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Inherent structures, fragility, and jamming: Insights from quasi-one-dimensional hard disks
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We study a quasi-one-dimensional system of hard disks confined between hard lines to explore the relationship
between the inherent structure landscape, the thermodynamics, and the dynamics of the fluid. The transfer matrix
method is used to obtain an exact description of the landscape, equation of state, and provide a mapping of
configurations of the equilibrium fluid to their local jammed structures. This allows us to follow how the system
samples the landscape as a function of occupied volume fraction φ. Configurations of the ideal gas map to
the maximum in the distribution of inherent structures, with a jamming volume fraction φ∗

J , and sample more
dense basins with increasing φ. This suggests jammed states with a density below φ∗

J are inaccessible from the
equilibrium fluid. The configurational entropy of the fluid decreases rapidly at intermediate φ before plateauing
at a low value and going to zero as the most dense packing is approached. This leads to the appearance of a
maximum in both the isobaric heat capacity and the inherent structure pressure. We also show that the system
exhibits a crossover from fragile to strong fluid behavior, located at the heat capacity maximum. Structural
relaxation in the fragile fluid is shown to be controlled by the presence of high order saddle points caused by
neighboring defects that are unstable with respect to jamming and spontaneously rearrange to form a stable local
environment. In the strong fluid, the defect concentration is low so that defects do not interact and relaxation
occurs through the hopping of isolated defects between stable local packing environments.
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I. INTRODUCTION

Bernal’s [1] construction of random close packing (RCP)
using ball bearing hard spheres highlighted the role particle
packing may play in understanding the structure of liquids.
Subsequent work on jamming phenomena [2–5] has shown
that the ways particles pack together to form mechanically sta-
ble structures has important implications for the properties of
fluids, glasses, and athermal granular materials. In particular,
the jamming phase diagram [6–9] was introduced to establish
a connection between the jamming in thermal and athermal
systems. Packing problems have also found applications in
computer science [10] and information theory [11].

The potential energy landscape [12] combined with in-
herent structures [13,14] provide an ideal framework that
connects the properties of the equilibrium fluid with packings
of particles by mapping every configuration of the equilibrium
fluid to a mechanically stable structure. In a system with
potential energy, an inherent structure is a local potential
energy minimum obtained by quenching the system using a
steepest descent or conjugate gradient energy minimization.
In a hard particle system, a configuration is ideally mapped to
its inherent structure by continually expanding the particles,
moving them apart on contact, until they become collectively
jammed [15] in a local maximum density maximum. Configu-
rations that map to the same inherent structure are then grouped
together in basins of attraction to form the jamming or packing
landscape consisting of local density maxima separated by
saddle points. The partition function for the system can then
be formed by summing over all the basin volume so that the
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thermodynamics and dynamics of the system can be described
in terms of how the system moves on this high dimensional
landscape [16,17]. In particular, shallow basins on the inherent
structure landscape have small vibrational volumes, but there
are many of them, while deep basins are rare and have large
vibrational volumes. As a result, the equilibrium properties
of the system are determined by the competition between
the configurational (number of basins) and their vibrational
entropies so the fluid samples the set of basins that maximizes
the total entropy.

The Adam-Gibbs relation [18] suggests the slowdown
observed in the dynamics of supercooled fluids is related to the
decrease in the number of accessible inherent structure basins
NJ through the configurational entropy Sc/Nk = ln NJ . The
landscape approach accounts for the possibility of an ideal
glass transition to occur if NJ becomes subexponential so
that Sc/N → 0. Unfortunately, the inherent structure mapping
process for hard particles is difficult to implement for even
small numbers of particles [13]. Computer simulation has been
used extensively to investigate the distribution of inherent
structures, but different compression protocols often lead to
different conclusions for both hard disk mixtures [19–21]
and hard spheres [7,22]. While the density of RCP is highly
reproducible, relationships between structure and the density
of jammed packing suggest randomness is ill defined and it
has been proposed that it should be replaced by the concept
of a maximally jammed state [23]. Similarly, the existence of
a continuous distribution of jammed states, from disordered
packings through to the ordered crystal, in a binary mixture of
hard disks, appears to rule out the possibility of an ideal glass
transition [21].

Replica mean field theory [24,25] (RMFT) provides a the-
oretical approach to understanding jamming in hard particles.
The replicated free energy of a dense fluid is parametrized
in terms of the local cage size which momentarily traps the

1539-3755/2015/91(2)/022301(12) 022301-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.022301


YAMCHI, ASHWIN, AND BOWLES PHYSICAL REVIEW E 91, 022301 (2015)

particles in the replica space. In order to get relations describ-
ing the jammed states, the cage parameter is systematically
taken to zero under the resulting mean field constraints. This
effectively models the immobilization of a particle due to
caging by its local neighbors and suggests there is a very
narrow distribution of jammed structures in three-dimensional
hard spheres, which is consistent with recent simulations
[26–28]. Other theoretical methods include a granocentric
model [29] for random packing that focuses on the ability of
neighbors to form jamming contacts around a central particle
and a recent statistical mechanics approach that accounts for
correlations in packings [30].

The goal of this work is study a simple model system for
which the complete distribution of inherent structures can be
calculated so we can explore the relationships between the
properties of resulting landscape and the thermodynamics and
dynamics of the fluid. The preliminary results of our analysis
appeared in earlier work [31,32] and this paper contains more
details and new work regarding the role of defects and soft
modes on the dynamics of the fluid. The rest of the paper
is organized as follows: Section II introduces the model.
Section III describes our analysis of the inherent structure land-
scape and thermodynamics of the model obtained using the
transfer matrix method, while Sec. IV describes the molecular
dynamics simulations used to confirm our analytical results
and study the dynamics. Our discussion is contained in Sec. V.

