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A model is derived for the elastic response of polyelectrolyte gels subjected to unconstrained and constrained
swelling. A gel is treated as a three-phase medium consisting of a solid phase (polymer network), solvent (water),
and solutes (mobile ions). Transport of solvent and solutes is modeled as their diffusion through the network
accelerated by an electric field formed by ions and accompanied by chemical reactions (dissociation of functional
groups attached to the chains). Constitutive equations (including the van’t Hoff law for ionic pressure and the
Henderson-Hasselbach equation for ionization of chains) are derived by means of the free energy imbalance
inequality. Good agreement is demonstrated between equilibrium swelling diagrams on several pH-sensitive gels
and results of simulation. It is revealed that swelling of polyelectrolyte gels is driven by electrostatic repulsion
of bound charges, whereas the effect of ionic pressure is of secondary importance.
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I. INTRODUCTION

This paper deals with constitutive modeling of the elastic
response of polyelectrolyte gels and numerical simulation
of the influence of pH of water on their unconstrained
and constrained swelling. Hydrogels are three-dimensional
networks of polymer chains linked by covalent bonds, physical
cross-links, hydrogen bonds, van der Waals interactions, and
crystallite associations [1]. When a gel is brought into contact
with water, it swells, retaining structural integrity and the
ability to withstand large deformations. Stimulus-sensitive
hydrogels form an important class of gels whose equilibrium
degree of swelling and kinetics of water uptake are strongly
affected by external stimuli (temperature, pH, ionic strength,
electric field, light, and enzymes) [2–4].

Functional groups attached to polymer chains in pH-
responsive gels dissociate into mobile ions and bound charges
under swelling. Depending on the charge of ionized groups,
anionic, cationic, and ampholytic gels are distinguished. For
definiteness, we analyze water uptake by anionic gels.

Although studies on swelling of polyelectrolyte gels have
a long history, they have recently became a focus of attention,
as these materials demonstrate the potential for a wide range
of “smart” applications including biomedical devices, drug
delivery carriers, scaffolds for tissue engineering, filters and
membranes for selective diffusion, sensors for online process
monitoring, soft actuators, and optical systems [5–8].

Comparison of observations on neutral and polyelectrolyte
hydrogels reveals that (i) ionic gels demonstrate a faster
kinetics of water uptake, and (ii) their equilibrium degree
of swelling exceeds that of neutral gels. The former feature
is conventionally explained by electro-osmosis: an electric
field formed by mobile ions accelerates their flow, which, in
turn, induces an increase in speed of water molecules with
which these ions are associated. The larger equilibrium water
uptake is described by two mechanisms: (i) development of
ionic pressure (an excess pressure induced by the difference
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in concentrations of ions inside a specimen versus in the
surrounding water bath) and (ii) electrostatic repulsion of
bound charges. Although there are no doubts regarding the
importance of both mechanisms for swelling of polyelectrolyte
gels, analysis of experimental data is traditionally grounded
on the assumption that ionic pressure plays the key role,
while the effect of interaction between bound charges is
subordinate (in a number of studies it is referred to in
order to explain discrepancies between observations and their
predictions; see [9] for a discussion). This approach may be
explained by the absence of simple expressions for the energy
of electrostatic repulsion of bound changes to be employed in
fitting observations [10–13].

The objective of this study is to develop constitutive
equations for the elastic response of polyelectrolyte gels
that take into account both mechanisms of water uptake, to
apply these relations to the analysis of experimental swelling
diagrams, and to demonstrate that electrostatic repulsion of
bound charges may greatly exceed ionic pressure.

The history of constitutive modeling of polyelectrolyte
gels goes back to the 1950s. This subject recently attracted
substantial attention when it was confirmed by observations
that equilibrium water uptake by pH-sensitive gels is strongly
affected by geometrical constraints, which requires an ade-
quate description of stresses under arbitrary three-dimensional
deformations accompanied by swelling [14,15]. Constitutive
equations for the mechanical behavior of pH-sensitive gels
under swelling have recently been derived in [16–26], to
mention a few. To avoid complications induced by coupling of
diffusion of species, evolution of the electric field, dissociation
reactions, and development of stresses, most of these studies
are based on a semithermodynamic approach. According to
this concept, an explicit expression is introduced for the free
energy density of a hydrogel, and stress-strain relations and
chemical potentials of water molecules and ions are derived by
differentiation of this expression with respect to appropriate
arguments (which implies that the Maxwell stresses driven
by the self-energy of the electric field are neglected [19]).
When the electrochemical potentials are applied to describe the
kinetics of swelling, an unavoidable arbitrariness appears in the
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extension of the Henderson-Hasselbach equation to hydrogels
[27] (due to the absence of thermodynamic restrictions on the
rate of dissociation of functional groups) and the van’t Hoff
formula for ionic pressure (because simplified expressions for
the specific free energy do not involve appropriate terms).

The aim of this work is to reveal that these apparent incon-
sistencies disappear within a strictly thermodynamic approach
based on the free energy imbalance inequality. In particular,
it is shown that (i) the classical form of the Henderson-
Hasselbach equation is applicable to polyelectrolyte gels, and
the corresponding dissociation constant can be expressed by
means of the chemical potential of hydroxide ions and the
difference in chemical potentials between noncharged and
charged functional groups, whereas (ii) ionic pressure obeys
the van’t Hoff formula when the equilibrium degree of swelling
is large compared with unity.

The constitutive model is grounded in the following as-
sumptions: (i) the reference (stress-free) state of the equivalent
polymer network differs from its initial state [15], (ii) trans-
formation of the initial configuration of an isotropic network
into its reference configuration is treated as volume expansion
with a coefficient that increases linearly with the degree of
ionization of chains, and (iii) the strain energy density of the
equivalent network is a function of the principal invariants of
the Cauchy-Green tensor for transition from the reference state
into the actual state. Although application of these hypotheses
to polyelectrolyte gels appears to be novel, the pronounced
similarity between our approach and conventional concepts in
finite thermoelasticity (with degree of ionization playing the
role of temperature increment) should be mentioned.

The exposition is organized as follows. Constitutive equa-
tions for a polyelectrolyte gel under an arbitrary three-
dimensional deformation accompanied by swelling are devel-
oped in Sec. II (technical details are reported in the Appendix).
These relations are applied to the analysis of observations
under unconstrained and constrained swelling in Sec. III.
Concluding remarks are formulated in Sec. IV.

II. CONSTITUTIVE MODEL

A polyelectrolyte gel is treated as a three-phase medium
consisting of a solid phase (polymer network), solvent (water),
and solutes (mobile ions). Transport of solvent and solutes is
modeled as their diffusion through the network accompanied
by chemical reactions (dissociation of functional groups
attached to chains) and accelerated by an electric field formed
by mobile and fixed ions.

A. Chemical reactions

Due to self-ionization of water in the bath,

2H2O � H3O+ + OH−, (1)

it contains positively charged hydronium ions H3O+ (hydrox-
ide ions H+ associated with water molecules) and negatively
charged hydroxyl radicals OH−. Concentrations of positive
and negative ions are characterized by

pH = − log10[H+], pOH = − log10[OH−], (2)

where [H+] and [OH−] stand for the molar fractions of H+
and OH− ions. In thermodynamic equilibrium, pH and pOH
obey the equality

pH + pOH = pKw, (3)

where Kw denotes the water ionization constant, and pKw =
− log10 Kw, with pKw = 14 at room temperature. The elec-
troneutrality condition for deionized water [H+] = [OH−]
together with Eq. (3) implies that pH = 7.

