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Harmonically bound Brownian motion in fluids under shear:
Fokker-Planck and generalized Langevin descriptions
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We study the Brownian motion of a particle bound by a harmonic potential and immersed in a fluid with a
uniform shear flow. We describe this problem first in terms of a linear Fokker-Planck equation which is solved
to obtain the probability distribution function for finding the particle in a volume element of its associated phase
space. We find the explicit form of this distribution in the stationary limit and use this result to show that both
the equipartition law and the equation of state of the trapped particle are modified from their equilibrium form
by terms increasing as the square of the imposed shear rate. Subsequently, we propose an alternative description
of this problem in terms of a generalized Langevin equation that takes into account the effects of hydrodynamic
correlations and sound propagation on the dynamics of the trapped particle. We show that these effects produce
significant changes, manifested as long-time tails and resonant peaks, in the equilibrium and nonequilibrium
correlation functions for the velocity of the Brownian particle. We implement numerical simulations based
on molecular dynamics and multiparticle collision dynamics, and observe a very good quantitative agreement
between the predictions of the model and the numerical results, thus suggesting that this kind of numerical
simulations could be used as complement of current experimental techniques.
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I. INTRODUCTION

Systems driven outside thermodynamic equilibrium by the
action of external forces appear in almost every phenomenon
observed in nature, experiments, and industrial processes.
They use to exhibit exclusive features not present when the
same systems are in equilibrium [1,2]. Good examples of such
special features are the existence of long-ranged fluctuations
in fluids kept in nonequilibrium stationary states [3], and
the formation of patterns induced by instabilities in systems
far from equilibrium [4]. Generalizations of thermodynamics
based on the assumption of local equilibrium have been
proposed along the years which have been very successful
in describing situations close to equilibrium [5]. However,
theoretical models for systems far from equilibrium can not be
obtained straightforwardly from equilibrium theories because
the usual thermodynamic variables are in general insufficient
for characterizing the driven states [4].

One of such nonequilibrium problems that has received con-
siderable attention during the last decades concerns the statis-
tical mechanics description of Brownian motion in sheared flu-
ids [6], as a representative of systems driven from equilibrium
by externally imposed flows. Indeed, a Brownian particle (BP)
immersed in an inhomogeneous flow represents one of the sim-
plest full-solvable models of a system coupled to a nonequilib-
rium bath in which the effects of the external gradient on the
thermodynamic and transport properties can be analytically
tracked down to a significant extent. This has been done
from diverse standpoints ranging from kinetic theory [7,8],
Fokker-Planck and Langevin equations [9,10], and mesoscopic
nonequilibrium thermodynamics [11–13]. In addition, Brow-
nian motion in a shear flow has been proved to be amenable
for experimental [14–17] and numerical [18–20] work.
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In the presence of shear, the pressure tensor of an ensemble
of independent BPs has been suggested to be modified
by contributions increasing as the square of the velocity
gradient [10]. This result is related with the existence of
the so-called nonequilibrium equations of state (NEEOS),
which are generalizations of the classical relations between
thermodynamic variables for systems in nonequilibrium steady
states [21]. Pressure and energy NEEOS have been studied for
systems with a stationary heat flux from extended irreversible
thermodynamics [4], and for fluids in steady shear flow from
molecular dynamics (MD) simulations [21–23].

Another related nonequilibrium model consists of a BP
immersed in an inhomogeneous flow and simultaneously
subjected to a harmonic central force. The effects of harmonic
forces on Brownian motion in flowing fluids were first
considered several years ago in Ref. [24], where attention
was focused in showing that the introduction of harmonic
constraints might lead to a sufficiently fast decay of the velocity
correlation function of the BP that ensures the existence of a
long-time diffusion behavior in external Couette and Poiseuille
flows. The problem of harmonically constrained Brownian
dynamics in sheared solvents has recovered relevance due
to the recent advances in experimental techniques based on
optical tweezers that allow for manipulation of individual
microsized particles, as well as for observation of their
trajectories. A recent fundamental experimental study [25] has
shown that the external imposition of shear breaks down the
spatial symmetry and the time reversibility of the dynamics
of the trapped particle, an effect that was already predicted
to exist for free BPs moving in a sheared fluid [10]. This
feature was quantified in terms of the correlation functions
for displacements of the BP along the directions of shear and
increasing velocity, which possess exclusive nonequilibrium
asymmetric time-irreversible contributions. The experimental
results were justified in terms of models based on Langevin
and Smoluchowski equations [25,26]. Asymmetric time-
irreversible correlations have been predicted to exist also
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in the problem of tracking control of individual colloidal
particles through nonhomogeneous flows [27]. In this case,
the nonequilibrium effects have been observed by means of
simulations based on MD and multiparticle collision dynamics
(MPC).

The simple Langevin description, which is based on the
classical Stokes’ formula for the drag force experienced by a
particle moving in a viscous fluid, has been also extended
to consider the effects of backflow on the dynamics of a
harmonically bound BP. Hydrodynamic correlations in the
surrounding fluid transported by shear and longitudinal wave
propagation have been shown to have a strong influence
in the dynamics of the trapped BP. They induce a slow
decay in the correlation functions for velocities of the BP
taking the form of long-time tails [28] and, more strikingly,
they produce resonant peaks in the corresponding correlation
functions for displacements [29], which strongly contrast with
the overdamped dynamics expected from the simple Langevin
description. Although this latter fundamental result has been
verified by experimental and simulation techniques [29], its
observation was restricted to the case of harmonically bound
Brownian motion in a quiescent solvent.

In this paper, we will extend the analysis carried out
in Refs. [24–29] in diverse ways. First, in Sec. II we will
revisit the Langevin model for harmonically bound Brownian
motion in fluids under shear and construct the corresponding
Fokker-Planck equation (FPE). The solution of the latter
will be explicitly derived yielding the probability distribution
function (PDF) for observing specific values of the position and
velocity of the BP. We consider that this extension is relevant
as long as it shows that the PDF for a harmonically bound
particle describing Brownian motion in sheared baths, already
obtained in Ref. [26], can be also derived as the solution of the
complementary approach based on a proper boundary-value
problem. Subsequently, we will use the derived PDF to calcu-
late, in the stationary limit, the average energy and the pressure
of the particle harmonically trapped in the nonequilibrated
bath. This will yield a NEEOS [Eq. (12)] and an expression
for the equipartition law [Eq. (15)], both of which differ
from their equilibrium forms by terms increasing as the
square of the imposed shear. These results could be significant
since they exhibit that the effect of the external shear on the
thermodynamic properties of the confined particle can be quite
large indeed. Afterwards, we will extend the proposed model
to include the effects of hydrodynamic viscous correlations
and compressibility on the nonequilibrium dynamics of the
harmonically bound BP under shear. With this purpose, we
will use a generalized Langevin equation (GLE) where the
frequency-dependent drag force will be modeled by the corre-
sponding Faxén theorem for unsteady motion in compressible
fluids with sheared flow [30]. These effects will be estimated
in terms of the correlation functions for the velocities of the
bound BP, which are time irreversible and asymmetric as well,
but exhibit strong deviations from the behavior predicted by the
simple Langevin-Fokker-Planck model. Specifically, we will
show that the nonequilibrium terms of the correlation functions
indeed present long-time tails and resonances induced by
hydrodynamic backflow. According to our model, the long-
time tails of the nonequilibrium correlations are expected to
have the same exponent found in the equilibrium case. On

the other hand, resonance in the nonequilibrium correlation
functions depends on the externally imposed shear, which can
be used to enhance the strength of the resonant peaks.