II. THE MODEL

The model consists of N two-dimensional (2D) hard disks,
with diameter σ , confined between two hard walls (lines)
of length L separated by a distance 1 < Hd/σ < 1 + √

3/4,
where Hd is the channel width. The particle-particle and
particle-wall interaction potentials are given by

V (rij ) =
{

0, rij � σ

∞, rij < σ
(1)

and

Vw(ri) =
{

0, ry � |h0/2|
∞, otherwise

(2)

respectively, where rij = ∣∣rj − ri
∣∣ is the distance between

particles, ry is the component of the position vector for
a particle perpendicular to the wall, and h0 = Hd − σ is
the reduced channel diameter. The two-dimensional volume
accessible to the particle centers is then h0L and the occupied
volume is φ = Nπσ 2/ (4LHd ).

III. TRANSFER MATRIX METHOD

A. Inherent structure landscape

By confining the disks to a channel width Hd/σ < 1 +√
3/4, the particles can only contact their nearest neighbors

on each side and the wall. As a result, there are only four
local particle configurations that can be combined to form to
configurations that satisfy the local jamming constraints in
2D. Figure 1 shows how these can be represented by bonds
connecting the centers of neighboring disks. Bonds 1 and
3 represent two dense configurations, while bonds 2 and 4

1 3 2 1 3 1 4 4 3

FIG. 1. (Color online) Local packing arrangements of disks.
Dashed lines connect the centers of neighboring disks in contact,
and the numbers identify different “bonds.” Bonds 1 and 3 are the
locally most dense states. Bonds 2 and 4 represent the defect states.
The −4 − 4− arrangement results in an unjammed particle (dash
filled).

represent open defect type configurations. Bonds 1 and 2 are
mirror images of each other, with the mirror plane located
along the central axis of the channel. Similarly, bonds 3 and
4 are also mirror images of each other. These bonds can
be combined to create locally jammed configurations of N

particles that can be described by an ordered list of the bond
types. However, not all bond arrangements result in a jammed
state because some of the local environments are incompatible
with each other. Neighboring −1 − 1− and −3 − 3− bonds
are incompatible because they start and finish on opposite
side of the channel and need to be bridged by a −3− or
and −1−, respectively, to join particle centers. Configurations
of neighboring defects, represented by bonds (−2 − 2− and
−4 − 4−), are also incompatible as they result in a local
configuration where the the central disk has three contacts all in
the same hemisphere, allowing it to move laterally and unjam.
For example, see the gray disk in the −4 − 4 arrangement
pictured in Fig. 1. If all the particles in a configuration satisfy
the local jamming conditions, then the configuration is also
collectively jammed because the particles are unable to pass
each other.

We can take advantage of the quasi-one-dimensional nature
of our system and use the transfer matrix method to construct
the ensemble of inherent structures [33]. The length added to
the system along the axis of the channel when a bond of type
j follows a bond of type i is lij , with li,1 = li,3 = [Hd (2σ −
Hd )]1/2 = σ ∗ and li,2 = li,4 = σ . For fixed N , the volume of
the system will fluctuate depending on the number of type 2
and 4 bonds in the configuration so we introduce a longitudinal
pressure P , as a conjugate variable to the volume, and fix the
system at a constant temperature T . The transfer matrix then
takes the form

M =

⎡
⎢⎢⎢⎣

0 0 M1,3 M1,4

M2,1 0 0 0

M3,1 M3,2 0 0

0 0 M4,3 0

⎤
⎥⎥⎥⎦ , (3)

where Mi,j = Ci,j exp(−βPh0li,j ). The exponential term is
the Gibbs measure appropriate for the N,P,T ensemble and
Ci,j is zero when the two bonds are incompatible and one
otherwise. In the thermodynamic limit, the partition function
for the system is given by

� (N,P,T ) = NkT ln(λ), (4)
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FIG. 2. (Color online) SJ /Nk versus φJ for Hd/σ = 1.866. The
thermodynamically accessible packings have occupied volume frac-
tions between φ∗

J = 0.659 (green square) and the most dense
jammed state φJ max = 0.842 (blue square). The thermodynamically
inaccessible exist below φ∗

J and the least dense state φJ min = 0.561
(red square).

where λ is the largest eigenvalue of M . The jamming density
φJ is then given by

φJ = Nπσ 2

4HdLJ

= − πσ 2

4kT Hd∂ (ln λ) /∂P
, (5)

where LJ is the length of the system in the jammed state.
The entropy of jammed states SJ = k ln NJ , where NJ is the
number of jammed configurations with φJ , can be written as

SJ /Nk = ln λ + T ∂ (ln λ) /∂T . (6)

The resulting eigenvalues are necessarily functions of
N, P , and T . The factors associated with N are dealt with
by considering the system in the thermodynamic limit and
calculating quantities on a per particle basis. T plays no
direct role in the hard particle system, except to provide the
velocity distribution of the particles. Here, we are only dealing
with jammed structures where there is no free volume and
the particles are unable to move, which implies that T = 0.
The equilibrium fluid, including free volume, is described in
Sec. III B. In the absence of temperature, there is no internal
pressure caused by the collision between particles. However, it
is still necessary for the system to do work against the pressure
P when it expands so the equation of state for the ensemble of
jammed configurations results from the connection between
the work required to expand the volume of the system and SJ .
We obtain the full distribution of states by varying the pressure
from −∞ → ∞.