To alter the pH of water, hydrochloric acid or sodium
hydroxide is conventionally added to the bath. To obtain acidic
conditions with pH < 7 (which are the focus of this study),
strongly acidic HCl is immersed, which dissociates entirely
into H+ ions (associated with water molecules) and Cl− ions:

H2O + HCl � H3O+ + Cl−. (4)

When a polyelectrolyte chain is immersed in a bath, some
functional groups in the chain dissociate, which results in
the formation of bound charges attached to the chain and
mobile ions dissolved in water. Presuming bound charges
to be monovalent and negative, we model this process as
dissociation of carboxyl groups:

H2O + COOH � H3O+ + COO−. (5)

Denote by n1 the number of ionized groups COO−; by n2, the
number of nonionized groups COOH; and by n = n1 + n2,
the number of functional groups per chain. The degree of
ionization α is defined as the ratio of the number of ionized
groups to the total number of functional groups per chain:

α = n1

n
. (6)

Denote by c̄, c̄H+ , c̄OH− , and c̄Cl− the concentrations (number
of species per unit volume) of water molecules, hydroxide ions,
hydroxyl radicals, and chloride ions in the bath. The molar
fractions of ions are connected with their concentrations by
the relations

[H+] = κ
c̄H+

c̄
, [OH−] = κ

c̄OH−

c̄
, [Cl−] = κ

c̄Cl−

c̄
, (7)

where κ = 1000/18 represents the molarity of water.
With reference to the conventional approach to the analysis

of water uptake by polyelectrolyte gels, the bath is treated in
what follows as an infinite reservoir containing solvent (water)
and solutes (mobile ions) at fixed concentrations; fast reactions
(1) and (4) are disregarded in the free energy imbalance
inequality; and reaction (5) is described without accounting
for the association of mobile ions with water molecules. An
explicit account of self-ionization of water inside a gel leads to
a slight modification of reaction-diffusion equations [28] but
does not affect the conditions of equilibrium swelling.

B. Macrodeformation of a hydrogel

Macrodeformation of a gel coincides with macrodefor-
mation of its polymer network. For definiteness, the initial
state is chosen to coincide with that of the undeformed dry
specimen. Transformation of the initial configuration into the
actual configuration is determined by the deformation gradient
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F. The Cauchy-Green tensors for macrodeformation read

B = F · F�, C = F� · F, (8)

where the center dot stands for the inner product, and � denotes
transpose.

The volume element in the actual configuration dv is
expressed by means of the volume element in the initial
configuration dV as

dv = JdV, (9)

where

J = det F. (10)

The surface element nda with unit normal n in the actual
configuration is connected with the surface element NdA with
unit normal N in the initial configuration by the equation

nda = JF−� · NdA = JN · F−1dA. (11)

Denote by C the concentration of water molecules in
the actual state per unit volume in the initial configuration.
Disregarding volume changes in a hydrogel driven by the pres-
ence of solutes and adopting the molecular incompressibility
condition, we write

J = 1 + Cv, (12)

where v stands for the characteristic volume of a water
molecule. Neglecting clustering of water molecules, we
estimate v from the condition

c̄v = 1. (13)

Let CH+ , COH− , and CCl− be the concentrations of hydroxide
ions H+, hydroxyl radicals OH−, and chloride ions Cl− in
the actual state per unit volume in the initial configuration.
According to Eq. (9), the concentrations of water molecules
and mobile ions per unit volume in the actual configuration
read

c = C

J
, cH+ = CH+

J
, cOH− = COH−

J
, cCl− = CCl−

J
.

(14)
Denote by M the number of chains in the equivalent polymer
network, and by Cb = Mn the concentration of functional
groups attached to chains. The concentration of bound charges
per unit volume in the initial configuration reads Cb− = αCb.

C. Electric field

Denote by � the potential of the electric field formed by
mobile ions and bound charges. The electric-field vectors, e
and E, in the actual and initial states are given by

e = −∇�, E = −∇0�, (15)

where ∇ and ∇0 are the gradient operators in the actual and
initial configurations. A gel is modeled as a linear dielectric
material whose electric displacement vector in the actual state
reads

h = εe, (16)

where the constant ε = ε0εr stands for the electric permittivity,
ε0 is the vacuum permittivity, and εr is the relative permittivity.

It follows from Eqs. (15) and (16), and the chain rule for
differentiation,

∇0� = ∇� · F = F� · ∇�, (17)

that

E = e · F = F� · e, h = εE · F−1 = εF−� · E. (18)

Let � be an arbitrary domain with boundary ∂� in the initial
state. Their images upon transition into the actual configuration
are denoted ω and ∂ω. The Gauss law for a dielectric medium
reads ∫

∂ω

h · nda =
∫

ω

rdv,

where r stands for the charge density in the actual state. It
follows from this relation and Eqs. (9) and (11) that∫

∂�

Jh · F−� · NdA =
∫

�

RdV, (19)

where the charge density in the initial state R = rJ is given
by

R = e(CH+ − COH− − CCl− − αCb), (20)

and e stands for the charge of the electron. Applying the
Stokes formula to Eq. (19) and introducing the nominal electric
displacement

H = JF−1 · h = Jh · F−�, (21)

we arrive at the equation

∇0 · H = R. (22)

It follows from Eqs. (8), (18), and (21) that

H = εJC−1 · E = εJE · C−1. (23)

Combination of Eqs. (15), (20), (22), and (23) results in the
Poisson equation

∇0 · (εJC−1 · ∇0�) = −e(CH+ − COH− − CCl− − αCb).
(24)

For an ideal dielectric that occupies a domain � in the
initial state and a domain ω in the actual state, the energy of
the electric field is given by [29]∫

ω

h · h
2ε

dv =
∫

�

1

2εJ
H · C · HdV,

where Eqs. (8) and (21) are used. It follows from this relation
that the free energy density of the electric field formed by
mobile ions and bound charges (per unit volume in the initial
configuration) reads

Wel = 1

2εJ
H · C · H. (25)

For an arbitrary domain �, the work of the electric field (per
unit time) is determined by [29]

Uel = −
∫

∂�

�Ḣ · NdA,

where the overdot stands for the derivative with respect to time.
Transforming the integral by means of the Stokes formula and
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applying Eqs. (15) and (22), we find that

Uel =
∫

�

(E · Ḣ − �Ṙ)dV.

It follows from this relation and Eq. (20) that the work of the
electric field (per unit volume in the initial configuration and
unit time) reads

uel = E · Ḣ − e�(ĊH+ − ĊOH− − ĊCl− − α̇Cb). (26)

D. Kinetic relations

Denote by J, JH+ , JNa+ , JOH− , and JCl− the flux vectors for
solvent molecules and mobile ions in the initial configuration
(numbers of species moving through a unit area per unit time).
Their counterparts in the actual configuration read j, jH+ , jNa+ ,
jOH− , and jCl− . Keeping in mind that n · jda = N · JdA, we
find from Eq. (11) that

J = JF−1 · j, JH+ = JF−1 · jH+ , JOH− = JF−1 · jOH− ,

JCl− = JF−1 · jCl− . (27)

The flux of solvent in the actual configuration is described by
the relation

j = − Dc

kBT
∇μ, (28)

where T is the absolute temperature, kB is Boltzmann’s
constant, D is the solvent diffusivity, and μ is the chemical
potential of water molecules in the gel. It follows from
Eqs. (14), (17), (27), and (28) that

J = − DC

kBT
F−1 · ∇0μ · F−1. (29)

Insertion of Eq. (29) into the mass conservation law for solvent,

Ċ = −∇0 · J, (30)

implies that

Ċ = ∇0 ·
(

DC

kBT
F−1 · ∇0μ · F−1

)
. (31)

Denote by μH+ , μOH− , and μCl− the chemical potentials
of mobile ions. Their flux vectors in the initial state are
determined by analogy with Eq. (29),