In Sec. III, we will describe the implementation of a
simulation method, combining MD and MPC, designed to
study the dynamics of the BP confined in the harmonic trap
and the nonequilibrium environment from an independent
approach. In Sec. IV, we will present a comparison between the
analytical and the numerical results. We will verify that models
based on Langevin and Fokker-Planck dynamics exhibit the
same qualitative behavior concerning the PDFs, the NEEOS,
and the dynamic correlation functions. However, a complete
quantitative correspondence for the latter will be achieved only
if viscous and sound propagation effects are taken into account.
Finally, in Sec. V we will summarize our conclusions and
discuss the limitations of our analysis.

II. HARMONIC BROWNIAN MOTION UNDER
STEADY SHEAR

A. Fokker-Planck description

In this section, we will study the motion of a spherical
BP of mass M and radius R, immersed in an incompressible
Newtonian fluid which is in a nonequilibrium stationary state
induced by a uniform shear. We will write the velocity field of
the fluid unperturbed by the BP in the form of a plane Couette
flow, namely, �v (�r ) = �v (0) + Z · �r , where �v (0) denotes the
velocity field at the origin, Z is the uniform velocity gradient
tensor, and �r is the position vector.

We will introduce now a Langevin model to describe
the time evolution of the BP, under the assumptions that
its dynamics occur at a time scale much larger than that
corresponding to the fluctuations of the surrounding fluid and
that the friction term can be modeled by the Faxén theorem
for the motion of a sphere through a viscous fluid in an
inhomogeneous stationary flow [31]. We will also consider
an external force which is meant to constrain harmonically
the motion of the BP around a fixed position in space �r0,
�F = −k (�x − �r0), where �x denotes the position of the BP, and
k is the restoring coefficient of the trap. These assumptions
yield the following evolution equation for the position of the
BP relative to �r0, �X = �x − �r0:

d2 �X
dt2

+ β
d �X
dt

+ [ω2
01 − βZ

] · �X − β �v (�r0) = �A, (1)

where we have written the result in terms of the damping ratio
β = γ /M , with γ the drag coefficient; the natural frequency
of the trap ω0 = √

k/M; the unit matrix 1; and the stochastic
force per unit mass �A.

Then, it can be noticed that Eq. (1) is equivalent to a set of
three stochastic damped oscillators asymmetrically coupled by
the velocity gradient tensor Z. The last term on the left-hand
side of Eq. (1) tilts the harmonic potential in the direction of the
velocity field at the position of the harmonic trap. An extensive
characterization of the stochastic dynamics of the trapped BP
was provided in Refs. [25,26] in terms of a similar Langevin
equation. Here, we will present the complementary approach
of deriving the phase-space PDF for the trapped particle from
the FPE associated to Eq. (1).
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This FPE can be obtained by following the usual procedure
of considering the increments of �X and its time derivative
�U = d �X/dt , occurring during a time interval δt , which is
considered long compared to the periods of the stochastic
accelerations but short compared to the intervals in which any
of the physical parameters change appreciably. We thus have
δ �X = �Uδt , and δ �U = −[β �U + (ω2

01 − βZ) · �X]δt + �B(δt),
where �B is the net stochastic acceleration suffered by the BP
in the time interval δt . The statistical properties of �B will be
assumed to correspond to a Gaussian-Markov process. Thus,
the probability for observing an acceleration �B will be written
as

w( �B) = 1

(4πqδt)3/2 (det �)3/2 e− �B T·�· �B/4qδt , (2)

where q = βkBT /M , with kB the Boltzmann constant and T

the temperature of the bath; � is a dimensionless matrix that
measures the strength of the correlations existing between the
components of the stochastic forces; and the superscript T
indicates the transpose of the corresponding matrix or vector.
Due to time-reversal invariance, � must be symmetric and for
a solvent with a uniform flow we simply have � = 1. The
imposition of an external shear introduces contributions into
the elements of � outside the main diagonal. However, these
nonequilibrium contributions are expected to be small [26].

Since the process is of the Markov type, the probability
distribution in phase space W ( �X, �U,t) can be obtained from
the probability distribution at earlier times W ( �X, �U,t − δt)
and the transition probability in velocity space �( �X, �U ; δ �U )
through

W ( �X + �Uδt, �U,t + δt)

=
∫

d(δ �U ) W ( �X, �U − δ �U,t)�( �X, �U − δ �U ; δ �U ). (3)

The transition probability � is directly obtained from
the Gaussian assumption (2), and by expanding the diverse
involved functions in a Taylor series and taking the limit
δt → 0, the FPE obeyed by W is found to be

∂W

∂t
= −�∇ �X · (W �U )

+ �∇ �U · {W [β( �U − �v(�r0)) + (ω2
01 − βZ

) · �X]}
+ βkBT

M
�∇ �U �∇ �U :(W�), (4)

where �∇ �X and �∇ �U denote the differential operators in �X and
�U spaces, respectively.

The solution of this equation is derived in Appendix A.
Here, it will be cast in the form

W ( �X, �U ; t) =
exp

{
− 1

2

( �X − �Xd
�U − �Ud

)T
· H−1 ·

( �X − �Xd
�U − �Ud

)}
(2π )3(det H)1/2

, (5)

where the covariance matrix H = H (t) is defined through
Eqs. (A9)–(A14), while �Xd = �Xd (t) and �Ud = �Ud (t) are the
first moments of the distribution W , i.e., the deterministic
part of the formal solution of the Langevin equation (1).
For concreteness, we will restrict ourselves to consider only

stationary flows sheared along the ê3 axis, whose velocity
increases linearly along the ê1 direction, for a usual Cartesian
reference frame with unit vectors {ê1,ê2,ê3}. Thus, Z will take
the following explicit form:

Z =
⎛
⎝0 0 0

0 0 0
γ̇ 0 0

⎞
⎠ , (6)

where γ̇ is the magnitude of the velocity gradient. In this case,
functions �Xd and �Ud take the form given by Eqs. (A15)–(A17).

It can be observed by inspection of Eqs. (5) and (A9)–(A17)
that the FPE approach yields, as it should, the same PDF
previously derived from the Langevin description in Ref. [26],
as long as both methods are based on the assumption that the
underlying stochastic forces on the BP are of the Gaussian-
Markov type.

The PDF function given by Eqs. (5) and (A9)–(A17)
contains all the effects produced by the nonequilibrium bath on
the statistical properties of the harmonically bound BP. These
equations show that the PDF for this particle is a Gaussian, as
in the equilibrium case, but anisotropic due to the presence of
the external shear.

With the purpose of performing a subsequent validation of
the result of our molecular simulations, we will summarize
here the main effects that the imposed flow has on the
distribution W in the important case where correlations
between stochastic forces are not significantly modified by the
external flow, i.e., when � = 1. In this case, and considering
the asymptotic limiting behavior of the functions defining the
PDF, it follows that the reduced probability of observing the
velocities components U1 and U3 at large times is given by

W (U1,U3) = M

2πkBT
√

1 + γ̇ 2/2ω2

× exp

{
− M

2kBT

[
U 2

1 + U 2
3

1 + γ̇ 2/2ω2

]}
. (7)

On the other hand, the asymptotic reduced probability for
the BP to be found around a position vector with coordinates
X1 and X3 reads as

W (X1,X3) = 1√
4π2 det G

exp

{
−1

2

(
X1,X3 − β

ω2
v3 (�r0)

)

·G ·
(

X1

X3 − β

ω2 v3 (�r0)

)}
, (8)

where the matrix G is given by

G = k

kBT [4ω4 + γ̇ 2(β2 + 2ω2)]

×
(

4ω4 + 2γ̇ 2(β2 + ω2) −2βγ̇ ω2

−2βγ̇ ω2 4ω4

)
. (9)

These results show that the net effect of the external shear
on the distribution of velocities consists in extending it along
the direction of the imposed flow, while in the direction of
the velocity gradient the distribution is not modified and
remains the equilibrium Maxwell distribution. In addition,
the imposed shear distorts the distribution of positions from
its equilibrium form in such a way that its width in the
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direction of the velocity gradient decreases, while its width
along the direction of shear increases. In addition, it can be
observed that the axis representing the maximum elongation
of the nonequilibrium distribution W (X1,X3) turns out to be
rotated with respect to the Cartesian direction ê3, by an amount
approximately proportional to γ̇ , an effect that was noticed first
in Refs. [25,26].