Figure 2 shows that the distribution of jammed states has
a similar form to that obtained for the one-dimensional (1D)
model [34], but with a lower entropy because of the need to
eliminate states with neighboring defects. The results obtained
using the transfer matrix method are identical to those obtained
using a combinatorial approach, which gives [35]

φJ = π

4Hd [θ + (1 − θ )
√

Hd (2 − Hd )]
, (7)

0.5 0.6 0.7 0.8 0.9
φ(φ

J
)

1

1.2

1.4

1.6

1.8

2

H
d /σ

0.5 0.6 0.7 0.8 0.9
1

1.2

1.4

1.6

1.8

2

φ
J

*

φ
J max

φ
J min

φ(P
IS max

)

φ(C
p max

)

FIG. 3. (Color online) The jamming phase diagram showing
φJ max, φJ min, and φ∗

J as a function of Hd/σ . The φ of the maxima
for the inherent structure pressure PIS and the heat capacity Cp

are included for comparison. The green (dark gray) area identifies
the accessible jammed packings and the yellow (light gray) area
represents the inaccessible jammed packings.

and

SJ /Nk = (1 − θ ) ln(1 − θ ) − θ ln θ − (1 − 2θ ) ln(1 − 2θ ),

(8)

where θ is the fraction of defect bonds (2 and 4). The most
dense and least dense states occur when θ = 0 and 0.5,
respectively, and both have SJ = 0. The most dense state
is obtained in the limit P → ∞ and the least dense state is
obtained as P → −∞. The density distribution of inherent
structures goes through a maximum at an intermediate density,
φ∗

J when θ = 1/2 − √
5/10 and P = 0. The jamming phase

diagram for the model (Fig. 3) shows that while the functional
form of the distribution of inherent structures remains the same
over the range of channel diameters 1 � Hd/σ � 1 + √

3/4,
the width of the distribution collapses to a single state, in the
limit Hd/σ → 1, when the system effectively becomes one
dimensional. The distribution broadens as Hd increases, but
φJ max and φJ min go through minima due to the varying lengths
li1 and li3. The range of jammed states from φJ max − φJ min

represents the J line.
It is also notable that the low density jammed states (large

volume) were obtained under conditions of negative pressure.
This is purely a consequence of the thermodynamic relation
P = T (∂S/∂V )U and that the number of low density jammed
states is decreasing as the volume of the packings increases.
In many respects, it is similar to the appearance of negative
temperatures in systems with upper energy bounds. However,
negative pressures cannot actually be realized because there are
no attractive forces in the hard sphere system to balance the ten-
sion. We will see in the next section that the equilibrium fluid,
which exists from the ideal gas in the low φ limit, up to the most
dense jammed state φJ max, only samples inherent structures
above the maximum in the φJ distribution so that the “negative
pressure” states are never sampled, making them inaccessible.

In the context of understanding athermal granular systems, a
knowledge of the ensemble of jammed states is of considerable
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interest to the development of a granular statistical mechanics
[36], and the current model has been used to test ideas
relating to temperaturelike thermodynamic quantities such as
the compactivity [37–40].

B. Thermodynamics of the equilibrium fluid

The goal of this section is to investigate how the thermo-
dynamics of the equilibrium fluid relates to the underlying
inherent structure landscape. Barker [41] originally provided
an exact solution for the partition function of quasi-one-
dimensional systems. Kofke et al. [42] then developed a
transfer matrix method for solving the partition function of
a system of hard particles in a channel, where second nearest
neighbor interactions are excluded. In this approach, the y
positions of the particles are fixed and a liquid configuration is
mapped to a configuration of tangent disks, by translating the
disks along the x axis, so the system becomes a 1D mixture
of additive hard rods with different contact lengths. This
allows the integration over the x coordinates of the particles
to be performed independently of the integration of the y
coordinates. The solution to the partition function can then
be represented as an eigenvalue problem where the largest
eigenvalue is used in the thermodynamic limit. The partition
function in the N,P,T ensemble can be written as a transfer
integral

Z = 1


DN (βP )N+1

∫
dy KN (y1,y2) . (9)

Here, 
 is the thermal wavelength, P is the longitudinal
pressure, and the kernel K is defined as

K (y1,y2) = exp[−βPh0Lx (y1,y2)], (10)

with y1 and y2 being the y coordinates of two adjacent disks in
contact. Lx is the projection of the distance between the two
contacting disks along the x axis and is a function of y1, y2. In
principle, K (y1,y2) is an infinite dimensional matrix because
y1 and y2 are continuous variables, but we are interested in the
largest eigenvalue λ, which satisfies∫

dy K (y1,y) ψ (y) = λψ (y1) , (11)

where ψ is an eigenfunction. The eigenvalue problem is solved
by using a mesh for the y coordinates [42]. The molar Gibbs
free energy g is then given by

βg = ln
 + ln(βP ) − ln(λ), (12)

and this can be used to obtain the equation of state.
The properties of the equilibrium fluid are obtained by

maximizing the total entropy of the system at a given density,
which requires a balance between the configurational entropy,
i.e., the number of basins sampled at φ with a given φJ , and
the vibrational entropy of those basins. To determine which
inherent structures are sampled by the equilibrium fluid as
a function of density, we take advantage of the information
contained within the matrix K regarding the geometry of
adjacent tangent disks. Our compression scheme is summa-
rized in Fig. 4. Starting from an equilibrium configuration,
the particles are compressed along the x axis, with fixed y

coordinates, until all the disks are in contact. Figure 4 then
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FIG. 4. (Color online) In order to map equilibrium fluid config-
urations to the jammed configurations analytically, we introduce a
matrix G4 using a group of four disks. Disks 1, 2, 3, 4, in a liquid
configuration (a) are mapped to a set of tangent disks (b). The
product of the kernels K(y1,y2)K(y2,y3)K(y3,y4) is then constructed.
Squeezing disks 1 and 4 towards each other determines the jamming
configuration of disks 2 and 3. �4 is the projection of the distance
between disks 2 and 3 along the x axis, in the jammed configuration.
�4 is either σ or σ ∗ depending on the rules c(i) and c(ii) or c(iii)
and c(iv), respectively. The product kernel is then weighed with �4

to give the G4 matrix.

