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Bonded-cell model for particle fracture
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1Université de Montpellier, CNRS, LMGC, Place Eugène Bataillon, 34095 Montpellier, France
2CEA, DEN, DEC, SPUA, LCU, F-13108 Saint Paul lez Durance, France

3MultiScale Material Science for Energy and Environment, UMI 3466 CNRS-MIT, CEE, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge 02139, USA

(Received 27 August 2014; published 9 February 2015)

Particle degradation and fracture play an important role in natural granular flows and in many applications of
granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates
of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics
method. We show that the compressive strength scales with tensile strength between cells but depends also on
the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive
strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10
depending on cell shape distribution. We show that this distribution may be understood in terms of percolating
critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size
dependence of the compressive strength in good agreement with our simulation data.
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I. INTRODUCTION

Particle breakage occurs commonly in natural granular
flows and industrial processes involving the transport, han-
dling, and compaction of granular materials. The particle size
reduction is often undesirable or uncontrolled, and it is referred
to as the attrition process. In contrast, the fragmentation of
particles under controlled conditions is used in comminution
processes such as the milling of vegetal products or grinding of
mineral materials. The evolution of particle size distribution
and energy dissipation in such processes depend on many
factors such as particle properties (shape, crushability), initial
size distribution, loading history, and mobility of the grains
during the crushing process [1–9].

Both single-particle crushing and fragmentation process of
an assembly of particles subjected to shearing or compaction
have been subject to experimental investigations in civil
engineering and particle technology [10–22]. The compressive
strength of a single particle, its variability, and size dependence
are essential for understanding the collective response of a
granular material to applied loading. The fracture of a particle
inside a granular packing depends on the angular positions
of its contact neighbors and the normal and tangential forces
exerted by them on the particle. For this reason, there is no
general analytical model for the fracture of a single particle.
The case of a particle subjected to diametrical compression
(also called the Brazilian test) has been more carefully
considered in this respect. A detailed analytical model was
developed by Tsoungui et al. using Weibull statistical flaw
size distribution and compared to experiments [23]. Two
different fracture modes were analyzed in this model: (1) the
volume fracture mode in which a transversal crack responsible
of particle fracture originates near the center and propagates
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towards the contact points and (2) the contact fracture
mode characterized by the propagation of cracks initiated
at the contact points toward the center of the particles. The
experiments performed on a brittle material suggest that the
volume fracture mode is more likely to occur in large-enough
particles.

Several authors have used the finite element method (FEM)
to study single-particle fracture by incorporating the material
behavior and an adequate damage or rupture criterion [23–26].
This method has the advantage of accounting for the true nature
of the material and provides access to the full stress field in
a continuum framework. But it requires rather fine meshing
of the particle at its borders or at least around its contact
points with other particles and at crack tips. Its application to
an assembly of particles further requires a proper treatment
of frictional contacts and large deformations, which make it
computationally inefficient.

Numerical simulations by the molecular dynamics (MD)
method or discrete element method (DEM) have been in-
creasingly employed in order to get a better understand-
ing of the particle-scale mechanisms of the comminution
process [1,9,27–31]. Such methods combine the general
framework of the DEM, based on rigid-body dynamics and
frictional contact interactions, with a particle fracture model.
DEM numerical models have the advantage of allowing for the
treatment of frictional contact interactions and they provide
detailed information about local particle environments and
force chains that control the breakup events.

The most straightforward DEM-based approach consists
in modeling the particles as aggregates of spherical sub-
particles bonded together by cohesive forces. Such aggre-
gates may represent real aggregates such as pellets and
ceramic compacts or simply be regarded as a toy model
for particle fracture. This bonded particle model (BPM)
has been employed to investigate the behavior of crushable
soils, rocks, fault gouge, and other materials [7,22,32–41].
An alternative method consists in replacing a circular or
spherical particle at its fracture threshold by several smaller
fragments of the same shape [42–46]. A major issue with
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these methods is that an aggregate of spherical subparticles
includes voids, so its breakup leads to considerable loss of
volume.