B. Nonequilibrium equation of state and average energy

In this section we will use the previous calculation of the
nonequilibrium PDF in order to derive expressions for the
pressure and the average energy of the harmonically bound
BP in the sheared bath. For this purpose, we will consider
the distribution described by Eqs. (5) and (A9)–(A17) in the
stationary limit.

We start by noticing that the proper pair of thermodynamic
conjugate variables for representing the state of particles
trapped in harmonic potentials are the so-called harmonic vol-
ume V and harmonic pressure P [32]. The former is a measure
of the effective space occupied by the oscillator and, in thermal
equilibrium at a given temperature, it is defined as the extensive
variable ω−3

0 since the oscillator moves within a volume of the
order of (kBT /Mω2

0)3/2. On other hand, the harmonic pressure
represents the net opposition that the particle presents against
the external harmonic force, and guarantees the achievement
of mechanical equilibrium. It is defined as P = Trσ̄/3, where
the average stress tensor σ̄ is given analogously to the
corresponding quantity in elasticity theory [33]

σ̄ = 1

V

∫
V

dV σ , (10)

where normalization is considered with respect to the
harmonic volume.

Operationally, the harmonic pressure can be calculated
directly as the average of the harmonic potential over the
reduced PDF for observing the BP around a given position
�X, W ( �X). More precisely [32],

P = 2

3V

∫
d �X W ( �X)

k

2
�X · �X. (11)

The function W ( �X) can be obtained in the stationary limit
from Eqs. (5) and (A9)–(A17), and the average involved in
Eq. (11) can be straightforwardly performed yielding

P = kBT

V

(
1 + γ̇ 2 ω2

0 + β2

6ω4
0

)
. (12)

Equation (12) reveals that the imposed velocity gradient indeed
modifies the mathematical relationship existing between the
thermodynamic variables P , V , and T , which results in a
NEEOS for the harmonically bound BP in a sheared bath.

It must be stressed at this point that the externally imposed
shear modifies not only the harmonic pressure, but the
harmonic volume as well, by expanding the effective space
occupied by the BP, as it has been discussed previously in the
context of Eqs. (8) and (9). This effect will be shown to be
significant subsequently in Sec. IV A and, thus, it is important
to estimate it. With this purpose, let us consider the average
over the stationary reduced PDF W ( �X), of the dyad product

�X �X, which is found to be

〈 �X �X〉 =
∫

d �X W ( �X) �X �X

= kBT

k

⎛
⎜⎝

1 0 γ̇ β

2ω2
0

0 1 0
γ̇ β

2ω2
0

0
[
1 + γ̇ 2 ω2

0+β2

2ω4
0

]
⎞
⎟⎠ . (13)

The effective volume occupied by the BP can be calculated
similarly to the equilibrium case by first rotating the coordinate
system to the set of principal axes of the previous matrix,
and multiplying the resulting harmonic lengths along the new
directions [34] or, equivalently, by taking the square root of the
(invariant) determinant of the matrix on the right-hand side of
Eq. (13), and multiplying the result times (M/kBT )3/2. Both
procedures yield

V = 1

ω3
0

(
1 + γ̇ 2 2ω2

0 + β2

4ω2
0

) 1
2

, (14)

which exhibits the changes in the harmonic volume induced
by the external shear γ̇ .

Finally, notice that Eq. (13) can be used to calculate the
average potential energy of the harmonic oscillator in the
simple shear flow k〈 �X · �X〉/2, while in order to calculate its
average kinetic energy we must obviously consider the average
M〈 �U · �U〉/2, which can be obtained from the stationary
nonequilibrium PDF derived from Eqs. (5) and (A9)–(A17).
Adding the resulting expressions for these averages we obtain
the total mean energy, namely,

〈E 〉 = 3kBT

(
1 + γ̇ 2 2ω2

0 + β2

4ω4
0

)
, (15)

which can be cast in the form of the classical (equilibrium)
equipartition theorem 〈E 〉 = 3kBTeff, with an effective tem-

perature rescaled by the shear rate Teff = T (1 + γ̇ 2 2ω2
0+β2

4ω4
0

).

This result can be interpreted as if the net effect of nonequi-
librium sheared bath was to supply the BP with an additional
amount of energy that increases the strength of its thermal
motion with respect to the equilibrium situation.

C. Hydrodynamic vorticity and sound propagation effects

The simple model for Brownian motion based on the
Langevin equation (1) or, equivalently, on the FPE [Eq. (4)],
is known to be incomplete to describe the dynamics of actual
microsized objects in dilute solution. This is especially the
case if the dynamics of the suspended particles is observed
at short time scales, where large deviations from the simple
Langevin picture arise from the development of hydrodynamic
correlations in the form of viscous vortex formation and sound
propagation due to finite compressibility of the solvent [35].
These mechanisms contribute to a friction force on the BP that
acquires different values at different stages of its motion, an
effect that can be modeled by using a time-dependent friction
term in the Langevin description [2]. For the harmonically
bound BP, this procedure yields a stochastic equation that in
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Fourier space can be cast in the form

−iω �U (ω) = −ω2
0

�X (ω) + 1

M
�K (ω) + �A (ω) , (16)

where we have assumed, for simplicity, that the center of the
harmonic trap is located at a position �r0 such that �v (�r0) = 0;
and �K (ω) is precisely the now frequency-dependent friction
force.

Expressions for �K (ω) have been proposed since a long
time ago that consider viscous [36,37] and compressibility
effects [38], as well as diverse degrees of slip on the
surface of the suspended particle, particles with different
geometries, and particles in arbitrary flow conditions (see, e.g.,
Refs. [30,31,39–42]). In the analysis to be performed in this
section, �K (ω) will be obtained from the generalized Faxén’s
theorem for unsteady motion through a compressible fluid
[Eq. (3.14) in Ref. [30]]. This expression gives the friction
force for a spherical particle in an arbitrary time-dependent
flow subjected to nonslip boundary conditions. For the special
case of motion in a steady plane Couette flow, it can be shown
that this general result yields

�K (ω) = −Mβ̃ (ω) �U (ω) + M ˜̃β (ω) Z · �X (ω) , (17)

where, for brevity, the definitions of the auxiliary functions
β̃ (ω) and ˜̃β (ω) are given in Appendix B [see Eqs. (B1)
and (B2)]. It is interesting to notice that by replacing Eq. (17)
into Eq. (16) and taking the inverse Fourier transform, we
obtain

d �U
dt

= −
∫ t

−∞
dξ β̃(t − ξ ) �U (ξ )

−
∫ t

−∞
dξ
[
ω2

0δ(t − ξ )1 − ˜̃β(t − ξ )Z
] · �X(ξ ) + �A (t) ,

(18)

which has the form of a GLE with a retarded friction coefficient
β̃(t) [2], where δ(. . . ) represents the Dirac delta function.
Equation (18) shows that retardation is also present in the
nonequilibrium coupling induced by the external shear Z. This
is a consequence of the fact that in the generalized Faxén’s
theorem friction depends, through a memory kernel, on the
surface and volume averages of the fluid’s velocity.