JH+ = −DH+CH+

kBT
F−1 · ∇μH+ · F−1,

JOH− = −DOH−COH−

kBT
F−1 · ∇μOH− · F−1, (32)

JCl− = −DCl−CCl−

kBT
F−1 · ∇μCl− · F−1,

where DH+ , DOH− , and DCl− represent the corresponding
diffusivities. The mass conservation laws for mobile ions are
given by

ĊH+ = −∇0 · JH+ + 	H+ , ĊOH− = −∇0 · JOH− ,

ĊCl− = −∇0 · JCl− , (33)

where

	H+ = α̇Cb (34)

is the rate of production of H+ ions caused by dissociation of
nonionized functional groups. Insertion of Eqs. (32) and (34)
into Eq. (33) implies that

ĊH+ = ∇0 ·
(

DH+CH+

kBT
F−1 · ∇0μH+ · F−1

)
+ α̇Cb,

ĊOH− = ∇0 ·
(

DOH−COH−

kBT
F−1 · ∇0μOH− · F−1

)
, (35)

ĊCl− = ∇0 ·
(

DCl−CCl−

kBT
F−1 · ∇0μCl− · F−1

)
.

For an arbitrary domain � with boundary ∂�, the work
produced by transport of solvent and solutes per unit time
reads [29]

Udif = −
∫

∂�

(μJ + μH+JH+ + μOH−JOH− + μCl−JCl−) · NdA.

Transforming the integral by means of the Stokes formula and
using (30), (33), and (34), we find that

Udif = −
∫

�

(J · ∇0μ + JH+ · ∇0μH+ + JOH− · ∇0μOH−

+ JCl− · ∇0μCl− )dV +
∫

�

[μĊ + μH+ (ĊH+ − α̇Cb)

+μOH−ĊOH− + μCl−ĊCl− ]dV.

It follows from this relation and Eqs. (29) and (32) that the
work produced by transport of solvent and solutes (per unit
volume in the initial configuration and unit time) is given by

udif = μĊ + μH+ (ĊH+ − α̇Cb) + μOH−ĊOH−

+μCl−ĊCl− + ūdif, (36)

where

ūdif � 0. (37)

E. Kinematic relations

The reference configuration of the polymer network (in
which stresses in chains vanish) is presumed to differ from the
initial configuration. Transformation of the initial state into
the reference state takes into account evolution of the stress-
free state of the network induced by swelling and ionization
of functional groups. This transformation is described by the
deformation gradient f. For an isotropic polymer network,

f = f
1
3 I, (38)

where f stands for the coefficient of volume expansion driven
by electrostatic repulsion of bound charges, and I is the unit
tensor.

The deformation gradient for elastic deformation Fe de-
scribes the transformation of the reference configuration
into the actual configuration. This tensor is connected with
the deformation gradient for macrodeformation F by the
multiplicative decomposition formula F = Fe · f. Substitution
of Eq. (38) into this equation implies that

F = f
1
3 Fe. (39)

Equation (39) resembles the conventional relation in thermoe-
lasticity, where f describes the evolution of the reference state
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induced by changes in temperature. Differentiation of Eq. (39)
with respect to time results in

D = De + ḟ

3f
I, (40)

where

L = Ḟ · F−1, Le = Ḟe · F−1
e (41)

stand for the velocity gradients, and

D = 1
2 (L + L�), De = 1

2

(
Le + L�

e

)
(42)

denote the rate-of-strain tensors.
The Cauchy-Green tensors for elastic deformation are given

by

Be = Fe · F�
e , Ce = F�

e · Fe. (43)

The principal invariants Je1, Je2, Je3 of these tensors are
connected with the principal invariants J1, J2, J3 of the
Cauchy-Green tensors for macrodeformation, (8), by the
formulas

J1 = f
2
3 Je1, J2 = f

4
3 Je2, J3 = f 2Je3. (44)

The derivatives of Je1, Je2, Je3 with respect to time read

J̇e1 = 2Be : De, J̇e2 = 2
(
Je2I − Je3B−1

e

)
: De,

J̇e3 = 2Je3I : De,

where the colon stands for convolution of tensors. Insertion of
Eq. (40) into these relations implies that

J̇e1 = 2Be : D − 2ḟ

3f
Je1,

J̇e2 = −2B−1
e : DJe3 + 2

(
I : D − 2ḟ

3f

)
Je2, (45)

J̇e3 = 2

(
I : D − ḟ

f

)
Je3.

F. Free energy density

Denote by 
 the Helmholtz free energy of a gel per
unit volume in the initial configuration. For the three-phase
medium, this quantity equals the sum of six components: (i)
the energy of solvent and solutes not interacting with each other
and with the solid phase 
1, (ii) the energy of the solid phase
not interacting with solvent and solutes 
2, (iii) the energy
of mixing of the solid phase and water 
3, (iv) the energy of
mixing of water and mobile ions 
4, (v) the energy of mixing
of charged and noncharged functional groups distributed along
polymer chains 
5, and (vi) the energy of the electric field
formed by mobile ions and bound charges Wel,


 = 
1 + 
2 + 
3 + 
4 + 
5 + Wel. (46)

The specific energy density 
1 is given by [26]


1 = μ0C + μ0
H+CH+ + μ0

OH−COH− + μ0
Cl−CCl− , (47)

where μ0, μ0
H+ , μ0

OH− , μ0
Cl− denote the chemical potentials of

noninteracting water molecules and mobile ions.

The free energy density of the polymer network not
interacting with solvent and solutes reads


2 = W (Je1,Je2,Je3,α,f ), (48)

where W is the sum of the specific mechanical energy stored
in chains and the energy of electrostatic interaction of bound
charges. This quantity is treated as a function of the principal
invariants of the Cauchy-Green tensor for elastic deformation
(in accord with the conventional approach in thermoelasticity),
degree of ionization of chains α (the energy of repulsion of
ionized functional groups is proportional to this parameter),
and coefficient of volume expansion of the network f (the
energy of Coulomb forces between bound charges depends
on the principal invariants of the Cauchy-Green tensor for
macrodeformation, which are expressed in terms of Jem and f

by Eq. (44)).
With reference to the Flory-Huggins theory [30,31], the

specific energy of mixing water molecules with polymer chains
reads


3 = kBT C

(
ln

Cv

1 + Cv
+ χ

1 + Cv

)
, (49)

where χ stands for the Flory-Huggins interaction parameter.
The energies of mixing mobile ions with water molecules

and mixing ionized and neutral functional groups distributed
along chains are determined by the conventional formulas [26]


4 = kBT

[
CH+

(
ln

CH+

C
− 1

)
+ COH−

(
ln

COH−

C
− 1

)

+CCl−

(
ln

CCl−

C
− 1

)]
,


5 = kBT Cb[α ln α + (1 − α) ln(1 − α)]. (50)

G. Free energy imbalance inequality

To develop constitutive equations for a gel under isothermal
deformation with finite strains, we apply the free energy
imbalance inequality


̇ − umech − uel − udif − udis � 0, (51)

where umech, uel, udif , and udis are the works (per unit volume
in the initial state and unit time) produced by stresses, electric
field, transport of solvent and solutes, and dissociation of
functional groups.

The mechanical work is determined by the conventional
formula

umech = JT : D, (52)

where T is the Cauchy stress tensor. The works performed
by the electric field and diffusion of solvent and solutes are
given by Eqs. (26) and (36), respectively. The work induced
by dissociation of functional groups and formation of ion pairs
reads

udis = α̇�μCb, (53)

where the constant �μ stands for the difference in chemical
potentials between noncharged and charged functional groups.