To circumvent the volume-loss issue, several authors have
used polygonal or polyhedral subparticles or cells generated
by Voronoi tessellation [47–50]. These cells pave the whole
volume of the particle so the volume is conserved during
particle fracture and fragmentation. Such bonded cell models
(BCM) involve extended intercellular contacts that need to be
modeled differently from contacts between spherical particles.
In previous studies, the cells were interconnected by linear
springs with a breaking threshold [49,50]. The representation
of intercellular contacts by a linear force law as that between
spherical subparticles is, however, an unphysical approxima-
tion since the contacts extend along a line [in two dimensions
(2D)] or a surface (in 3D) between cells and thus their treatment
needs at least two or three displacement variables, respectively.
The cracks propagate along these contacts as intergranular
cracks in polycrystalline materials.

In this paper, we use the BCM approach with the contact
dynamics (CD) method to investigate the fracture properties
of disklike particles subjected to diametrical compression
[51–53]. Each particle is modeled as an aggregate of per-
fectly rigid cells with their common sides modeled as
frictional-cohesive contacts. The framework of the CD method
allows us to account for the perfectly rigid behavior of
the cells and the correct kinematics of side-side contacts.
Since the cells are treated as perfectly rigid elements, in
contrast to linear spring-dashpot models of contact, a crack
is generated only when all critical intercellular contacts
(contacts at their tensile threshold) percolate across the
particle. We are interested in the compressive strength of a
single particle under uniaxial compression in this model with
focus on its variability and size dependence. Our findings
are of potential interest to intergranular fracture in poly-
cristalline materials, rock fracture, and quasibrittle fracture of
biomaterials.

In the following, we first describe the numerical model.
Then, in Sec. III, we investigate the effects of cell size
distribution. Section IV is devoted to the variability of
compressive strength. In Sec. V we study size dependence and
introduce a simple model based on critical paths. We conclude
with a brief discussion of major findings of this work.

II. BONDED CELL MODEL

Each particle is divided into nv cells by Voronoi tessellation,
as shown in Fig. 1, each cell representing a rigid subparticle.
For a particle of area S, the number of cells is given by
nv = S/d2

0 , where d0 is the average cell size. nv points
are distributed randomly on the surface of the polygon by
imposing that the distance � between the points is larger than a
minimum distance �min = λd0, as shown in the Fig. 1(a). The
parameter λ represents the degree of regularity of meshing
or the span of cell size distribution. Indeed, for λ = 1 the
total surface may be meshed by squares of side d0 for S/d2

0
points. Hence, in order to allow for cells of five sides and
more, it is necessary to reduce λ. Figures 1(b) and 1(c)
present two examples of meshing of a circle for λ = 0 and
λ = 0.8, corresponding to very irregular and regular meshes,

l>  dλ 0

(a)

(b) (c)

FIG. 1. (Color online) Definition of the degree of regularity of
the mesh λ (a) and two examples of the discretization for λ = 0 (b)
and λ = 0.8 (c).

respectively. We will see that λ affects the variability of fracture
behavior.

A key issue in using DEM with crushable aggregates is the
statistical representativity of the particles and their fragments
during crushing. In fact, the sizes of the initial aggregates
and cells are, respectively, the upper and lower bounds on
the size distribution of fragments in the debris. The statistical
representivity of particle size distribution in the process of
fragmentation is therefore determined by their ratio. Moreover,
the mechanical behavior and fracture of a particle depends on
the number of cells. At the same time, since the cells are
treated as subparticles interacting via cohesion forces, the
computation time increases with their number. Hence, it is
essential to optimize the number of cells per particle in order
to be able to include a large number of particles in the initial
configuration of the sample.

The cells are assumed to interact via cohesive frictional
contacts along their common sides. A side-side contact
between two rigid cells involves two unilateral constraints. In
other words, at least two repulsive forces along the common
side are necessary to prevent from their overlap. In practice,
a side-side contact should therefore be represented by two
contact points, as shown in Fig. 2, and the normal direction
is the normal to the common side. The cell motions are
governed by equations of dynamics and at each side-side
contact two forces need to be calculated. The choice of the
two contact points representing a side-side contact is matter of
convenience. Only the resultant force at each side-side contact
and its point of application are physically meaningful and
independent of the choice of the positions of contact points.