shows that the type of bond formed between the two central
disks (2,3) as the result of further compression. This can
be determined from the sign of the product of areas made
from the triangles created by particles 1, 2, 3 and 2, 3, 4.
The geometry of the four disks is contained in the chain
product matrix K (y1,y2) K (y2,y3) K (y3,y4). The product
area-vector-product rule, for triangles

−→
� 123 and

−→
� 234, that

determine the nature of the bonds is
−→
� 123 · −→

� 234 > 0 bond 2,3 �4 = σ ∗,
(13)−→

� 123 · −→
� 234 < 0 bond 2,3 �4 = σ.

We can now define a new, four particle transfer matrix

G4(y1,y4) =
∫

K(y1,y2)K(y2,y3)K(y3,y4) exp[γ�4]dy2dy3

(14)
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FIG. 5. (Color online) (a) The fraction of defect bonds in the
inherent structures sampled by equilibrium fluid at φ. The solid
line represents the transfer matrix results and the open circles were
obtained from simulation (see Sec. IV A). (b) The configurational
entropy of the equilibrium fluid.

whose elements are weighted by the bonds they would form
when jammed. For a system with periodic boundary conditions
and N − 2 particles, the volume of the inherent structure
formed when the equilibrium fluid is at P is given by

V inh
2N = lim

γ→0
∂ln[Tr(G4)]/∂γ . (15)

The same approach can be used to obtain the fraction of defects
in the inherent structure sampled by the fluid θ (φ) by setting
�4 equal to 1 and 0 for the defect states and dense states,
respectively, and then using Eq. (15). The configurational
entropy Sc(φ) is a property of the equilibrium fluid and is
given by the number of basins sampled at φ. To obtain Sc the
equilibrium fluid θ (φ) is used in the expression for SJ given by
Eq. (8). Figure 5 shows both θ [Fig. 5(a)] and Sc [Fig. 5(b)] as
a function of φ for a system with Hd/σ = 1.866. In particular,
we see that the ideal gas samples the inherent structures at
the maximum of the distribution φ∗

J , then the fluid moves to
basins with a higher φJ with increasing density. The basins
with φJ < φ∗

J are never sampled by the equilibrium fluid. At
low φ, the configurational entropy of the fluid decreases slowly
before it begins a rapid decrease at intermediate occupied
volume fractions. An extrapolation of the Sc to higher φ,
based on its behavior in this intermediate regime, would
suggest the system exhibits a Kauzmann catastrophe where
the configurational entropy goes to zero at a φ well below
φJ max. However, at high densities, there are very few basins
(although not subexponential) and the vibrational entropy of
the basins dominates the properties. This causes Sc/Nk to
plateau at high φ so that it only approaches zero in the limit
φ → φJ max. As a result, there is no ideal glass transition in
this system.

There is considerable evidence to suggest that the higher
order saddle points, connecting the basins of the stable states,
also play an important role in the dynamics and structural
relaxation of the supercooled fluids [43,44]. In a system

with potential energy, saddle points can be classified on the
basis of the number of negative eigenvalues in the Hessian
matrix of the potential energy of the configuration. When
there are no negative eigenvalues, the saddle point is a
stable inherent structure, otherwise the system contains one or
more unstable, “soft” modes. A statistical measure of these
saddle points is captured by the saddle point index, which is the
average number of negative eigenvalues in the liquid [45,46].
The saddle point index has been shown to decrease with
temperature below the onset temperature for the Kob-Andersen
binary Lennard-Jones mixture (KA BLJM) [47], and go to zero
at a finite temperature Td , very close to the mode coupling
critical temperature. A crossover from fragile to strong liquid
behavior also occurs at Td [48] in the KA BMLJ model.

The Hessian matrix cannot be calculated in a hard particle
system. However, we can identify the local unstable modes in
our model as those associated with neighboring defects, i.e.,
with −1 − 4 − 4 − 3− and −3 − 2 − 2 − 1 bond configura-
tions. Building on our method for mapping configurations to
their local inherent structures, we can use the transfer matrix
approach to map clusters of five disks to their local structure
and calculate the probability of finding the unstable states. A
configuration of five disks is initially compressed in along the
x axis, with y coordinates held fixed, until all the disks are
in contact with their neighbors. The unstable states are then
identified using the triangle rules for neighboring particles to
define �5 as

��123 · ��234 < 0 ��234 · ��345 < 0 ⇒ �5 = 1,

��123 · ��234 > 0 ��234 · ��345 < 0 ⇒ �5 = 0,
(16)��123 · ��234 < 0 ��234 · ��345 > 0 ⇒ �5 = 0,

��123 · ��234 > 0 ��234 · ��345 > 0 ⇒ �5 = 0.