In order to study systematically the effects of hydrodynamic
momentum transport in the dynamics of the trapped BP in
sheared flows, we will analyze the behavior of its dynamic
correlation functions. In this paper, we shall focus our attention
in correlation functions for velocities. This could be an
interesting case since, as far as we know, although these
functions have been calculated for the special case of simple
Langevin dynamics, they have not been measured yet in
actual experiments [26]. Our calculation will be subsequently
compared with the results of numerical experiments where
these correlation functions are indeed accessible.

Correlation functions will be calculated under the assump-
tion that the statistical properties of the stochastic forces acting
on the BP are identical to those observed in the equilibrium
case. Consequently, �A will be considered to have zero mean

〈 �A(ω)〉 = 0, (19)

where 〈 . . . 〉 denotes the stochastic average; and to obey the
generalized fluctuation-dissipation relation

〈 �A(ω′) �A(ω)〉 = 4πkBT

M
Re{β̃(ω)}δ(ω′ + ω) 1, (20)

which fulfills the condition that the proper velocity distribution
in thermal equilibrium is achieved [2]. Notice that in Eq. (20)
we have neglected cross correlations between stochastic forces
that could arise as a consequence of the imposed shear. In
addition, we have introduced the notation Re { . . . } to indicate
the real part of a complex variable.

Correlation functions between the components of the
velocity vector can be calculated by replacing Eq. (17) into
Eq. (16), using the relation �U (ω) = −iω �X (ω), and solving
for the function �U (ω). Then, after evaluating the result at two
different frequencies, averaging according to Eq. (20), and
inverting the Fourier transformation, we obtain

〈 �U (t + τ ) �U (t)〉

= kBT

πM

∫ ∞

−∞
dω eiωτ ω2Re{β̃(ω)}

|m(ω)|4 [|m(ω)|21

+m∗(ω) ˜̃β(ω)ZT + m(ω) ˜̃β∗(ω)Z + | ˜̃β(ω)|2Z · ZT],

(21)

where ∗ indicates complex conjugate and the function m (ω) is
defined by m (ω) = ω2

0 − ω2 − iωβ̃ (ω).
Equation (21) contains the effects of the nonequilibrium

state on the solvent on the correlation matrix for velocities
through those terms involving the matrix Z. It shows that γ̇

breaks down the spatial symmetry of the dynamics of the
Brownian oscillator. Specifically, the autocorrelation function
in the direction of shear ê3 becomes higher than the corre-
sponding correlation in the direction of the velocity gradient
ê1 due to the term proportional to the square of the velocity
gradient Z · ZT. More strikingly, cross correlations along these
directions, which vanish in harmonic Brownian motion in
a fluid at rest, become visible in the nonequilibrium case,
increasing linearly as function of Z. Furthermore, it can be
observed from Eq. (21) that these cross correlations do not
have the same time dependence and, consequently, it is found
that Z breaks also the time reversibility in the dynamics
of the harmonic BP. These features are shared with those
noticed first in Refs. [10,26] for Brownian motion in external
incompressible shear flows.

Notice that in Appendix B functions β̃ and ˜̃β have been
defined in terms of the characteristic times τs = R/c and
τf = R2/ν, where c and ν are the velocity of sound propagation
and the kinematic viscosity of the solvent, respectively.
Times τs and τf define the scales where compressibility and
viscous effects are expected to manifest [35]. Vorticity and
compressibility effects could be neglected in the limit of small
values of both τf and τs, meaning that viscous momentum
diffusion and sound propagation occur too fast that they are
unable to perturb the motion of the particle at the Brownian
time scale τB ∼ β−1 [43]. In this limit, both functions β̃

and ˜̃β reduce to β, the dynamics reduces to the simple
Langevin case, and explicit expressions for the elements
of the correlation matrix can be found by performing the
corresponding integrals in the complex plane. Specifically,
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this procedure yields the expressions presented below for
the elements of the correlation matrix, which will be split
in an equilibrium contribution independent of the externally

imposed shear, plus a nonequilibrium contribution depending
on Z. The equilibrium elements, hereafter denoted by the
superscript eq, have the classical form [44]

〈Ui(t + τ )Uj (t)〉eq = kBT

M(μ1 − μ2)
[μ1e

μ1τ − μ2e
μ2τ ]δij , (22)

where the time difference τ is considered positive.
On the other hand, the only nonvanishing nonequilibrium elements of the correlation matrix, from now on represented by the

superscript neq, are found to be

〈U1(t + τ )U3(t)〉neq = − kBT

2M(μ1 − μ2)
γ̇ (eμ1τ − eμ2τ ), (23)

〈U3(t + τ )U1(t)〉neq = kBT

2M(μ1 − μ2)
γ̇

{[
1 + 2

(
μ1 + μ2

μ1 − μ2

)2

− 2μ1τ
μ1 + μ2

μ1 − μ2

]
eμ1τ

−
[

1 + 2

(
μ1 + μ2

μ1 − μ2

)2

− 2μ2τ
μ1 + μ2

μ2 − μ1

]
eμ2τ

}
, (24)

and

〈U3 (t + τ ) U3 (t)〉neq = kBT

M

γ̇ 2

2 (μ1 − μ2)3

[
−μ2

1 (3 − μ1τ ) + μ2
2 (1 + μ1τ )

μ1
eμ1τ + μ2

2 (3 − μ2τ ) + μ2
1 (1 + μ2τ )

μ2
eμ2τ

]
. (25)

Corrections induced by compressibility and viscous mo-
mentum transfer to the correlation functions given by
Eqs. (22)–(25) can be inferred by replacing Eqs. (B1)
and (B2) into Eq. (21) and performing the resulting integrals
numerically. We follow this procedure and illustrate in Figs. 1
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FIG. 1. (Color online) Normalized autocorrelation functions for
velocities of a harmonically bound BP in a stationary Couette flow.
Y11 corresponds to BP’s velocities projected in the direction of the
external velocity gradient, while Y33 corresponds to the velocities
along the direction of the external shear. Two cases are considered
for correlations obtained from the simple Langevin model yielding
Eqs. (23)–(25) (Langevin); and from the model based on the GLE
[Eq. (18)] (GLE). The specific values used to obtain these curves are
described through the text.

and 2 the comparison between the correlations obtained from
simple Langevin dynamics and those obtained from the gen-
eralized scheme. There, we consider correlations normalized
with respect to their maximum value at equilibrium Yij =
M〈〈Ui (t + τ ) Uj (t)〉〉/kBT , as functions of the dimensionless
time difference τ̄ = τβ/2. Curves in Figs. 1 and 2 were
obtained for the specific values τf = τB and τs = τf/2, while
the external shear normalized with respect to the relaxation
time was chosen to be γ̇ /β = 0.2. For harmonically bound
Brownian motion, another relevant characteristic time scale
is defined by the trap relaxation time τK = γ /k, which was
fixed at the value τK = 12.5τB. These parameters were chosen
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FIG. 2. (Color online) The same as in Fig. 1 for the normalized
cross correlations Y13 and Y31.
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just for illustrative purposes, but satisfy the typical relation
τs < τf � τB < τK, found in experimental situations.

It can be noticed first that for the two models considered
in Figs. 1 and 2, based on simple Langevin dynamics and on
the GLE, the imposed shear breaks indeed the symmetry in
the correlation functions as it was discussed in the paragraphs
following Eq. (21).