A side-side contact may open only at one of the two
points by pivoting around the other point. It may also open
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FIG. 2. (Color online) Contact dynamics model of a side-side
contact between two particles by two contact points with their normals
�n1 and �n2 and forces �f1 and �f2.

simultaneously at both points. The normal adhesion threshold
fc between two cells linearly depends on the length L of
the contact. Since the contact is represented by two points,
the tensile threshold is given by fc = σcL/2, where σc is the
internal cohesion of the material. This means that a side-side
contact can lose its cohesion for normal force fn = −σcL/2
reached at any of the two contact points representing the
side-side contact. But if none of the two normal forces f1n and
f2n at the two contact points is critical, then they continue to
increase with no loss of cohesion and the particles remain glued
together until the total normal force f1n + f2n = 2fc = Lσc.
This situation is, however, very rare since the particles are
most of time subjected to force moments so the total torque
(f1n − f2n)L �= 0 and thus a side-side contact opens mainly
when fc is reached at only one of the two contact points.

The shear strength along a side-side contact is given by
τc = μsσc, where μs is the internal friction coefficient. A
side-side contact may lose its cohesion only when the total
tangential force f1t + f2t at the two contact points representing
the side-side contact reaches the sliding threshold μs(f1n +
f2n + 2fc). The choice of a frictional material behavior is not
mandatory and τc may be defined independently of σc. In order
to limit the number of independent parameters, in this paper we
used a Coulomb friction law. But the effect of local cracking
criterion may be a subject of detailed investigation in the BCM
framework.

When the cohesion between two cells is lost along a
side-side contact, the latter turns into a crack governed by
frictional contact behavior. The loss of cohesion is assumed to
be irreversible. The cohesive state between cells is managed by
a matrix M . M[i,j ] = 1 if the cells i and j are connected by a
cohesive contact. Otherwise, we set M[i,j ] = 0. This matrix
is updated at each time step according to the evolution of the
contacts.

The simulations were carried out by means of the CD
method, which is suitable for simulating large assemblies of
undeformable particles [51–54]. In this method, the rigid-body
equations of motion are integrated by taking into account
the kinematic constraints resulting from contact interactions.
These interactions are characterized by three parameters: the

coefficient of friction and the coefficients of normal and
tangential restitution that control the rate of dissipation. An
implicit time-stepping scheme makes the method uncondi-
tionally stable. In contrast to the molecular dynamics method,
in the CD method tiny overlaps between particles are used for
contact detection but they do not represent an elastic deflection.
For this reason, the time step can be larger than that in the
molecular dynamics method. In CD, an iterative algorithm
based on nonlinear Gauss-Seidel iterations is used to determine
the contact forces and particle velocities simultaneously at
all potential contacts. The CD method has been extensively
employed for the simulation of granular materials in 2D and
3D [55–72].

The CD method is based on implicit time integration of
velocities but requires an explicit determination of the contact
network at the beginning of each time step [52,73]. The
contact detection between two bodies consists in looking
the portions of space they occupy. The treatment of the
mechanical interaction requires additionally the identification
of a common tangent plane (a line in 2D). Of course, contacts
may take place through a larger contact zone than a single
point. In 2D simulations of the present paper, the detection
of contact between two convex polygonal bodies was imple-
mented through the so-called shadow overlap method [73,74].