Equation (51) is satisfied when functions C and F are
connected by the molecular incompressibility condition, (12).
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This condition is accounted for by means of a Lagrange
multiplier. We differentiate Eq. (12) with respect to time, use
Eq. (A6), and find that

Ċv − J I : D = 0. (54)

Multiplying Eq. (54) by an arbitrary function  and summing
the result with Eq. (51), we obtain


̇ + (Ċv − J I : D) − umech − uel − udif − udis � 0. (55)

Differentiating Eq. (46) with respect to time and using
Eqs. (25) and (47)–(50), we find that


̇ = 2(Kmech+Kel) : D+E · Ḣ+
[
W,αα̇ −

(
2K

3f
− W,f

)
ḟ

]

+�CĊ + �H+ĊH+ + �OH−ĊOH− + �Cl−ĊCl−

+�αα̇Cb, (56)

where the coefficients are determined by Eqs. (A3), (A9), and
(A10). Substitution of Eqs. (26), (36), (52), (53), and (56) into
Eq. (55) implies that

[2(Kmech + Kpol) − J (T + I)] : D

+
[
W,αα̇ −

(
2K

3f
− W,f

)
ḟ

]

+ (�C + v − μ)Ċ + (�H+ + e� − μH+ )ĊH+

+ (�OH− − e� − μOH− )ĊOH− + (�Cl− − e� − μCl−)ĊCl−

+ (�α + μH+ − e� − �μ)α̇Cb − ūdif � 0. (57)

Using Eq. (37) and keeping in mind that D, C, CH+ , COH− ,
CCl− , and α are arbitrary functions, we conclude that Eq. (57)
is fulfilled, provided that (i) the Cauchy stress tensor reads

T = − I + 2

J
(Kmech + Kel); (58)

(ii) the chemical potentials of water molecules and mobile ions
are given by

μ = �C + v, μH+ = �H+ + e�,

μOH− = �OH− − e�, (59)

μCl− = �Cl− − e�;

(iii) the degree of ionization obeys the equation

�α + μH+ − e� − �μ = 0; (60)

and (iv) volume expansion for the polymer network is governed
by the equation (

2K

3f
− W,f

)
ḟ = W,αα̇. (61)

In the derivation of the governing equations, the term W,αα̇ is
included in Eq. (61) based on the assumption that the energy of
electrostatic repulsion of bound changes is too weak to affect
the ionization process but is sufficiently strong to change the
reference state of the polymer network.

To transform Eq. (58), we substitute Eqs. (12), (A3), and
(A9) in this relation and find that

T = − I + 2

1 + Cv

[
W,1Be − Je3W,2B−1

e

+ (Je2W,2 + Je3W,3)I
] + TM, (62)

where

TM = 1

ε

[
(h ⊗ h) − 1

2
(h · h)I

]
(63)

represents the Maxwell stress [32].
Insertion of Eq. (A10) into Eqs. (59) yields

μ = μ0 + kBT

[
ln

Cv

1 + Cv
+ 1

1+Cv
+ χ

(1 + Cv)2
+ v

kBT

−CH+ + COH− + CCl−

C

]
,

μH+ = μ0
H+ + kBT ln

CH+

C
+ e�,

μOH− = μ0
OH− + kBT ln

COH−

C
− e�,

μCl− = μ0
Cl− + kBT ln

CCl−

C
− e�. (64)

It is worth noting that formulas (64) involve components
proportional to the electrostatic potential �, which means that
the model does not require the chemical and electrochemical
potentials of mobile ions to be distinguished [due to the
accounting for the energy of the electric field in Eq. (51)].

It follows from Eqs. (60), (64), and (A10) that

ln
1 − α

α
= ln

CH+

C
− ln K′

a, (65)

where the acid dissociation constant reads

K′
a = exp

(
�μ − μ0

H+

kBT

)
. (66)

Resolving Eq. (65) with respect to α, we arrive at the
Henderson-Hasselbach equation,

α = K′
a

(
K′

a + CH+

C

)−1

. (67)

It should be mentioned that Eq. (67) does not contain a
multiplier proportional to the degree of swelling introduced
in phenomenological extensions of the Henderson-Hasselbach
equation [27].

Constitutive equations for a pH-sensitive gel involve (i)
stress-strain relations (62) and (63), (ii) Eqs. (64) for chemical
potentials of solvent and solutes, (iii) Eqs. (67) for degree of
ionization of chains, and (iv) Eq. (61) for coefficient of inflation
of the polymer network. These relations are accompanied by
(i) the equilibrium equation for the Cauchy stress tensor, (ii)
reaction-diffusion Eqs. (31) and (35) for solvent and solutes,
and (iii) Eq. (24) for the electrostatic potential together with
the appropriate initial and boundary conditions.

H. Simplification of the model

Although the governing equations describe basic elec-
tromechanical processes in a pH-responsive gel under
swelling, these relations appear to be overly complicated for
practical applications. To simplify the model, we disregard
the Maxwell stress, (63), compared with the mechanical
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stress

T = − I + 2

1 + Cv

[
W,1Be − Je3W,2B−1

e

+ (Je2W,2 + Je3W,3)I
]
. (68)

To assess this assumption, we set the characteristic potential
drop at the interface between a sample and the bath at 1 mV,
the characteristic length of the double layer at the boundary at
0.7 nm, and the relative permittivity εr = 80, use ε0 = 8.85 ×
10−12 F/m, and conclude that the Maxwell stress does not
exceed 103 Pa. Setting the characteristic degree of swelling at
30 and the characteristic elastic modulus of a gel at 105 Pa,
we estimate the characteristic mechanical stress as 3 × 105 Pa,
which greatly exceeds the Maxwell stress under equilibrium
water uptake.

To further simplify the constitutive equations, we intro-
duce the principle of electromechanical equivalence, which
presumes the existence of an equivalent noncharged polymer
network with coefficient of volume expansion feq(α) and
elastic energy Weq(Je1,Je2,Je3) such that the Cauchy stress
in the real (partially ionized) network T coincides with the
Cauchy stress in the equivalent network

Teq = − I + 2

1 + Cv

[
Weq,1Be − Je3Weq,2B−1

e

+ (Je2Weq,2 + Je3Weq,3)I
]
.

This approach allows (i) differential Eq. (61) to be excluded by
replacing it with a phenomenological equation for the function
feq(α) and (ii) conventional formulas to be employed for
the elastic energy Weq instead of the complicated expression
(48), which depends on five arguments. With reference to this
concept, we calculate the Cauchy stress tensor by means of
Eq. (68), with W depending on the principal invariants Je1,
Je2, and Je3 only.

Finally, (i) the neo-Hookean formula is adopted for the
strain energy density of the equivalent network,

W = 1
2G[(Je1 − 3) − ln Je3], (69)

where G stands for the shear modulus, and (ii) the coefficient
of volume expansion of the equivalent network f is presumed
to increase linearly with the concentration of bound charges,

f = 1 + q0 + q1Cbα, (70)

where q0 stands for the degree of swelling of an as-prepared
gel, and q1 is a material constant. The physical meaning
of Eq. (69) was discussed in [33], where this formula was
“rederived” within the concept of entropic elasticity. More
sophisticated expressions for W were developed in [34] and
[35].

III. EQUILIBRIUM SWELLING UNDER
HOMOGENEOUS DEFORMATIONS

To examine the ability of the model to describe observa-
tions, the governing equations are applied to fit experimental
swelling diagrams on polyelectrolyte gels. With reference to
[36], it is assumed that in a specimen fully swollen under
homogeneous deformation, (i) concentrations of solvent and
solutes are independent of spatial coordinates, and (ii) the

electrostatic potential is independent of spatial coordinates but
adopts different values, � and �̄, in the gel and in the bath. The
difference between these quantities characterizes the strength
of an electric double layer on the boundary of a sample (whose
thickness is disregarded compared with the characteristic size
of the specimen).