It can be also observed that due to hydrodynamic effects
correlations functions for the velocities of the bound BP
exhibit an interesting behavior differing in several respects
from the one predicted by simple Langevin dynamics. First,
they extend over longer periods of time than those expected
from the Langevin model. Actually, the detailed analysis of
the curves presented in the log10 - log10 insets at the right
bottom corner of Figs. 1 and 2 shows that, indeed, retardation
in viscous resistance due to viscosity and compressibility
induces slow decay of the correlation functions in the form of
long-time tails. This behavior is similar to the one that has been
confirmed to exist for free Brownian motion in equilibrium
fluids [28,37–42]. The present analysis shows that long-time
tails prevail in nonequilibrium conditions. Moreover, the
decaying exponent for the equilibrium correlation Y11 is the
same as that corresponding to the nonequilibrium correlations
Y13, Y31, and Y33.

Another interesting effect derived from the generalized
Langevin scheme is shown in the insets at the right top
corner of Figs. 1 and 2, where it can be observed that
while correlations derived from the simple Langevin model
vanish asymptotically, those obtained from the generalized
description exhibit a resonant peak as a consequence of hy-
drodynamic memory. This effect is the counterpart in velocity
space of the resonances observed recently in correlations of
displacements of harmonically trapped BPs in equilibrium
fluids [29]. Figures 1 and 2 illustrate that the resonant effect
persists in nonequilibrium correlations. Moreover, it turns out
that the nonequilibrium character of the solvent enhances the
intensity of the effect by amplifying the height of the peak.

In the following section, we will discuss the implementation
of a numerical method that will allow us to simulate the
dynamics of a BP in a plane Couette flow, subjected to
an external harmonic force. This will eventually lead us to
the observation of the predicted behavior of the correlation
functions discussed here.

III. SIMULATION METHOD

A. Hybrid MD-MPC algorithm

We performed numerical experiments in order to observe
the effects produced by the externally imposed shear on the
dynamics of the harmonically bound BP. Our implementation
consisted of a hybrid algorithm combining MD [45], which
was used to describe the evolution of the system at the
microscopic time scale, and MPC [46,47], that allowed us
to incorporate thermal fluctuations and hydrodynamic effects.
Both MD and MPC are particle-based methods and their
coupling is used in simulations as a bridge that spans the
two widely separated characteristic time scales occurring in
Brownian motion. Our implementation is quite similar to the
one used previously in the study of tracking control of colloidal

particles in stationary flows [27]. For brevity, details about our
methodology will not be presented here but can be found in
that reference.

We considered N fluid particles of mass m, and a single
BP of mass M , moving in a cubic simulation box of volume
L3. Solvent particles were assumed to be point particles and
in order to achieve their coupling with the BP, an explicit
interaction force was introduced between the former and
the latter. This force was derived from the Weeks-Chandler-
Andersen potential [Eq. (47) in Ref. [27]], with interaction
strength ε and effective diameter σ . The system evolved
in time in a succession of propagation and collision steps.
Propagation steps were carried out at short-time intervals of
size �tMD, while collision steps took place only at regular,
larger periods of time of size �t > �tMD. In a propagation
step, the positions and velocities of all the particles in the
system were advanced by applying the velocity-Verlet update
algorithm [45]. At the regular periods of time of size �t ,
the simulation box was subdivided in smaller cells of volume
a3, where it was applied the original collision rule for MPC,
known as stochastic rotation dynamics [48–50]. Thus, the
center of mass velocity was calculated for every cell and the
particles located within the same cell were forced to change
their velocities according to

�u ′
i (t) = �uc.m. (t) + R (α; ê) · [�ui (t) − �uc.m. (t)], (26)

where �uc.m. is the center of mass velocity of the cell where the
ith particle is located and R (α; ê) is a stochastic matrix for a
rotation by a fixed angle α, around the axis ê, which was chosen
for each collision cell by selecting a point on the surface of a
sphere from a uniform probability distribution. We applied a
homogeneous displacement of the MPC cells by a vector with
random components uniformly distributed in-between −a/2
and a/2, before the collision took place, in order to guarantee
the Galilean invariance of the method [51,52].

In Fig. 3, we present a schematic illustration of the simu-
lated system, where the three Cartesian directions are shown.
For this reference frame we used periodic boundary conditions
along the x2 and x3 directions, and Lees-Edwards boundary

FIG. 3. (Color online) Schematic illustration of the simulated
system. The BP is represented by a big blue sphere, while solvent
particles are represented by small red spheres. The application of
LEBC, as it is described in the text, establishes the planar Couette
flow represented by the red arrows. The harmonic force on the BP,
�F , is directed towards the center of the simulation box.
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conditions (LEBC) [53] along the x1 direction in order to
drive the system to a nonequilibrium state characterized by the
linear velocity profile �v (�r) = −γ̇ L/2 ê3 + Z · �r , which is also
shown schematically in Fig. 3.

In order to prevent viscous heating of the MPC
fluid [49,54,55], we incorporated into our algorithm a ther-
mostatting step in which velocities of the particles located
within the same cell were rescaled after the collision step
[Eqs. (53) and (54) in Ref. [27]]. Finally, a momentum reset
step was also incorporated after the thermostatting procedure,
in order to prevent net flow of the solvent caused by the
momentum transfer from the trapped particle to the MPC fluid
[Eq. (55) in Ref. [27]].

Our simulations started with particles placed in the box
at random positions and velocities obtained from uniform
distributions. The total momentum of the system was fixed
to zero, and its total energy was fixed to the value of
the equipartition law at the temperature of the thermostat.
Then, the hybrid MD-MPC algorithm was applied over a
sufficiently long-time period in order to guarantee that the
proper distribution of velocities and hydrodynamic fields were
established. The harmonic restoring force was applied with �r0

located at the center of the simulation box, as it is schematically
shown in Fig. 3. The position and velocity vectors of the BP
were stored as functions of the simulation time in order to
calculate subsequently their statistical properties.

IV. RESULTS

A. Nonequilibrium probability distribution functions

In order to validate our numerical implementation, we
performed first simulations of a BP subjected to a harmonic
force field in a fluid at rest. We decided to fix the simulation
parameters at m = 1, kBT = 1, a = 1, α = 135◦, �t = 0.1,
ε = 2.5 kBT , σ = 2a, �tMD = �t/200, and M = 200 m,
where simulation units rather than physical units will be used
from now on. Finally, the size of the simulation box was fixed at
L = 20 a, and the number of MPC particles per cell at n0 = 3.

It has been discussed in Ref. [27] that for this choice of
parameters no instabilities are expected for the MD algorithm
and that the Brownian dynamics is expected to behave close
to the Markovian description [48]. Moreover, the effective
friction coefficient for the BP was calculated for this numerical
setup and it was found to be γ = 48.9 ± 1.6. We considered
the dynamics of the bound BP in the overdamped regime by
choosing the value k = 1.0, for the restoring coefficient of the
trap. A detailed analysis of the Brownian motion carried out
by particles in sheared fluids and confined in harmonic traps in
the critically damped and underdamped regimes can be found
in Ref. [56].