III. BOUNDARY CONDITIONS

In this paper, we use the BCM to study the breakup of
a single circular particle crushed between two platens. This
“Brazilian” test will be used to investigate the effects of model
parameters σc, μs , λ, and nv . The particle is crushed by
applying stepwise displacements δy to the top and bottom
platens. The total axial strain after N steps is given by Nδy/d,
where d is particle diameter. Let F be the axial force exerted
on the particle; see Fig. 3. The average vertical stress σa acting
on the particle is given by

σa = 〈σyy〉 = F

d
. (1)

We calculate σa directly from the forces between cells [75]:

〈σyy〉 = nc〈fy�y〉, (2)

where nc is the number density of contacts, fy is the y

component of the reaction force between two particles, and

d

F

F

x

y

FIG. 3. (Color online) Boundary conditions for Brazilian crush-
ing of a particle.
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�y is the y component of the branch vector joining their
centers. The averaging runs over all intercell contacts inside
the particle. The average horizontal stress 〈σxx〉 is zero. We
note that since the particle is rigid, in principle, no axial
deformation must occur until the particle breaks. But some
deformation does occur numerically without causing fracture.
Such deformations are small and do not affect the stress values,
which are determined by contact dynamics calculations. Video
samples of the simulations analyzed below can be found by
following the link www.cgp-gateway.org/ref032.

IV. FRACTURE CHARACTERISTICS

Figure 4 displays snapshots of a cell-meshed particle
at incipient cracking together with compressive and tensile

(a)

(b)

FIG. 4. (Color online) A single circular particle subjected to
diametral compression (Brazilian test) for λ = 0 (a) and λ = 0.8 (b).
The red and green lines represent compressive and tensile contacts,
respectively.
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FIG. 5. (Color online) Axial stress versus axial strain for several
values of tensile strength σc. The inset shows the axial stress
normalized by σc. The parameters are μs = 0.3, λ = 0.8, and
nv = 50.

forces between cells for two different values of cell-shape
variability parameter λ. The main crack is nearly vertical and
corresponds on average to a mode I fracture as observed in
experiments [76]. However, deviations from the vertical and
zigzag aspect of the main crack, which reflect the coarse
meshing of the particle, indicate that cellular disorder and
friction forces between cells are important for the fracture. We
also observe secondary cracks and small fragments detached
from the particle.

Figure 5 shows axial stress σa as a function of axial
deformation εa for different values of tensile strength σc. The
stress sharply increases with strain and falls off abruptly when
fracture is triggered. The stress peak σp is the compressive
strength of the particle. Except for the lowest values of
cohesion, it scales with σc, as shown in the inset. The higher
value of σp/σc in the low-cohesion limit indicates that the
compressive strength is determined by both the tensile strength
(normal strength) and shear strength, which is enhanced by
interlocking between cells.

In order to quantify the influence of local friction coefficient
μs , a series of crushing tests were conducted with 11 values
of μs from 0 to 1 with all other parameters kept at a fixed
value (σc = 10 MPa, λ = 0.8, and nv = 500). For each value
of μs , nine simulations with independent tessellations were
performed. Figure 6 shows the evolution of the average
compressive strength σp (peak stress) normalized by σc as
a function of μs . We see that, as expected, the compressive
strength increases with friction coefficient. Its dependence
with respect to the friction coefficient is, however, rather weak
since it increases from 0.4σc to 1.2σc as μs is increased from
0 to 1. This weak dependence may be attributed to the fact that
in Brazilian test the rupture occurs in tension. But the effect
of friction coefficient clearly shows that the mobilization of
friction forces along the crack path is an important factor for
compressive strength.

V. STRENGTH VARIABILITY

Another issue that we would like to address here is the
statistical scatter of compressive strength and its possible scale
dependence. Such a scatter may be a consequence of the BCM.
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FIG. 6. (Color online) Evolution of compressive strength σp as a
function of local friction coefficient μs for σc = 10 MPa, λ = 0.8,
and nv = 500. The error bars represent standard deviation calculated
from nine independent simulations with different tessellations.

In particular, it is important to assess the role of cell shape
distribution parameter λ. To clarify this point, we carried out
a series of Brazilian tests for five values of λ in the range
[0,0.8] with σc = 10 MPa, μs = 0.3, and nv = 1000. For
each value of λ, 30 simulations with independent tessellations
were performed, allowing us to obtain the variability of
the compressive strength, expressed as cumulative survival
probability Ps of the particle as a function of σa . This is
the probability that the particle does not fail for all stresses
below σa .