Once the five particle transfer matrix is defined,

G5(y1,y5) =
∫

K(y1,y2)K(y2,y3)K(y3,y4)K(y4,y5)

× exp[ω�5]
4∏

i=2

dyi , (17)

the fraction of configuration space associated with the unstable
states (�5 = 1) is given by

η = lim
ω→0

∂[ln Tr(G5)]/∂ω. (18)

RMFT identifies φd as the occupied volume fraction where
long lasting glassy states first appear, causing the dynamics to
become activated. In the bulk, three-dimensional hard sphere
system φd ∼ 0.58, which coincides with the mode coupling
transition. Godfrey and Moore [49] found the correlation
length for the confined disks model increased rapidly at
intermediate φ and would appear to diverge near φ = φd ∼
0.48 based on an extrapolation. However, the transition is
avoided and the growth of the correlation length slows down
at higher φ. Figure 6 shows that our analysis of η essentially
follows that of the inverse correlation length obtained by
Godfrey and Moore, decreasing rapidly before plateauing at
very low values (η ∼ 0). A linear extrapolation from lower φ

would locate φd ∼ 0.5. This suggests a change in the nature of
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FIG. 6. (Color online) η as a function of φ. The solid line
represents data calculated using the transfer matrix. The dashed (red)
line is the linear extrapolation.

the dynamics may occur when defects become rare, such that
they do not interact to produce soft modes. In principle, we
should also include an analysis of higher order saddle points
that include −2 − 2 − 2 and −2 − 2 − 2 − 2− states, etc., but
these are even more rare and their inclusion would not change
the qualitative features described here.

The isobaric heat capacity is Cp = (∂H/∂T )P . For hard
disks, the enthalpy is H = NkT + PV and

Cp/Nk = 1 + Z/(1 + dln{Z}/dln{φ}), (19)

where Z = PV/NkT and V is the thermodynamic volume
accessible to the centers of the particles. Figure 7(a) shows
that the fluid exhibits a maximum in the heat capacity that
sharpens and moves to lower T as the distribution of inherent
structures narrows with decreasing Hd , before collapsing to
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FIG. 7. (Color online) Cp/Nk as a function of (φPV/NkT )−1

(top) and defect fraction θ (bottom).
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FIG. 8. (Color online) Vibrational pressure and inherent struc-
ture pressure versus φ for different values of Hd/σ .

a single structure at Hd/σ = 1. For the system with Hd/σ =
1.866, the maximum is located at φ = 0.534, which is only
just above φd . If Cp is replotted as a function of the equilibrium
number of defects in the fluid [see Fig. 7(b)], we see that the
maximum occurs at the same value θ = 0.044 ± 0.002 for all
Hd , suggesting the concentration of defects is the key feature
controlling the behavior of the heat capacity maximum.

Shell and Debenedetti [50] showed that the properties of
the equation of state (EOS) of a fluid could be related to
the inherent structure landscape by separating the equilibrium
pressure into contributions from the inherent structure pressure
PIS and the vibrational pressure Pvib, so that

P = (PIS + Pvib). (20)

Making use of the general relation P = T (∂S/∂V )U , we can
calculate the inherent structure pressure as

βPISh0σ
2 = −4Hdφ

2

π

(
∂Sc/Nk

∂φ

)
U

, (21)

and then obtain Pvib from Eq. (20). Both contributions to
the pressure are shown in Fig. 8. The vibrational pressure
increases monotonically as a function of φ while PIS exhibits
a maximum at densities that are slightly higher than the where
the CP maximum appears. The location of the maxima in
the heat capacity and the inherent structure pressure have been
included on the jamming phase diagram for the model (Fig. 3).

IV. MOLECULAR DYNAMICS SIMULATIONS

A. Exploring the packing landscape

In this section, we describe a series of event driven
molecular dynamics simulations carried out in the canonical
(N,V,T ) ensemble. They help verify our transfer matrix
analysis and provide measurements of dynamic properties of
the system. N = 104 particles were initially placed in a linear
lattice at φ = 0.01, and were assigned random velocities that
were then scaled to ensure kT = 1. The units of time in the
simulation are σ

√
m/kT , where m is the mass of the particles,

which was taken to be unity. At each density studied, the
system was equilibrated for 200N − 106N collisions before
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FIG. 9. (Color online) The difference between the equilibrium
EOS and the nonequilibrium EOS as a function of φ, with Hd/σ =
1.866, for different compression rates.

sampling over the next 400N − 107N collisions, with the
longer run times being used at high densities. A modified
version of the Lubachevsky and Stillinger [51] (LS) algorithm,
that ensures Hd/σ remains constant as the diameter of the
disks is changed (L fixed), was used to compress the system
to higher occupied volume fractions, with a compression rate
of dσ/dt = 0.001. The EOS obtained from our simulations
matches the exact result within simulation error up to very
high occupied volume fractions where we finally fall out of
equilibrium at the longest time scales used in our simulations.
This occurred near φ ∼ 0.8 with Hd/σ = 1.866.

To follow how the equilibrium liquid moves through
the packing landscape as a function of φ and compare
our simulations with our transfer matrix inherent structure
mapping, we measure the defect concentration in the fluid
using the triangular method introduced by Speedy [19]. In this
method, the position of each disk is considered relative to its
two neighbors. If the central disk is located below the line
connecting its two neighbors, it will pack at the bottom of the
channel, otherwise it will pack at the top. The configuration is
then assigned bond numbers, equivalent to those described in
Fig. 1, allowing us to identify defects in liquid state without
having to compress the system to a jammed state. Figure 5
shows that the defect concentration obtained in our simulations
is the same as that obtained using the transfer matrix inherent
structure mapping.