The simulation scheme described in Sec. III was followed
by allowing the system to thermalize in a total of 2 × 106

simulation steps of the hybrid MD-MPC algorithm. After-
wards, we recorded the position and the velocity of the BP
at regular time intervals of size 25 �tMD during a simulation
extending over 1 × 108 steps. We used the resulting time series
to measure directly the PDFs W (U1,U3) and W (X1,X3) of
the harmonically bound BP in the equilibrated solvent. These
results can be directly compared with the two-dimensional

FIG. 4. (Color online) Probability distribution functions for the
velocities U1 and U3 of a harmonically bound BP in an equilibrium
environment. Case (a) is obtained analytically from Eq. (7) with
γ̇ = 0, and case (b) represents the corresponding analytical level
curves. Case (c) is obtained independently from the simulation
method combining MD and MPC described in Sec. III, and case
(d) illustrates the corresponding numerical level curves.

equilibrium distributions obtained from Eqs. (7)–(9) in the
limit γ̇ = 0. In Figs. 4 and 5, we present such comparison. It
can be observed that the analytical and numerical results show
a very good agreement, although in the case of the distribution
W (X1,X3), presented in Fig. 5, the numerical results exhibit
strong irregularities due to an insufficient statistical sampling
of values of �X.

Then, we performed numerical experiments for harmonic
Brownian motion in fluids under plane Couette flows with
different values of the velocity gradient. Our nonequilibrium
simulations were executed by allowing systems to thermalize
again in 2 × 106 steps of the MD-MPC algorithm, but

FIG. 5. (Color online) The same as in Fig. 4 for the PDF of the
coordinates X1 and X3 of the BP.
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FIG. 6. (Color online) Probability distribution function for the
velocities U1 and U3 of the harmonically bound BP coupled to a
nonequilibrium fluid with velocity gradient γ̇ = 0.1. Cases (a) and
(b) were obtained analytically from Eq. (7), while cases (c) and (d)
were obtained independently from the simulation method combining
MD and MPC described in Sec. III.

extending in time over 5 × 107 simulation steps, i.e., one half
of the length of the corresponding equilibrium simulations.
Once again, time series were generated in which observations
of �X and �U at regular time intervals of size 25�tMD were
stored, and used to estimate the corresponding nonequilibrium
PDFs. The velocity PDF W (U1,U3) obtained in numerical
experiments is compared in Fig. 6 with its analytical counter-
part as expressed by Eq. (7), for the particular case of a shear
with magnitude γ̇ = 0.1. Notice that for this value of γ̇ the
Stokes number S = γ̇ /β, characterizing the deviation from
equilibrium in terms of the BP’s dynamics [10,27], becomes
S = 0.4. This value of S is one order of magnitude smaller
than those considered in the study of Brownian motion in shear
flow in the absence of harmonic constraints [10].

It can be observed in Fig. 6 that the analytical and numerical
distributions are very similar and that a very good agreement
between simulations and theory is once again obtained. The
surfaces and level curves represented in Fig. 6 should be also
compared with those appearing in Fig. 4, corresponding to the
equilibrium case.

In Fig. 7, we present the corresponding nonequilibrium PDF
for positions W (X1,X3), obtained analytically from Eqs. (8)
and (9), and numerically from our simulation experiments
using γ̇ = 0.1. A comparison of the scales appearing in Figs. 5
and 7 shows that the range of values in which X1 and X3 can
be found is significantly increased by the action of the external
gradient. Therefore, the deficiency in the statistical sampling of
the position of the BP already noticed in Fig. 5 has more drastic
consequences in the nonequilibrium case and the collected
data are insufficient to generate a well defined experimental
surface. Nevertheless, it can be appreciated that the numerical
PDF W (X1,X3) exhibits the qualitative behavior predicted by
the model based on the FPE (4).

FIG. 7. (Color online) The same as in Fig. 6 for the nonequilib-
rium PDF of the coordinates X1 and X3 of the harmonically bound
BP.

B. Harmonic pressure, harmonic volume, and average energy

We have discussed in Sec. II B in the context of the
simple model based on the FPE (4) that the imposition of
the external shear is expected to modify the harmonic volume,
the equation of state, and the equipartition law of the
harmonically bound BP. In order to observe this effect, we per-
formed eight numerical experiments in which the harmonically
trapped BP was simulated to be in the presence of diverse plane
Couette flows with shear rates uniformly distributed in the in-
terval γ̇ = [0,0.07]. The estimations ofV ,P , and 〈E 〉 were ob-
tained by using the averages of the dyad matrices �X �X and �U �U ,
calculated from the experimental time series of �X (t) and �U (t).
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FIG. 8. (Color online) Normalized harmonic volume ω3V , har-
monic pressure ω3P/kBT , and total energy 〈E 〉/3kBT of a harmoni-
cally bound BP in shear flows with different shear rates γ̇ . Continuous
curves correspond to Eqs. (14), (12), and (15), for comparison of
harmonic volume, harmonic pressure, and energy, respectively. The
results obtained from the numerical experiments are represented by
the symbols with error bars.
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We present in Fig. 8 the normalized numerical estimations
of the harmonic volume, the harmonic pressure, and the total
energy as function of the external shear. There, we compare
the numerical results with the analytical expressions derived
in Sec. II B, Eqs. (12), (14), and (15). We observe a very good
agreement between the theoretical and numerical approaches
for small values of the external shear γ̇ � 0.5, while for larger
values of γ̇ the numerical estimations are found to be larger
than the theoretical predictions. This discrepancy arises from
the fact that for large values of γ̇ , we have not achieved a
good estimation of the PDF for displacements of the BP, as it
was discussed at the end of Sec. IV A. In addition, it should
be remembered that Eqs. (12), (14), and (15) were obtained
under the assumption that the stochastic forces are not modified
by the imposed shear, which implied � = 1 in Eqs. (7)–(9).
However, for large values of γ̇ , this condition is expected to
be invalid and the nonequilibrium part of the matrix � should
modify the form of the stationary PDFs (7)–(9). In turn, this
will produce a different dependence of P , V , and 〈E〉 on γ̇ , as
it is manifested in the results presented in Fig. 8 for γ̇ � 0.5.

C. Velocity correlation functions

We carried out the measurement of the two-time correlation
matrix for velocities 〈 �U (t + τ ) �U (t)〉 by using the time series
of the velocity vector recorded during the simulation stage.
For brevity, we will discuss here only the representative case
corresponding to simulations in an external shear flow with
velocity gradient γ̇ = 0.05. The elements of the correlation
matrix were estimated according to the usual formula

〈Ui (t + τ ) Uj (t)〉  1

Nτ

Nτ∑
l=1

Ui (tl + τ ) Uj (tl) , (27)

where the index l runs over the recorded values of the
time series, and Nτ is the total data available to perform
the average for a given time difference τ . We will describe
our results in terms of the normalized correlations Yij ,
introduced in Sec. II C. In the experimental case, functions
Yij were obtained from the correlations given by Eq. (27)
divided by the maximum value of the autocorrelation function
〈U1 (t + τ ) U1 (t)〉.