Figure 7(a) shows the cumulative survival probability Ps

in log-log scale as a function of the compressive stress σa for
λ = 0 and λ = 0.8. Despite fluctuations, the data are correctly
fitted by the cumulative Weibull function [77,78],

Ps(σa) = e−(σa/σw)m, (3)

where σw is a stress scale and m is the Weibull modulus (or
shape factor). Both parameters can be extracted from the data.
Figure 7(b) shows that m is �6 at low values of λ and increases
up to �10 for the largest values of λ. It is remarkable that this
range of values of m corresponds to the observed values in
soils and powders although our system is purely 2D [78]. The
increase of m indicates lower strength variability consistently
with lower cell variability as λ increases.

We also note that the compressive strength σp and scale
stress σw increase with λ as observed in Fig. 7(c). For Weibull
distribution, it can be shown that σp and σw obey the simple
relation

σp = σw�

(
1 + 1

m

)
, (4)

where � is the gamma function. This relation is in excellent
agreement with our data in Fig. 7(c). Let us remark that
the overall Weibull fit to the simulation data reveals also
fluctuations in the form of modes as observed in Fig. 7(a).
Such deviations indicate that the survival probability reflects
not only the overall disorder but also some fine details of the
microstructure.
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FIG. 7. (Color online) (a) Survival probability of a particle as a
function of compressive stress σa in a Brazilian test for nv = 500 and
two values of mesh regularity parameter λ in log-log scale. The lines
represent fits to the Weibull function with two different values of the
Weibull modulus m. (b) The Weilbull modulus m as function of λ. (c)
Compressive strength σp and scale stress σw as a function of λ. The
open symbols are predicted values of σp by Eq. (4).

VI. SCALE DEPENDENCE

The Weibull statistics for brittle materials is generally
explained by the distribution of microcracks, which concen-
trate stresses in the bulk of the material [79]. Their density
determines the cracking state and leads to size dependence of
the strength [77]:

σp = σ ′
p

(
V

V ′

)−1/m

, (5)

where σp and σ ′
p are the strength for samples of volumes

V and V ′, respectively. The applicability of this distribu-
tion to quasibrittle materials has been questioned by some
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authors and deviations from the Weibull statistics have been
observed [80–83].

Strictly speaking, there are no cracks in our system, and
stress concentration is a consequence of cell-induced disorder.
In this respect, the fracture is analogous to intergranular failure
in polycrystalline materials. Another feature, which makes our
system specific, is that the cells are perfectly rigid and thus
their displacements are subject to compatibility with steric
exclusions between cells. Hence, when the tensile threshold
−σc is reached at a contact between two cells, it will generally
not open unless collectively with other contacts. Since the force
at such a critical contact cannot exceed its tensile threshold,
new force increments are redistributed to neighboring contacts.
The loading of the contacts gets therefore accelerated every
time a new contact becomes critical. This stress redistribution
continues until the critical contacts percolate across the
particle, in which case a crack occurs in the sense that all
critical contacts open at the same time. Hence, the fracture
mode differs from both volume fracture and contact fracture
modes described in Ref. [23]. In the simulations, as described
in Sec. II, the force at a critical contact is fc = −σcL/2. The
tensile threshold σc being the same for all contacts, the weakest
contact is the one having shortest length L. However, the
above loading process of contacts implies that the cracking
of the particle is not controlled by the weakest contact but
requires, on the contrary, the strongest contact (with the longest
length) to become critical on the path of a potential crack.
Otherwise, none of the critical contacts can open due to
kinematic incompatibility. This situation radically contrasts
with the assumption of weakest link [84]. Nevertheless, the
above argument also indicates that the “flaws” in our system
are equivalent to potential crack paths rather than single critical
contacts between cells. In other words, considering only the
lengths of the contacts, the weakest “link” in our system is
the path of intercell contacts having the shortest length. In
this sense, the variability of compressive strength reflects
the statistics of all paths (with their different lengths and
directions), on one hand, and the heterogeneous distribution
of forces, as generally observed in granular materials, on the
other hand [56,69,85,86].

