.org/10.1103/PhysRevLett.110.228101
http://dx.doi.org/10.1103/PhysRevLett.110.228101
http://dx.doi.org/10.1103/PhysRevLett.110.228101
http://dx.doi.org/10.1209/0295-5075/105/18001
http://dx.doi.org/10.1209/0295-5075/105/18001
http://dx.doi.org/10.1209/0295-5075/105/18001
http://dx.doi.org/10.1209/0295-5075/105/18001
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/RevModPhys.73.1067
http://dx.doi.org/10.1103/RevModPhys.73.1067
http://dx.doi.org/10.1103/RevModPhys.73.1067
http://dx.doi.org/10.1103/RevModPhys.73.1067
http://dx.doi.org/10.1371/journal.pone.0010571
http://dx.doi.org/10.1371/journal.pone.0010571
http://dx.doi.org/10.1371/journal.pone.0010571
http://dx.doi.org/10.1371/journal.pone.0010571
http://dx.doi.org/10.1098/rstb.2013.0014
http://dx.doi.org/10.1098/rstb.2013.0014
http://dx.doi.org/10.1098/rstb.2013.0014
http://dx.doi.org/10.1098/rstb.2013.0014
http://dx.doi.org/10.1038/nature12972
http://dx.doi.org/10.1038/nature12972
http://dx.doi.org/10.1038/nature12972
http://dx.doi.org/10.1038/nature12972
http://dx.doi.org/10.1002/dvdy.10124
http://dx.doi.org/10.1002/dvdy.10124
http://dx.doi.org/10.1002/dvdy.10124
http://dx.doi.org/10.1002/dvdy.10124
http://dx.doi.org/10.1038/nature11591
http://dx.doi.org/10.1038/nature11591
http://dx.doi.org/10.1038/nature11591
http://dx.doi.org/10.1038/nature11591
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevE.74.022101
http://dx.doi.org/10.1103/PhysRevE.74.022101
http://dx.doi.org/10.1103/PhysRevE.74.022101
http://dx.doi.org/10.1103/PhysRevE.74.022101
http://dx.doi.org/10.1103/PhysRevE.83.030901
http://dx.doi.org/10.1103/PhysRevE.83.030901
http://dx.doi.org/10.1103/PhysRevE.83.030901
http://dx.doi.org/10.1103/PhysRevE.83.030901
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.84.040301
http://dx.doi.org/10.1103/PhysRevE.84.040301
http://dx.doi.org/10.1103/PhysRevE.84.040301
http://dx.doi.org/10.1103/PhysRevE.84.040301


ACTIVE SWARMS ON A SPHERE PHYSICAL REVIEW E 91, 022306 (2015)

[26] J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103
(2008).

[27] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012).
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