A. Donnan equilibrium

Under equilibrium conditions, chemical potentials of sol-
vent and solutes in a gel and in the bath coincide,

μ = μ̄, μH+ = μ̄H+ , μOH− = μ̄OH− , μCl− = μ̄Cl− ,

(71)

where the overbar denotes parameters of the bath. Insertion of
Eq. (64) into Eq. (71) implies that

ln
CH+

C
= ln

c̄H+

c̄
− e

kBT
(� − �̄),

ln
COH−

C
= ln

c̄OH−

c̄
+ e

kBT
(� − �̄), (72)

ln
CCl−

C
= ln

c̄Cl−

c̄
+ e

kBT
(� − �̄),

where the concentrations of water molecules and mobile ions
in the bath in the initial configuration are replaced with their
concentrations in the actual configuration. It follows from
Eq. (72) that

CH+

C

COH− + CCl−

C
= c̄H+

c̄

c̄OH− + c̄Cl−

c̄
. (73)

The electroneutrality conditions for the gel and for the bath
read

COH− + CCl− = CH+ − αCb, c̄OH− + c̄Cl− = c̄H+ . (74)

Substituting expressions (74) into Eq. (73) and using Eqs. (2)
and (7), we arrive at the equation

X

(
X − α

Cb

C

)
= 1

κ2
10−2pH, (75)

where

X = CH+

C
(76)

denotes the concentration of counterions in a gel.
The chemical potential of water molecules in the gel is

determined by Eq. (64). Their chemical potential in the bath
is given by the same equation, where the first four terms
in square brackets (which describe interaction between the
polymer network and the solvent) are disregarded, μ̄ = μ0 −
kBT (c̄H+ + c̄OH− + c̄Cl−)/c̄. Substitution of these expressions
into Eq. (71) implies that

ln
Cv

1 + Cv
+ 1

1 + Cv
+ χ

(1 + Cv)2
+ v

kBT
( − ion) = 0,

(77)
where the ionic pressure ion is given by

ion = kBT

v

(
CH+ + COH− + CCl−

C
− c̄H+ + c̄OH− + c̄Cl−

c̄

)
.

(78)
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Applying Eqs. (12)–(14), we present Eq. (78) in the form
ion = ∗

ion + �ion, where

∗
ion = kBT [(cH+ + cOH− + cCl− ) − (c̄H+ + c̄OH− + c̄Cl− )]

is the van’t Hoff ionic pressure, and �ion = kBT (cH+ +
cOH− + cCl−)/J accounts for deviations from the van’t Hoff
law. Keeping in mind that �ion vanishes at J � 1, we
conclude that the van’t Hoff law follows from the model for
highly swollen gels.

It follows from Eqs. (2), (7), (74), and (76) that

CH+ + COH− + CCl−

C
= 2X − αCb

C
,

c̄H+ + c̄OH− + c̄Cl−

c̄
= 2

κ
10−pH.

Insertion of these expressions into Eq. (78) yields

ion = kBT

v

[
2

(
X − 1

κ
10−pH

)
− αCb

C

]
. (79)

Equation (75) implies that
(

X − 1

κ
10−pH

)
= αCb

C
X

(
X + 1

κ
10−pH

)−1

.

Substitution of this expression into Eq. (79) results in the
formula

ion = kBT X

v

(
αCb

C

)2(
X + 1

κ
10−pH

)−2

, (80)

which implies that ion is proportional to the squared degree of
ionization α, in accord with [37]. Calculating the ratio αCb/C

from Eq. (75) and inserting the result into Eq. (80), we express
the ionic pressure in terms of the concentration of counterions
X in a gel and pH of the bath,

ion = kBT

Xv

(
X − 1

κ
10−pH

)−2

. (81)

Combining Eqs. (67), (75), (77), and (81) and introducing
the notation

Q = Cv, Qb = Cbv, (82)

we present the governing equation in the form convenient for
simulation,

X2 − αQb

Q
X = 1

κ2
10−2pH, α = K′

a

K′
a + X

, (83)

ln
Q

1 + Q
+ 1

1 + Q
+ χ

(1 + Q)2
+ v

kBT

− 1

X

(
X − 1

κ
10−pH

)−2

= 0. (84)

B. Unconstrained swelling

When a dry gel specimen is immersed in a bath and is
allowed to swell without constraints, the deformation gradient
for macrodeformation reads

F = (1 + Cv)
1
3 I. (85)

Substitution of Eqs. (70) and (85) into Eq. (39) yields

Fe =
(

1 + Cv

1 + q0 + q1Cbα

) 1
3

I. (86)

It follows from Eqs. (68) and (69) that

T = − I + G

1 + Cv
(Be − I). (87)

Substitution of Eqs. (12), (43), and (86) into Eq. (87) implies
that

T = T I, T = − + G

1 + Cv

[(
1 + Cv

1 + q0 + q1Cbα

) 2
3

− 1

]
.

Keeping in mind that T = 0 for a specimen with a traction-free
surface, we find that

 = G

1 + Cv

[(
1 + Cv

1 + q0 + q1Cbα

) 2
3

− 1

]
. (88)

It is convenient to present Eq. (88) in the form  = ∗ − rep,
where

∗ = G

1 + Cv

[(
1 + Cv

1 + q0

) 2
3

− 1

]

stands for the osmotic pressure in the nonionized gel, and

rep = G

1 + Q

[(
1 + Cv

1 + q0

) 2
3

−
(

1 + Cv

1 + q0 + q1Cbα

) 2
3
]

(89)

describes the pressure induced by the repulsive interaction
between bound charges.

Inserting Eq. (88) into Eq. (84), using Eq. (82), and setting

g = Gv

kBT
, q̄ = q1

v
, (90)

we obtain

ln
Q

1 + Q
+ 1

1 + Q
+ χ

(1 + Q)2

+ g

1 + Q

[(
1 + Q

1 + q0 + q̄Qbα

) 2
3

− 1

]

− 1

X

(
X − 1

κ
10−pH

)−2

= 0. (91)

For each pH, Eqs. (83) and (91) determine the degree of
swelling Q, degree of ionization of chains α, and concentration
of hydroxide ions X. These relations involve six material
constants: (i) g is the dimensionless elastic modulus, (ii) Qb

denotes the volume fraction of functional groups in the initial
state, (iii) Ka = κK′

a stands for the dissociation constant of
these groups, (iv) χ is the Flory-Huggins parameter, and (v, vi)
q0 and q̄ describe the evolution of the stress-free state driven
by ionization of chains.

C. Fitting of observations

To demonstrate that Eqs. (83) and (91) correctly describe
equilibrium swelling diagrams on polyelectrolyte gels, these
relations are solved numerically by the Newton-Raphson
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0.80.2 pH

20.0

80.0

Q

◦ – ϕ = 0.0
• – ϕ = 0.03
∗ – ϕ = 0.05

– ϕ = 0.075
– ϕ = 0.10

∗ ∗

∗
∗ ∗

∗

FIG. 1. Degree of swelling Q versus pH. Symbols: experimental
data on DMA-IAc gels with various molar fractions of IAc ϕ [38].
Solid lines: results of simulation.

algorithm, and results of simulation are compared with
observations. We begin with the analysis of experimental data
on poly(N,N -dimethylacrylamide-itaconic acid) (DMA-IAc)
hydrogels [38]. Specimens were prepared by free-radical
polymerization of monomers in water using N,N ′-
methylenebisacrylamide (BAAm) as a cross-linker, ammo-
nium persulfate (APS) as an initiator, and N,N,N ′,N ′-
tetramethylethylenediamine (TEMED) as an accelerator. After
polymerization of pregel solutions with a monomer concen-
tration of 6.0 wt% and molar fractions of IA ϕ ranging from
0 to 0.1, samples were immersed in a water bath at room
temperature, and their equilibrium degree of swelling was
measured at a pH in the interval from 2 to 8. Experimental
swelling diagrams on hydrogels with ϕ = 0, 0.03, 0.05, 0.075,
and 0.10 are depicted in Fig. 1. This figure shows that (i) given
ϕ, the degree of swelling Q increases with pH and reaches its
ultimate value when the pH exceeds 7, and (ii) for a fixed pH,
Q remains independent of ϕ at low pH and increases with the
concentration of IAc at high pH.