The experimental correlation functions will be compared
with those predicted by the simple Langevin model [Eqs. (22)–
(25)] and by the scheme based on the GLE including
compressibility and vorticity effects. However, some points
are worth mentioning before we proceed to such compari-
son. First, it should be stressed that when the generalized
Langevin model defined by Eq. (16) is supplemented with
Eqs. (17), (B1), and (B2), it is assumed that stick boundary
conditions are valid on the surface of the BP. In contrast,
our simulation scheme based on purely repulsive interactions
between the BP and the fluid particles corresponds better
to slip boundary conditions [27,57]. Thus, Eqs. (17), (B1),
and (B2) are not applicable for describing the results of our
simulations. Instead, we should use a proper expression for
the frequency dependent drag force experienced by a spherical
particle moving through a viscous compressible fluid with slip
boundary conditions. Unfortunately, although such expression
exists for motion in a fluid at rest [39,42,58], as far as we know,

the corresponding equation containing the effects of stationary
inhomogeneous flow has not been reported in the literature.
Therefore, we propose here a modification of our model by
assuming the size of the BP to be small, in such a way that
the drag force on it can be considered to depend only on its
relative velocity with respect to the local unperturbed velocity
field [43], i.e., �K = −Mβ[d �x/dt − �v(�x)] = −Mβ( �U − Z ·
�X). Thus, the frequency dependent drag force is proposed
to be �K(ω) = −Mβslip(ω)[ �U (ω) − Z · �X(ω)], instead of that
one given by Eq. (17). The function βslip (ω) has been obtained
in Ref. [58], and for simplicity we present its explicit form
in Appendix B [see Eq. (B3)], where a new characteristic
time has been introduced τd = Dl/c

2, with Dl the longitudinal
kinematic viscosity of the solvent. By replacing the new
expression for the drag force in Eq. (16) and following the
same procedure used in Sec. II C, we obtain now

〈 �U (t + τ ) �U (t)〉 = kBT

πM

∫ ∞

−∞
dω eiωτ ω2Re{βslip(ω)}

|m(ω)|4
× [|m(ω)|21 + m∗(ω)βslip(ω)ZT

+m(ω)β∗
slip(ω)Z + |βslip(ω)|2Z · ZT], (28)

instead of Eq. (21). Notice that in Eq. (28), m (ω) is defined as
m (ω) = ω2

0 − ω2 − iωβslip (ω).
Equations (28) and (B3) will be the expressions used to

perform the comparison with the simulation results. In this
procedure, we will use the value for the drag coefficient in the
Langevin description β = γ /M = 0.245 ± 0.008, previously
estimated in Ref. [27]. On the other hand, the quantities τs, τf,
and τd will be considered to be effective parameters that can
be selected to improve the correspondence between the model
and the simulation results.

We consider first the experimental correlation function
Y11 (τ̄ ), and its fits obtained from the simple Langevin
model (22), and from the numerical solution of the GLE (28)
with Z = 0. We obtain the estimations of the characteristic
times τs, τf, and τd by means of a steepest descent method that
minimizes the difference between the experimental results and
the theoretical prediction. From this procedure we obtain the
values τs = 0.01, τf = 1.03, and τd = 0.41. The comparison
between the experimental correlation and those obtained from
the simple and generalized Langevin schemes is shown in
Fig. 9, where it can be observed that the generalized model
fits better the simulation results than the model based on
simple Langevin dynamics. The correspondence between the
simulations and the theoretical results obtained from the GLE
is shown to be better at short times.

The same set of parameters β, τs, τf, and τd, obtained ac-
cording to the procedure described in the preceding paragraph,
was subsequently used to calculate the correlation functions
Y13 (τ̄ ), Y31 (τ̄ ), and Y33 (τ̄ ), expected to exhibit the strongest
nonequilibrium effects. We calculated these functions again
from the simple Langevin model yielding Eqs. (23)–(25), and
from the numerical solution of Eq. (28) corresponding to the
generalized scheme. The analytical curves are compared with
the results of numerical simulations in Fig. 10, where it can be
observed that although both schemes can be used to describe
correctly the qualitative behavior of the velocity correlation
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FIG. 9. Normalized correlation Y11 as function of the normalized
time difference τ̄ . The result obtained from simulations (symbols)
are compared against the fits obtained from the generalized Langevin
scheme (continuous curve) and the simple Langevin description
(dotted dashed curve).

functions, the model based on the GLE is in general better to
achieve a quantitative agreement with the numerical results.

The differences between the GLE model and the numerical
results observed in Fig. 10 are similar to those that will be
found in the following section. Consequently, we will postpone
a discussion about them until that point.

D. Nonequilibrium resonant peaks

Finally, we performed a series of simulations designed
to observe the resonance effect induced by hydrodynamic
backflow in the nonequilibrium velocity correlation functions.
It should be stressed that this effect is expected to be significant
only when the time scale of the harmonic trap τK is similar
to the viscous relaxation time τf, i.e., when τK ∼ τf [29].
Therefore, with the purpose of reducing the difference between
these time scales, we performed simulations modifying the

following parameters with respect to those introduced in
Sec. IV A: �t = 0.05 and n0 = 5. Notice that this modification
is intended to increase the collisional viscosity of the MPC
solvent, thus reducing the value of τf. We also extended the
size of the simulated system to L = 24 a, in order to reduce
possible finite size effects.

For this selection of parameters we performed nonequilib-
rium simulations with γ̇ = 0.3, and found that the damping
ratio of the BP was β  0.635. This allowed us to increase the
stiffness of the harmonic trap up to k = 20, in order to bring τK

close to τf. Notice that for this value of k, the dynamics of the
harmonically bound BP was still overdamped but simulations
were performed very close to the critically damped regime.

We conducted a first nonequilibrium experiment in which
the time series for �U (t) was recorded at regular time intervals
along a simulation extending over 2.5 × 107 MD-MPC steps
after thermalization. We calculated the correlation functions
using this time series and found that the resonant peaks,
if any, should be located in the region where statistical
noise becomes significant. Therefore, in order to reduce the
strength of this noise, we performed a total of 56 independent
nonequilibrium experiments having the same extension in
time as the one mentioned previously. We calculated the
correlation functions for each one of these experiments, and
obtained the final estimation by averaging over the whole set
of independent measurements. The result of this procedure is
illustrated in Fig. 11, where we have used curves with filled
symbols to represent our normalized numerical correlations.
We noticed that for the selected set of simulation parameters,
the correlation functions Y11 (τ̄ ), Y31 (τ̄ ), and Y33 (τ̄ ) still
approach to zero in the noisy region of the time domain, where
they take values of the same order of magnitude than the
statistical noise. This is illustrated in the insets of Fig. 11 for
the special case of the autocorrelation Y11. Therefore, it would
be difficult to assert that the resonant peaks in these correlations
have been indeed observed. However, it can be also noticed
in Fig. 11 that the nonequilibrium correlation function Y13 (τ̄ )
approaches to zero earlier, in the region where noise is not so
large. The insets on the right hand side of Fig. 11 show that,
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FIG. 10. (Color online) Normalized correlations Y33, Y13, and Y31 as function of the normalized time difference τ̄ for a harmonically bound
BP in a solvent with a plane Couette flow with shear rate γ̇ = 0.05. Symbols represent the results of simulations, continuous curves the
approximations based on the generalized Langevin model, and dotted dashed curves the fits obtained from simple Langevin dynamics.
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FIG. 11. (Color online) Normalized correlations for a harmon-
ically bound BP in a solvent with a uniform shear rate γ̇ = 0.3.
Curves with filled symbols represent the results of simulations,
while continuous curves were obtained from Eqs. (28) and (B3).
The specific parameters used to obtain both the experimental and
analytical curves are described through Sec. IV D. The insets at the
right hand side show that the cross correlation Y13 has a resonant peak
whose height is larger than the strength of the statistical noise.

at least for this correlation function, a resonant peak can be
identified having a height that is considerably larger than the
strength of the noise.

We have also illustrated in Fig. 11, by means of continuous
curves, the fit of the experimental data obtained from the
generalized Langevin scheme, Eqs. (28) and (B3). In order
to simplify the present analysis in these equations, we have
neglected the contribution of compressibility by making τs =
0, as well as the contribution of the characteristic time τD. On
the other hand, τf was estimated by following the optimization
scheme described in Sec. IV C, from which we obtained the
value τf = 0.0929. It can be observed that there is a very good
quantitative agreement between the theoretical model and the
simulation results in the case of the normalized correlation
Y11 (τ̄ ). However, correlations Y13, Y31, and Y33 exhibit clear
deviations from the analytical results, similar to those that can
be observed in Figs. 9 and 10 in Sec. IV C. In particular, it can
be observed that the model based on the GLE seems to give a
poor estimation of the heights of the resonant peaks.