Our MD simulations also allow us to explore how the fluid
falls out of equilibrium by following the nonequilibrium EOS
of the fluid as it is continually compressed. The simulations
started at φ = 0.05 and the system was compressed to its
jammed configuration using the LS method, with different
compression rates in the range dσ/dt = 0.0005–0.3. The
nonequilibrium pressure, at a given density, was obtained
by measuring the sphere-sphere and sphere-wall momentum
transfer over 10N collisions, as the system was still being
compressed. Figure 9 shows the difference between the
nonequilibrium EOS and the equilibrium EOS obtained from
the transfer matrix method. At low φ, the nonequilibrium EOS
essentially follows that of the equilibrium system because the

0.001 0.01 0.1
dσ/dt

0.65

0.7

0.75

0.8

0.85

φ J

dσ/dt = ∞

FIG. 10. (Color online) φJ as a function of ∂σ/∂t for a system
with Hd/σ = 1.866. The solid line joins points to provide a guide.
The dashed line represents the φJ obtained for the ideal gas using the
transfer matrix method.

motion of the particles allows it to move between basins
and relax as the fluid is compressed. The small positive
differences result from the continual increase in φ as the
pressure measurement is made, and this occurs more rapidly
at faster compression rates. At the fastest compression rates
considered here, the system falls out of equilibrium at φ ∼ 0.5,
as the nonequilibrium EOS begins to diverge, leading to a
jammed state with φJ ∼ 0.72 (see Fig. 10). It is interesting
to note that the system first shows signs of falling out of
equilibrium at a φ close to the φd identified using the saddle
point index. As the compression rate is decreased, the fluid
remains in equilibrium longer and becomes trapped in a glass
with a higher φJ . In principle, if the system was compressed
infinitely slowly, it would remain in equilibrium and become
jammed at φJ max. Furthermore, Godfrey and Moore [49] were
able to predict the compression rate dependence of φJ on the
basis of a transition state theory that estimates the time for two
defects to diffuse together and annihilate each other through
one of the unstable saddle points. Once the rate of compression
is faster than that of the rate of annihilation, the total number of
defects becomes fixed and the system falls out of equilibrium.
The transition state theory was also able to predict the time
associated with particles hopping in defects obtained from
molecular dynamics simulations [35].

B. Relaxation times

To study the relationship between the packing landscape
and the dynamics of the fluid, we calculated the structural
relaxation times for the system over a range of φ, using two
different methods. All simulations used N = 2000 particles.
Starting from φ = 0.01, between 400N–106N collisions were
used to reach equilibrium, then relaxation times were measured
with simulation lengths that varied from 200N up to 106N ,
depending on the occupied volume fraction. 8 × 104 equally
spaced configurations were sampled at each φ.

We began by measuring the relaxation time defined in
terms of the intermediate scattering function. The longitudinal
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FIG. 11. (Color online) Structure factor S(k) as a function of k
(in units of inverse σ ), for all φ investigated with Hd/σ = 1.866.
For clarity, the individual curves have been displaced vertically by
1 with increasing φ. The dashed (red) curve highlights the data for
φ = 0.534, corresponding to the φ of the Cp maximum.

structure factor for the system can be defined as

S (k) = 1

N
〈ρkρ−k〉 , (22)

where

ρk =
N∑

j=1

exp[−ik · rxj (t)], (23)

rxj is the position of particle j along the x coordinate, at
time t , and the angular brackets denote an equilibrium
ensemble average over multiple configurations at different
t . The wave vector k was defined along the x axis, as
k = 2πn/Lx and the integers n were chosen in the range 1–60.
Figure 11 shows the evolution of S(k) as a function of φ. The
emergence of the first peak, at small k, reflects the growth in
real space of the regular zigzag arrangements of the particles
associated with the most dense packing. In particular, we see
a rapid, but still continuous, shift of the peak to larger k at φ

near the Cp maximum. Significant structural changes from a
fluidlike to a solidlike structure have also been observed in the
pair correlation function at these φ [52,53].

The structural relaxation time for the system was then
obtained by measuring the self part of the intermediate
scattering function

Fs (k,t) = 1

N
〈ρk(t)ρ−k(0)〉 (24)

at the wave vector kmax, corresponding to the peak of the
first maximum in S(k). Figure 12(a) shows that the decay of
F (kmax,t) reaches zero in the time scale of the simulation,
suggesting the system behaves like an equilibrium fluid for all
φ studied. The structural relaxation time τF was then defined
as the time required for F (kmax,t) to fall to e−1 of its initial
value. For a hard particle system, φPV is a constant along an
isobar and the Arrhenius law would predict that ln τF varies
linearly with φPV/NkT . Figure 13 shows τF is close to being
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FIG. 12. (Color online) The time dependence of (a) the self-
intermediate structure factor F (kmax,t) and (b) the bond survival
probability R(t) for a system with Hd/σ = 1.866, over a range
of φ.

linear in 1/T , at high φ, which is the behavior expected for
a strong fluid, but at lower φ, the temperature dependence
becomes less clear. In particular, with Hd/σ = 1.866, we see
an unusual decrease in the relaxation times. This may be caused
by the rapid structural evolution of the system at these φ and
is complicated by the corresponding variation of kmax.