To reduce the number of parameters to be determined by
matching observations, we set χ = 0.4 (water is treated as
a poor solvent), q0 = 0 (the reference state of noncharged
chains coincides with the initial state), and suppose that the
volume occupied by functional groups of IAc in the initial
state equals Q0

b = 10−4 of the entire volume occupied by
this polymer (which means that Qb = Q0

bϕ). Dimensionless
elastic modulus g = 4.2 × 10−4 is determined by matching
the observations at low pH. According to Eq. (90), where
we set kB = 1.38 × 10−23 kg · m 2/(s2 · K), T = 296K, v =
2.99 × 10−29 m3, this value corresponds to the shear modulus
G = 5.7 × 104 Pa, which is typical for polyelectrolyte gels.
Coefficient pKa = 4.9 is found by fitting the swelling curve
for the gel with the highest content of IAc and used without
changes to approximate observations on the other samples.
Keeping in mind that the process of dissociation of IAc
involves two steps, our finding is in agreement with the
constants pKa1 = 3.6 and pKa2 = 5.5 determined for dilute
solutions of IAc [39]. The only adjustable parameter q̄

1.00.0 ϕ

0.0

30.0

q̄

0.0

30.0

q̄

DMA-IAc

AA-IAc

FIG. 2. Coefficient q̄ versus molar fraction of IAc ϕ. Circles:
treatment of observations. Solid lines: approximation of the data
by Eq. (92).

is calculated from the best-fit condition for each swelling
diagram separately.

The effect of ϕ on q̄ is illustrated in Fig. 2, where the data
are approximated by the linear equation

q̄ = q̄1ϕ, (92)

with q̄1 found by the least-squares technique. Equations (70)
and (92) express the fact that elongation of chains induced by
electrostatic repulsion is proportional to the number of charged
groups.

Evolution of the degree of ionization α with pH and ϕ is
reported in Fig. 3. According to this figure, (i) α grows with pH
for a given ϕ and reaches its ultimate value at a pH exceeding
6, whereas (ii) the maximum value of α decreases slightly
with ϕ.

0.80.2 pH

0.0

1.0

α

• – ϕ = 0.03
∗ – ϕ = 0.05

– ϕ = 0.075
– ϕ = 0.10

∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗∗
∗∗
∗∗
∗∗
∗∗
∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

FIG. 3. Degree of ionization α versus pH. Symbols: results of
simulation for DMA-IAc gels with various molar fractions of IAc ϕ.
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0.80.2 pH

15.0

55.0

Q

◦ – ϕ = 0.0
• – ϕ = 0.01
∗ – ϕ = 0.03

– ϕ = 0.05
– ϕ = 0.06

∗ ∗

∗
∗

∗ ∗

FIG. 4. Degree of swelling Q versus pH. Symbols: experimental
data on AA-IAc gels with various molar fractions of IAc ϕ [38]. Solid
lines: results of simulation.

We proceed with the study of experimental data on
poly(acrylamide-itaconic acid; AA-IAc) gels prepared by the
same procedure [38]. Experimental swelling diagrams on
AA-IAc gels with ϕ = 0, 0.01, 0.03, 0.05, and 0.06 are
depicted in Fig. 4 together with the results of simulation.
Fitting is conducted with the constants χ , q0, pKa, and Q0

b

determined for DMA-IAc gels. As observations reveal a strong
dependence of elastic modulus on ϕ at low pH, each diagram
in this figure is approximated by means of two parameters, g

and q̄.
Changes in q̄ with ϕ are reported in Fig. 2, where the

data are approximated by Eq. (92). It is worth noting that
the q̄1 of AA-IAc gels exceeds that of DMA-IAc gels by
a factor of 4, which means that evolution of the reference
state of polymer chains formed by neutral and polyelectrolyte
segments depends on the concentration of charged groups and
stiffness on neutral segments.

The effect of ϕ on the dimensionless modulus g is illustrated
in Fig. 5. The data are approximated by the linear equation

g = g0 + g1ϕ, (93)

where g0 and g1 are found by the least-squares method.
According to this figure, g grows linearly with ϕ, in accord
with the rule of mixture for composite media.

Changes in the degree of ionization α with pH and ϕ are
reported in Fig. 6. Comparison of Figs. 3 and 6 shows that
α is weakly affected by the chemical structure of the neutral
component in copolymer gels (replacement of DMA with AA
results in a slight increase in the ultimate value of α only).

Figures 1 and 3 characterize the influence of pH on the
degree of swelling of copolymer gels with low concentrations
of polyelectrolyte segments. To examine the response of
copolymer gels with low concentrations of neutral segments,
we analyze observations on poly(vinyl alcohol-aspartic acid;
PVA-AsAc) interpenetrating network hydrogels [40]. Speci-
mens were manufactured by the freezing-thawing technique.
In the first step, a covalently cross-linked AsAc gel was
prepared by reaction polymerization of polysuccinimide in

1.00.0 ϕ

0.0

1.5×10−3

g

FIG. 5. Coefficient g versus molar fraction of IAc ϕ. Circles:
treatment of observations. Solid line: approximation of the data
by Eq. (93).

a mixture of N -dimethylformamide (DMF) and water using
1,6-hexanediamine as a cross-linker. In the next step, the dried
AsAc powder was added to an aqueous solution of PVA and
subjected to six freeze-thaw cycles in which PVA chains were
cross-linked by nanocrystallites.

Equilibrium swelling diagrams on gels with mass fractions
of AsAc ϕ ranging from 0.9 to 1.0 are depicted in Fig. 7.
Experiments were conducted at a temperature of 37 ◦C, with
the pH of the water bath varied between 1 and 6. In the
approximation procedure, we set χ = 0.4, q0 = 0, Q0

b = 10−4

(the same parameters as in Figs. 1 and 3), determine g = 0.01
by matching the data at low pH, and calculate pKa = 2.8 by
fitting observation on a neat AsAc gel. The only adjustable
parameter q̄ is found from the best-fit condition for each set of
data separately. The best-fit value of pKa is in accord with
the dissociation constants pKa1 = 2.0 and pKa2 = 3.9 for
AsAc [40].

0.80.2 pH

0.0

1.0

α

• – ϕ = 0.01
∗ – ϕ = 0.03

– ϕ = 0.05
– ϕ = 0.06

∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

FIG. 6. Degree of ionization α versus pH. Symbols: results of
simulation for AA-IAc gels with various molar fractions of IAc ϕ.
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0.60.1 pH

0.0

400.0

Q

◦ – ϕ = 1.0
• – ϕ = 0.97
∗ – ϕ = 0.95

– ϕ = 0.90

∗
∗

∗

∗ ∗ ∗

FIG. 7. Degree of swelling Q versus pH. Symbols: experimental
data on PVA-AsAc gels with various mass fractions of AsAc ϕ [40].
Solid lines: results of simulation.