The statistics of critical contacts and crack paths in our
system may naturally lead to size effect but its description
cannot be based on the elasticity of the material. Here we
introduce a simple model and compare the results with those
of Ref. [23]. The number of potential paths of critical contacts
increases with the number nv ∝ (d/d0)2 of cells as a result of
either the increase of particle diameter d for a constant cell
size d0 or the decrease of d0 for a given particle diameter d.
In the continuum-mechanics limit, one expects the particle to
fracture into two equal fragments along its diameter. In the
presence of the cells, the crack follows a more complex path
around this mean orientation imposed by the correlations, but
the fluctuations around the mean may well be assumed to result
from a stochastic process reflecting disorder. Let us assume
that the cracks are random walks of equal length d0 from
the top and bottom poles towards the center of the particle.
Then the mean path is a straight line joining the poles and the
standard deviation from this line at the center of the particle
varies as δx ∝ nα

s , where ns is the number of steps. For a
normal random walk we have α = 1/2. But the exponent α

δx

FIG. 8. (Color online) Normal force network before rupture. The
dashed lines represent the contours of the stress concentration zone.

may take a different value depending on the nature of the
network. The number of steps from the poles to the center is
simply proportional to n

1/2
v , so δx ∝ d0n

α/2
v . This length may

be interpreted as the width of the zone at the center of the disk
in which the stresses are concentrated, as illustrated in Fig. 8.
Hence, the compressive stress at the center of the particle is
∝F/δx ∝ σad/n

α/2
v ∝ σan

(1−α)/2
v .

The intercellular forces are actually larger in the vicinity
of the poles and one might expect failure to be initiated at the
poles. But, as argued above, the crack is not effective as long as
the cohesion threshold is not reached inside the whole range
defined by the random walk. Hence, in this “traction zone,”
failure occurs when the weakest compressive stress becomes
critical. The weakest compressive stress occurs in the center
where the compressive forces are dispersed. This stress with
σa = σp is balanced by a tensile stress equal to σc in the y

direction, so F/δx ∝ σc, thereby

σp

σc

∝ n−(1−α)/2
v ∝ d−(1−α). (6)

This model predicts a size dependence with exponent
−(1 − α).

Figure 9(a) shows σp as a function of nv for λ = 0.8 and
16 different combinations of the values of d and d0 with 11
independent tests for each combination. Within our statistical
precision, we observe a power law σp ∝ σc n−b

v with b �
0.24. This yields α � 1/2, which corresponds to a normal
random walk. The scale stress σw follows the same behavior
as a function of nv . Figure 9(b) shows σp as a function of nv

for λ = 0 and λ = 0.8. The exponent for λ = 0 is b � 0.3,
which corresponds to α � 0.4. This “subdiffusive” feature of
crack paths may simply be attributed to the fact that, for λ = 0,
there is no constraint on the cell sizes and their shapes so the
critical contacts are more likely to occur in more complex

022203-6



BONDED-CELL MODEL FOR PARTICLE FRACTURE PHYSICAL REVIEW E 91, 022203 (2015)

10 100 1000nv

0.2

1.0

5.0

σ p/σ
c

d  constant
d0 constant

(a)

10 100 1000nv

0.2

1.0

5.0

σ p/σ
c

λ=0.0
λ=0.8

b=0.30

b=0.24

(b)

FIG. 9. (Color online) (a) Compressive strength of a particle
normalized by internal cohesion as a function of the number of cells
for constant particle diameter d and varying cell size d0 (green circle)
and for constant d0 and varying d (red square). The error bars represent
standard variation for 11 independent simulations. (b) Compressive
strength as a function of the number of cells for two extreme values
of mesh variability parameter λ.

configurations. The exponent predicted by elastic theory is
b = 1 − 2/m for volume fracture [23]. This implies 1 − α =
2/m, which is consistent for λ = 0 and λ = 0.8 for which
we have m � 6 and m � 10, thus yielding 1 − α � 1/3 and
1 − α � 1/5, respectively.