As an alternative, we also measured a relaxation time based
on the the survival probability of the bond types used to
describe the local packing in the inherent structures. At t = 0,
Speedy’s triangular method, described earlier, was used to
identify the local bond types throughout the configuration. The
fluid remains within the basin of a single inherent structure for
a short time before a local rearrangement of the disks changes
the identity of some of the bonds and moves the system to
a new inherent structure. We measured R(t), the fraction of
bonds that have not changed at least once in time t as a function
of t , and define the relaxation time as

τ =
∫ ∞

0
R (t) dt. (25)
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H = 1.866

FIG. 13. (Color online) Arrhenius plot for the relaxation times
obtained from self-intermediate function for different values of Hd/σ .
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FIG. 14. (Color online) (a) The Arrhenius plot of τ fora system
with Hd/σ = 1.866. The crosses represent the simulation data. The
dashed and dashed-dotted lines represent fits to the data in the fragile
region of the parabolic and VFT equations, respectively. The solid
line is the Arrhenius fit to the strong fluid region. (b) The fragility
parameter m calculated from the simulation data. The solid line
denotes the slope from the Arrhenius behavior fit to the τ data shown
in (a).

R (t) decays in the same fashion as F (kmax,t) [see Fig. 12(b)],
but τ is well behaved over the full range of φ studied [see
Fig. 14(a)]. The linear behavior in 1/T at high φ remains, but
we now see the fluid exhibits a super-Arrhenius behavior at low
φ, suggesting the system has a fragile-strong fluid crossover.
We also show fits of the data from the fragile region to
the Vogel-Fulcher-Tammann (VFT) equation [54–56], which
predicts a divergence of the relaxation times at a temperature
TVFT > 0 K, along with the parabolic law developed by
Elmatad, Chandler, and Garrahan [57,58], which predicts no
singularity and is derived on the basis of the facilitated dynam-
ics model [59]. Both equations fit well when restricted to the
fragile fluid data (as shown), but the fits become worse when
extended over a full range of data. The Arrhenius equation
provides the best fit for τ above the crossover. Good fits of the
VFT equation to a wide range of experimental and simulation
data for supercooled liquids have been used as evidence for
the presence of a thermodynamic singularity underlying the
experimentally observed glass transition. However, we have
already shown that our model does not exhibit an ideal glass
transition, which suggests that TVFT is simply a fit parameter
with no physical significance.

To further confirm the existence of the fragile-strong
crossover, we also calculate the fragility parameter [60]

m =
(

d ln τ

d
(

1
T

)
)

, (26)

where the derivatives were obtained directly from our data
points, without any curve fitting, using a centered differences
scheme. Figure 14(b) shows m increases linearly at high
temperatures but then plateaus to a constant value when the
fluid becomes strong. The crossover point occurs at the Cp

maximum.
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FIG. 15. (Color online) Structural relaxation times for different
Hd/σ rescaled by (a) the “glass transition” time and temperature (see
text for definition), (b) the time and temperature of the Cp maximum,
and (c) the defect concentration relative to the defect concentration
in the ideal gas θ∞.

A comparison of the glass forming properties of different
systems is usually achieved by the rescaling of the temperature
of the system by the glass transition temperature Tg , which is
defined as the temperature where the relaxation time of the
system reaches a given value τg . To compare the relaxation
times of systems with different channel diameters, we define
τg = 40.2, by choosing the longest relaxation time accessible
to all the systems we studied, then rescale the temperature of
each system by the corresponding Tg [Fig. 15(a)]. With such
a scaling, all the systems appear to have different fragilities.
However, the FS crossover occurs at the same value of φ as the
maximum in the Cp, for all channel diameters, which suggests
there is an alternative scaling temperature. For each Hd , we
locate the temperature of the Cp maximum Tmax, using our
thermodynamic analysis, and define τ0 as the relaxation time
at Tmax. By rescaling the temperatures and relaxation times by
Tmax and τ0, respectively, we find that all our data now collapse
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FIG. 16. (Color online) Adam-Gibbs plot for Hd/σ = 1.866.

onto a single master curve [see Fig. 15(b)]. This suggests
that the temperature at the Cp maximum provides a more
meaningful, and physically motivated, scaling temperature for
our model than an arbitrarily selected glass transition transition
temperature.

The FD model suggests that the fragile-strong crossover
should be related to the concentration of excited regions. In our
system, these excited regions can be identified as the defects
because disks in the dense fluid regime can only move by hop-
ping into the “vacancy” associated with a type 2 or type 4 local
packing arrangements. At low φ, there is a high concentration
of defects that can interact. When two defects are located
next to each other, in a −1 − 4 − 4 − 3− or −3 − 2 − 2 − 1−
arrangement, the local packing becomes unstable, which leads
to directed, spontaneous, and irreversible particle motions that
annihilate the defects to form the stable −1 − 3 − 1 − 3−
arrangement. This cooperative particle motion is characteristic
of a fragile fluid. Once the defect concentration drops below
a critical concentration, structural relaxation occurs through
the directionally independent, activated hopping of particles
located in isolated defects, which is characteristic of a strong
fluid. In the strong fluid regime, ln τ ∼ ln θ which is confirmed
in Fig. 15(c), at φ, above the Cp maximum.

Having been able to calculate the configurational entropy
for our system exactly and measure the relaxation times, we
are in a position to directly test the Adam-Gibbs relation
for our model. A recent analysis [61,62] of the Adam-Gibbs
relation, in terms of the random first order transition theory
[63], suggests it has the general form

ln τ ∼
(

φPV

T Sc

)α

, (27)

where the value of α is dependent on the dimensionality of the
system. The usual form of the Adam-Gibbs relation for three
dimensions is recovered with α = 1. Unfortunately, we are
unable to fit Eq. (27) to our data, over any region, and Fig. 16
shows our results for the standard Adam-Gibbs relation. This
is consistent with the work of Sengupta et al. [61,62] who
also found that the Adams-Gibbs relation did not work in two
dimensions.