To assess the influence of the volume fraction of functional
groups on material constants, the fitting procedure is repeated
with Q0

b = 10−3 and Q0
b = 10−2. The growth of Q0

b by two
orders of magnitude does not affect the quality of matching
observations (as the results of simulation for various Q0

b

coincide, the corresponding figures are omitted) but induces
an increase in the elastic modulus g (from 0.01 to 0.025) and
a pronounced decay in q̄.

The effect of ϕ on q̄ is illustrated in Fig. 8, where the data
are approximated by the linear equation

q̄ = q̄0 + q̄1ϕ, (94)

with coefficients q̄0 and q̄1 determined by the least-squares
technique.

The evolution of the degree of ionization of chains with ϕ

and Q0
b is reported in Fig. 9, where α is plotted versus pH. This

0.19.0 ϕ

0.0

5.0 × 10−6

q̄

0.0

5.0 × 10−5

q̄

0.0

5.0 × 10−4

q̄

∗∗∗∗

FIG. 8. Coefficient q̄ versus mass fraction ϕ of AsAc. Symbols:
treatment of observations on PVA-AsAc gels with Qb = 10−4, 10−3,
10−2. Solid lines: approximation of the data by Eq. (94).

0.60.1 pH

0.0

1.0

α

0.0

1.0

α

0.0

1.0

α

Q0
b = 10−4

Q0
b = 10−3

Q0
b = 10−2

◦ – ϕ = 1.0
• – ϕ = 0.97
∗ – ϕ = 0.95

– ϕ = 0.90
∗∗∗∗∗∗∗∗∗∗

∗∗∗∗
∗∗∗

∗∗∗
∗∗∗

∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗
∗∗∗∗

∗∗∗
∗∗∗

∗∗∗
∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗

∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

FIG. 9. Degree of ionization α versus pH. Symbols: results of
simulation for PVA-AsAc gels with various ϕ and Q0

b.

figure reveals that α is affected by our choice of Q0
b. When

Q0
b is relatively small, all functional groups become charged

at high pH, and the degree of ionization is independent of the
mass fraction of polyelectrolyte segments. With an increase in
Q0

b, the fraction of charged groups is reduced (for gels swollen
in water with pH = 6, α decreases from 1.0 at Q0

b = 10−4 to
0.63 at Q0

b = 10−2 when ϕ = 1.0 and to 0.52 when ϕ = 0.9).
This implies that Q0

b can be determined independently of
swelling tests by measuring the degree of ionization of chains
under basic conditions.

To establish correlations between ionic pressure and re-
pulsive forces between bound charges, simulation of the
governing equations is conducted with the material constants
determined for AsAc (ϕ = 1.0). The dimensionless ionic
pressure ̃ion = ionv/(kBT ) and dimensionless pressure
induced by electrostatic interaction of ionized groups ̃rep =
repv/(kBT ) are determined from Eqs. (81) and (89) and are
plotted versus pH in Fig. 10. This figure demonstrates that
for all Q0

b under consideration, ̃rep exceeds ̃ion by several
orders of magnitude.

To confirm this conclusion, we fit observations on
poly(acrylic acid) (AAc) gels [41]. An advantage of these data
is that pKa = 4.75 for AAc is known, which allows the number
of adjustable parameters to be reduced. Specimens were
prepared by free radical polymerization of AAc monomers
dissolved in water using BAAm as a cross-linker (0.1 mol%)
and potassium persulfate (KPS) as an initiator.

To approximate observations in Fig. 11, we set χ = 0.4,
q0 = 0, determine g = 0.04 by matching observations at
low pH, and find Qb = 5.0 × 10−6, q̄ = 5.0 × 106 from the
best-fit condition for the swelling diagram. To demonstrate
that these parameters ensure a reasonable degree of ionization
of functional groups, α is plotted as a function of pH in
Fig. 11. Results of simulation for dimensionless pressures
̃rep and ̃ion are reported in Fig. 12. According to this
figure, ̃rep exceeds ̃ion by three orders of magnitude at all
pH values.

022305-11



A. D. DROZDOV AND J. DECLAVILLE CHRISTIANSEN PHYSICAL REVIEW E 91, 022305 (2015)

0.60.1 pH

−3.0

−2.0

log10[Π̃rep]

−12.0

−4.0

log10[Π̃ion] ∗ – Qb = 10−2

• – Qb = 10−3

◦ – Qb = 10−4

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗
∗∗∗∗∗∗

∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

FIG. 10. Pressure driven by repulsion of charges ̃rep and ionic
pressure ̃ion versus pH. Symbols: results of simulation for AsAc
gels with various Q0

b.

D. Constrained swelling

We study water uptake by a dry cylindrical specimen
immersed in a water bath and allowed to swell in the radial
direction while the positions of its ends are fixed. The
deformation gradient for macrodeformation reads

F = e1 ⊗ e1 + λ(e2 ⊗ e2 + e3 ⊗ e3), (95)

where em are unit vectors of a Cartesian frame (e1 is directed
along the axis of the cylinder). The coefficient of lateral
expansion under swelling λ is determined from Eqs. (12)
and (95):

λ = (1 + Cv)
1
2 . (96)

0.60.2 pH

0.0

24.0

Q

0.0

0.8

α

FIG. 11. Degree of swelling Q and degree of ionization α versus
pH. Circles: experimental data on AAc gel [41]. Solid lines: results
of simulation.

0.60.2 pH

−4.0

−1.0

log10[Π̃rep]

−12.0

−6.0

log10[Π̃ion]

FIG. 12. Pressure driven by repulsion of charges ̃rep and ionic
pressure ̃ion versus pH. Circles: results of simulation for AAc gel.

Substitution of Eqs. (70), (95), and (96) into Eq. (39) implies
that

Fe = 1

(1 + q0 + q1Cbα)
1
3

× [e1 ⊗ e1 + (1 + Cv)
1
2 (e2 ⊗ e2 + e3 ⊗ e3)]. (97)

It follows from Eqs. (43), (87), and (97) that

T = T1e1 ⊗ e1 + T (e2 ⊗ e2 + e3 ⊗ e3),

where

T1 = − + G

1 + Cv

[
1

(1 + q0 + q1Cbα)
2
3

− 1

]
,

T = − + G

1 + Cv

[
1 + Cv

(1 + q0 + q1Cbα)
2
3

− 1

]
.

Bearing in mind that T = 0 for a cylinder with a traction-free
lateral surface, we find that

 = G

1 + Cv

[
1 + Cv

(1 + q0 + q1Cbα)
2
3

− 1

]
.

Inserting this expression into Eq. (84) and using Eqs. (82),
(90), we obtain

ln
Q

1 + Q
+ 1

1 + Q
+ χ

(1 + Q)2

+ g

1 + Q

[
1 + Q

(1 + q0 + q̄Qbα)
2
3

− 1

]

− 1

X

(
X − 1

κ
10−pH

)−2

= 0. (98)

We analyze swelling diagrams on poly(2-hydroxyethyl
methacrylate)-acrylic acid (HEMA-AAc) gels prepared by
photopolymerization of a solution of monomers in water
(molar ratio, 4:1) with 1 wt% of ethylene glycol dimethacrylate
as a cross-linker [42]. Dry cylindrical specimens 180 μm
long with diameters d0 ranging from 300 to 700 μm were
swollen in solutions of salts (monosodium phosphate and
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0.90.1 pH

0.0

5.0

Q

◦ – d0 = 300
• – d0 = 500
∗ – d0 = 700

∗ ∗ ∗ ∗

∗

∗ ∗ ∗

FIG. 13. Degree of swelling Q versus pH. Symbols: experimental
data on HEMA-AAc gel samples with various initial diameters d0

(in μm) [42]. Solid line: results of simulation.

sodium chloride) in water with an ionic strength 0.3 M. At
each pH, the diameter d of a specimen in the fully swollen state
was measured, and the degree of swelling Q was calculated as
Q = (d/d0)2 − 1. Changes in degree of swelling are illustrated
in Fig. 13, where Q is plotted versus pH for samples with
d0 = 300, 500, and 700 μm.