These observations show clearly that the fracture of cell-
structured materials is scale dependent. The model based
on crack-path statistics around the mean, as briefly outlined
above, provides quantitative prediction of the exponent. What
is more, it generalizes the weakest-link assumption to the
more general “weakest-path” mechanism governed by the
percolation of critical contacts. Size effect in single-particle
fracture suggests that in an assembly of crushable particles
the largest particles are most susceptible to break. However,
particle size affects the local distribution of contact forces. In
particular, large particles have more contacts and sustain for
this reason lower deviatoric stresses. Due to such competing
effects, the fragmentation of a granular packing is a complex
process.

VII. CONCLUSION

In this paper, we introduced a BCM in the framework of
the contact dynamics method for the investigation of fracture

strength properties of circular particles subjected to axial
compression. The particles are modeled as aggregates of
polygonal rigid cells bonded by the action of cohesion forces
along their common sides. Our approach allows for both the
conservation of volume and rigorous treatment of unilateral
constraints at intercellular contacts.

The compressive strength was shown to scale well with
tensile threshold between cells. However, due to the Mohr-
Coulomb plastic criterion and interlocking between rigid
cells, the strength is also an increasing function of the
friction coefficient. By means of extensive simulations, we
also performed a detailed parametric analysis of strength
variability. The statistical scatter of the data is well described
by the Weibull distribution function. This distribution provides
a good fit to our data independently of cell shape distribution
but the Weibull modulus varies from 6 to 10 as the cell shape
span is reduced.

The Weibull distribution of the data in our system was
discussed and modeled in terms of critical intercellular
contacts and their percolation across the particle. The fracture
is controlled by the population of weakest paths from the
force application point to the center of the particle. Assuming
that those paths are composed of random walks through
intergranular contacts, they define a stress concentration zone
with a high density of critical contacts. This leads to a power-
law particle size dependence of the compressive strength, in
close agreement with our simulation data. The value of the
exponent in the case of nearly regular cells is consistent with a
normal random-walk feature of the crack, whereas for irregular
cells it is anomalous.

The Brazilian compression test is often used for indirect
measurement of tensile strength in brittle materials [87,88].
But the tensile strength measured from diametral compres-
sion tests are usually lower compared to other uniaxial
tests. In contrast to theoretical prediction, the cracks do
not always propagate from the center to the periphery of
the sample as a result of surface defects, which lead to
failure by shearing at the contact points with platens. Our
simulations are consistent with this picture although the cells
are rigid and the crack opens only when critical contacts
percolate across the particle. For this reason, we also have
a good scaling of the compressive strength with internal
cohesion.

A detailed description of single-particle fracture in this
paper was made possible by extensive 2D simulations. It is
straightforward to extend this work to investigate the role of the
contact law such as non-Coulomb friction and damage for the
scaling of compressive strength. Another possible extension
is the fracture of noncircular particles. We applied the BCM
approach to the fragmentation of an assembly of polygonal
particles. Our simulations reproduce correctly and efficiently
the nonlinear and inhomogeneous features of the comminution
process such as the shattering instability and survival of many
large particles. Size effect in single-particle fracture suggests
that in an assembly of crushable particles the largest particles
are most susceptible to breakage. However, particle size affects
the local distribution of contact forces. In particular, large
particles have more contacts and for this reason sustain lower
deviatoric stresses. The results of this work will be reported
elsewhere.
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[73] E. Azéma, N. Estrada, and F. Radjaı̈, Phys. Rev. E 86, 041301
(2012).

[74] G. Saussine, C. Cholet, P. Gautier, F. Dubois, C. Bohatier, and
J. Moreau, Comput. Methods Appl. Mech. Eng. 195, 2841
(2006).

[75] L. Staron, F. Radjaı̈, and J.-P. Vilotte, Eur. Phys. J. E 18, 311
(2005).

[76] K. Schönert, Powder Technol. 143-144, 2 (2004).
[77] W. Weibull, J. Appl. Mech. 18, 293 (1951).

[78] G. R. McDowell and M. D. Bolton, Géotechnique 48, 667
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