V. DISCUSSION

The potential energy landscape, and its hard particle equiv-
alent, provide one of the main paradigms used to understand
the properties of liquids, glasses, and jamming phenomena.
However, the complexity of the landscape and the challenges
associated with mapping configurations to their local inherent
structures make it difficult to determine exactly how the
thermodynamics and dynamics are related to the features of
the landscape. This work develops a comprehensive picture of
these relationships for a model where both the landscape and
the inherent structure mapping can be determined exactly.

A distribution of jammed states implies the existence of
a J line, as suggested by RMFT, rather than a particular
J point, but there are a number of interesting features in
the landscape that can be connected to thermodynamic and
dynamic properties of the fluid. In RMFT, φd represents the
occupied volume fraction where the fluid begins to be trapped
in the basins of long lasting glassy states. Configurations at φd

map to φth, which terminates the J line in the low φJ limit.
In our quasi-one-dimensional hard disk model, we identify
φd as the φ where the saddle point index becomes very low
and the dynamics becomes activated. Dynamically, this is
consistent with RMFT and mode coupling theory (MCT).
However, we find that the J line extends well below φth.
The ideal gas maps to the jammed states with φ∗

J , at the
maximum of SJ , which marks the lowest φJ accessible to
the equilibrium fluid. If the fluid did sample states below φ∗

J it
would be unable to satisfy the maximum entropy condition for
equilibrium because ∂SJ /∂φJ > 0 [32]. The inherent structure
pressure would also become negative, which is not possible in
a hard particle system. From an operational perspective, the J

point was originally defined as the φJ of jammed structures
quenched from the ideal gas configurations, which in the
current system is φ∗

J . While the jammed states below φ∗
J are

inaccessible from a thermodynamic standpoint, they may be
formed through different compression protocols. Fluctuations
in small systems will also allow these states to be observed.
In general, the jamming phase diagram identified here looks
similar to that proposed by Ciamarra et al. [5,64] for a granular
system, but we have established clear connections between the
landscape and the equilibrium fluid.

The thermodynamic functions Cp and PIS both exhibit
maxima as a function of φ that primarily result from the
inflection in the Sc as the fluid moves toward the most dense
state. The actual location of the maxima, and the inherent
structure basins they are sampling, differ for each because
the various thermodynamic functions are effected differently
by the competition between the configurational and free
volume contributions to the partition function. In particular, the
coincidence between the location of the PIS maximum and the
φJ min appears fortuitous, rather than an indicator of a general
thermodynamic relationship. For example, a binary system
of nonadditive hard rods exhibits a similar inherent structure
landscape [34], but the maxima in the Cp and PIS both occur
at φ well above φJ min [65], while the ideal gas configurations
still map to the maximum in the distribution of the SJ .

Silica [66,67], silicon [68], and water [69–72] exhibit
fragile-strong dynamical crossovers located at the Cp

maximum associated with the Widom line while the KA BLJM
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system has also been shown to exhibit an FS crossover at the
mode coupling temperature [48]. Mallance et al. [73] recently
suggested an FS-crossover temperature occurred in a broad
range of glass forming liquids at temperatures below Tg .
However, a subsequent analysis of some of the experimental
data used in the Mallance et al. study showed that this was
not the case [74]. Our model clearly exhibits an FS-crossover
located at the Cp maximum as highlighted by both the curve
fitting of a variety of different fragile behavior equations and
by the derivative analysis shown in Fig. 14. Furthermore,
we note that the temperature of the Cp maximum provides
a better, physically motivated, rescaling of the structural
relaxation times for the various channel diameters than does
an arbitrarily defined Tg .

Defects play an integral role in the dynamics of this
quasi-one-dimensional model and appear to establish a link
between the dynamics and the thermodynamics, through the
Cp maximum. In particular, neighboring defects are unstable
and result in an irreversible local rearrangement of the
particles, which appears to give rise to the super-Arrhenius
dynamics of a fragile fluid. Once the defect concentration is
low (the saddle point index is also low), the dynamics crosses
over to the reversible hopping of defects between locally stable
environment, which is characteristic of a strong fluid. Earlier
studies of the instantaneous normal modes of the fragile and
strong phase of silica [75] and the energy landscape of atomic
clusters [76] have shown similar connections between saddle
points, minima hopping, and the fragile-strong crossover.
Simulations of bulk materials have also shown that local soft
modes are spatially correlated with the highly mobile particles
connected to dynamic heterogeneities [77–79].

The particle rearrangements associated with defects provide
a comprehensive picture for the structural relaxation dynamics
of the current quasi-one-dimensional hard disk model, but how

important are defects to the question of structural relaxation in
amorphous materials in general? Some systems with strong
directional bonding interactions, such as silica and water,
are capable of forming random tetrahedral networks (RTN)
of bonds. Recent simulation studies [72] of the ST2 model
of water [80] have shown that the FS crossover can be
described in terms of the concentration of defects in the
network, while similar results have been obtained for network
forming colloids [81] and nanoparticles [82]. The structural
relaxation of a two-dimensional random tiling model has
also been described in terms of defect motion [83]. These
studies suggest that understanding how defects effect structural
relaxation may provide insight to the dynamics of amorphous
systems.

As the local environments of the particles become less well
defined, it becomes increasingly difficult to identify defects.
For example, in the hard disks model considered here, the ex-
treme confinement induces structure and ensures there are only
four local packing environments. When the channel diameter
increases beyond Hd/σ = 1.866, the disks can also contact
their second nearest neighbors which increases the number
of local environments to 32 [33]. Nevertheless, the concept
of incompatibility between local environments remains. Some
local particle arrangements cannot be combined to form a
stable jammed structure and we would expect the particles to
spontaneously rearrange to form a more stable state.
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