To approximate the data, Eqs. (83) and (98) are solved
numerically by the Newton-Raphson algorithm. Calculations
are conducted with χ = 0.4, q0 = −0.99, and Qb = 10−7. The
dimensionless modulus g = 0.04 is determined by matching
the data at low pH. The parameters pKa = 5.9 and q̄ =
6.8 × 107 are found by fitting observations at high pH. The fact
that pKa exceeds its value for AAc in water is explained by the
presence of salt in the buffer solution. Figure 13 demonstrates
that Eqs. (83) and (98) ensure the same accuracy of matching

0.90.1 pH

0.0

8.0

Q

0.0

0.8

α

◦ – constrained
• – unconstrained

FIG. 14. Degree of swelling Q and degree of ionization α versus
pH. Symbols: results of simulation for HEMA-AAc gel under
constrained and unconstrained swelling.

observations as models with larger numbers of adjustable
parameters [20,23,42].

To examine the effect of constraints on the degree of
swelling Q and degree of ionization α, Eqs. (83), (91), and
(98) are solved numerically with the material constants found
by fitting observations in Fig. 13. Results of simulation are
reported in Fig. 14, which demonstrates that the presence of
constraints leads to a strong decay in the degree of swelling
and a noticeable decrease in the degree of ionization at high
pH, but weakly affects these quantities at low pH.

IV. CONCLUSIONS

A model is developed for the elastic response of a polyelec-
trolyte gel subjected to swelling. The gel is treated as a three-
phase medium consisting of a solid phase (polymer network),
a solvent (water), and solutes (mobile ions). Transport of
solvent and solutes is modeled as their diffusion through the
network accelerated by an electric field formed by mobile
and fixed ions and accompanied by dissociation of functional
groups attached to polymer chains. Constitutive equations are
derived by means of the free energy imbalance inequality for an
arbitrary three-dimensional deformation with finite strains. An
advantage of this approach is that the Henderson-Hasselbach
equation for degree of ionization of chains [with Eq. (66)
providing the physical meaning of the dissociation constant]
and van’t Hoff formula for ionic pressure are not postulated
phenomenologically, but are developed together with other
constitutive relations.

In the analysis of equilibrium swelling diagrams, both ionic
pressure and electrostatic interaction of bound charges are
taken into account. To describe electrostatic repulsion of fixed
ions in a tractable way, the reference (stress-free) state of the
equivalent polymer network is presumed to differ from the
initial state of a dry undeformed gel, and the coefficient of
volume expansion of the equivalent network is treated as a
linear function of the degree of ionization of chains.

The model is applied to study unconstrained and con-
strained swelling of gels in a water bath with various pH’s.
Analysis of swelling diagrams is performed within the concept
of Donnan equilibrium. The governing equations involve
six adjustable parameters, which are found by matching
observations on DMA-IAc, AA-IAc, PVA-AsAc, and HEMA-
AAc composite hydrogels. Numerical analysis reveals that
(i) the model ensures good agreement between experimental
data and results of simulation (Figs. 1, 3, 4, 7, 11, and 13),
(ii) the material parameters change consistently with the
composition of hydrogels (Figs. 2, 5, and 8), and (iii) the
governing equations describe observations without adjustment
of the dissociation constant and employment of the Flory-
Huggins parameter that exceeds 1

2 [14,43].
Numerical analysis demonstrates that the osmotic pressure

rep induced by electrostatic repulsion of bound charges plays
an important role in water uptake by polyelectrolyte gels. This
quantity (disregarded in some conventional models) exceeds
the ionic pressure ion calculated by means of the van’t Hoff
law by several orders of magnitude. Among other results, it is
worth noting the strong decrease in the degree of swelling at
high pH accompanied by a reduction in the degree of ionization
when geometric constraints are imposed on a gel specimen.
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The following limitations of the constitutive model should
be mentioned. (i) Reaction-diffusion equations, (35), do
not discriminate vehicular motion of ions and Grotthuss
shuttling [44]. (ii) The linear relation, (70), between the
coefficient of volume expansion of the equivalent network
f and the degree of ionization α is valid at low con-
centrations of mobile ions only. This equation should be
corrected for polyampholyte gels and for polyelectrolyte
gels in solutions of salts (the Manning condensation). (iii)
Equation (46) for the free energy density is incomplete for
ionic strength-sensitive gels, as it does not account for the

energies of mixing of mobile ions [12] and formation of ion
pairs [45].
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APPENDIX

Substitution of Eqs. (47)–(50) into Eq. (46) implies that


 = μ0C + kBT C

(
ln

Cv

1 + Cv
+ χ

1 + Cv

)
+ μ0

H+CH+ + kBT CH+

(
ln

CH+

C
− 1

)

+ μ0
OH−COH− + kBT COH−

(
ln

COH−

C
− 1

)
+ μ0

Cl−CCl− + kBT CCl−

(
ln

CCl−

C
− 1

)

+ kBT Cb[α ln α + (1 − α) ln(1 − α)] + W + Wel. (A1)

The derivative of Eq. (48) with respect to time reads

Ẇ = W,1J̇e1 + W,2J̇e2 + W,3J̇e1 + W,αα̇ + W,f ḟ ,

where

W,m = ∂W

∂Jem

, W,α = ∂W

∂α
, W,f = ∂W

∂f
.

It follows from this relation and Eq. (45) that

Ẇ = 2Kmech : D + W,αα̇ −
(

2K

3f
− W,f

)
ḟ , (A2)

where

Kmech = W,1Be − Je3W,2B−1
e + (Je2W,2 + Je3W,3)I, K = Je1W,1 + 2Je2W,2 + 3Je3W,3. (A3)

Differentiating Eq. (25) with respect to time and using Eq. (23), we find that

Ẇel = E · Ḣ + 1

2εJ

(
H · Ċ · H − J̇

J
H · C · H

)
. (A4)

It follows from Eqs. (8), (41), and (42) that

Ċ = 2F� · D · F.

Combination of this equality with Eq. (23) yields

1

2εJ
H · Ċ · H = 1

εJ
H · F� · D · F · H = J

ε
h · D · h = J

ε
(h ⊗ h) : D, (A5)

where ⊗ stands for the tensor product. Keeping in mind that

J̇ = J I : D (A6)

and utilizing Eq. (8), we conclude that

J̇

2εJ 2
H · C · H = 1

2εJ
H · F� · F · H(I : D) = J

2ε
(h · h)I : D. (A7)

Substitution of Eqs. (A5) and (A7) into Eq. (A4) implies that

Ẇel = E · Ḣ + 2Kel : D, (A8)
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where

Kel = J

2ε

[
(h ⊗ h) − 1

2
(h · h)I

]
. (A9)

Differentiating Eq. (A1) with respect to time and using Eqs. (A2) and (A8), we arrive at Eq. (56) with

�C = μ0 + kBT

[
ln

Cv

1 + Cv
+ 1

1 + Cv
+ χ

(1 + Cv)2
− CH+ + COH− + CCl−

C

]
,

�H+ = μ0
H+ + kBT ln

CH+

C
, �OH− = μ0

OH− + kBT ln
COH−

C
, (A10)

�Cl− = μ0
Cl− + kBT ln

CCl−

C
, �α = kBT ln

α

1 − α
.
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