We consider that these discrepancies arise from the sim-
plifications performed in deriving Eq. (28), in particular, from
the assumption that the fluctuation matrix � is independent of
the external shear. Actually, in shear flows the nondiagonal
elements of � do not vanish and depend on the shear
rate [25,59]. As a consequence, for large values of the
velocity gradient, the behavior of the correlation functions
could be expected to be different from the one predicted
by Eq. (28). For instance, if the nondiagonal elements of �

were different from zero, cross correlation functions would
be modified due to the presence of a term with the form
m (ω) m∗ (ω) �, inside the brackets of the integrand in Eq. (28).
Similarly, the autocorrelation in the direction of flow would
be modified by the presence of the terms m∗ (ω) βslip (ω) Z · �

and m (ω) β∗
slip (ω) � · ZT, appearing within the same brackets.

Under the assumption of a linear relation between � and γ̇ ,
these contributions would not modify the dependence of Y13,
Y31, and Y33 on γ̇ . However, they would induce a different
frequency dependence and, consequently, would change the
way in which these functions depend on t .

V. CONCLUSIONS

We have studied the Brownian motion of a particle
confined in a harmonic trap and a nonequilibrium environment
subjected to a simple shear flow. First, we have derived the FPE
describing the stochastic motion of such particle and obtained
its solution in detail, yielding the nonequilibrium PDF for
observing the BP around a given point in its configuration
space. We have confirmed that this PDF is the same as the
one derived previously in Ref. [25] from simple Langevin
dynamics. Thus, we have introduced here the approach based
on the solution of a boundary value problem which serves
as a complement to the description founded in stochastic
differential equations that has been used up to now to deal
with the present problem. We have used the solution of the
FPE equation to calculate the harmonic pressure and the
total energy of the harmonically bound BP, and found that
both quantities are strongly modified as a consequence of
the external shear. On the one hand, the NEEOS [Eq. (12)]
is modified from its equilibrium form by a term increasing
as the square of the external shear. On the other hand, the
nonequilibrium bath has the net effect of increasing the
strength of the thermal random motion of the harmonically
trapped BP, whose average energy can be written in the form of
the classical equipartition law [Eq. (15)], but with an effective
nonequilibrium temperature depending on the square of the
external shear.

In addition, we have introduced an extension of the simple
Langevin (Fokker-Planck) model that incorporates hydrody-
namic viscosity and sound propagation effects by means of
a generalized equation with a time-dependent friction force.
We have found that hydrodynamic memory produces strong
modifications in the nonequilibrium part of the velocity cor-
relations of the trapped BP, as compared with those predicted
from the simple Langevin scheme. In particular, as a result
of hydrodynamic backflow, the nonequilibrium correlation
functions develop long-time tails and resonant peaks, similar to
those exhibited by correlation functions in equilibrium [29].
One of the main results of this work was to notice that the
external shear may produce an enhancement of the resonant
peaks, as it is illustrated in Fig. 1. This effect suggests that
it should be possible to use a nonequilibrium mechanism to
adjust the height of the hydrodynamic resonances.

Subsequently, we have implemented hybrid MD-MPC
simulations that allowed us to verify some of the results
derived from the theoretical models. For small values of the
external shear, the numerical results were found to exhibit the
behavior predicted by the simple Langevin model concerning
the nonequilibrium PDF, the NEEOS, and the average energy
of the particle. Thus, it was found that this model could be
very useful to describe the statistical properties of the trapped
BP in the stationary limit and close to equilibrium situations.

It must be also emphasized that the used numerical
technique naturally incorporated hydrodynamic vorticity and
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sound propagation effects, a property that allowed us to
observe the role that these mechanisms play in the stochastic
dynamics of the BP. In particular, we have shown that the
description of the equilibrium and nonequilibrium velocity
correlation functions can be significantly improved when such
effects are taken into account. Furthermore, we were able
to confirm the existence of the resonant peaks predicted by
the generalized model in the nonequilibrium cross correlation
function 〈U1 (t + τ ) U3 (t)〉, where subindexes 1 and 3 indicate
the directions of increasing velocity and flow, respectively.

The analysis carried out in this paper could be improved
by relaxing the performed assumption that the statistical
properties of the stochastic forces are independent of the
shear rate. Finally, it should be mentioned that in this work
we have not studied the behavior of the correlation functions
for displacements of the trapped BP under shear. A calculation
of the nonequilibrium and hydrodynamic memory effects on
these functions is currently under research, as well as a detailed
analysis of the enhancement of the resonances induced by
the external shear on both the velocity and displacement
correlations.
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APPENDIX A: SOLUTION OF THE FPE (4)

In order to find the solution of the FPE (4), we propose
to recast it in terms of the sixfold vector ��T = {[−β �v(�r0) +
(ω21 − βZ) · �X]T, �UT}, a procedure that yields

∂W

∂t
= −�∇�� · (A · ��W ) − �∇�� · (B · �∇��W ), (A1)

where the matrices A and B have the following explicit form
defined by blocks:

A =
(

0 ω21 − βZ

−1 −β1

)
, B =

(
0 0

0 q �

)
. (A2)

The solution of Eq. (A1) can be found from general
procedures for linear FPEs, as those presented, e.g., in
Ref. [43]. Actually, it follows that W must be a Gaussian,

W (��,t) = exp
{− 1

2 (�� − �s)T · S−1 · (�� − �s)
}

(2π )3(det S)1/2
, (A3)

where �s and S are functions of time that can be obtained as
solutions of the equations d�s/dt = A · �s and dS/dt = −2s +
A · S + S · AT, subjected to the initial conditions �s (0) = �� (0)
and S (0) = 0, respectively. Thus, we have

�s = exp {At} · �� (0) (A4)

and

S = −2
∫ t

0
dξ exp{A(ξ − t)} · B · exp{AT(ξ − t)}. (A5)

By noticing that Za = 0, for any integer a > 1, we obtain
the following expression for the exponential matrix:

exp{At} =
(

ϒ11 (t) 1 ϒ12 (t) 1
ϒ21 (t) 1 ϒ22 (t) 1

)

+
(

�11 (t) Z �12 (t) Z
�21 (t) Z �22 (t) Z

)
, (A6)

where the explicit form of the functions ϒij (t) and �ij (t) has
been obtained but will not be presented here for brevity.

Then, we replace Eq. (A6) into Eqs. (A4) and (A5), and
return to the description in terms of the state vectors �X and �U ,
by using the relations

H =
(

ω21 − βZ 0

0 1

)−1

· S ·
((

ω21 − βZ
)T

0

0 1

)−1

(A7)

and

( �X − �Xd
�U − �Ud

)
=
(

ω21 − βZ 0
0 1

)−1

· (�� − �s). (A8)

This procedure yields Eq. (5) with the following explicit
contributions. The covariance matrix H can be written as

H (t) =
(

P (t) R (t)
R T (t) Q (t)

)
, (A9)

where submatrices P, Q, and R read as

P = 2q

∫ t

0
dξ [ψ2(ξ )� + ψ(ξ )κ(ξ )(� · ZT + Z · �)

+ κ2(ξ )Z · � · ZT], (A10)

Q = 2q

∫ t

0
dξ [φ2(ξ )� + φ(ξ )λ(ξ )(� · ZT + Z · �)

+ λ2(ξ )Z · � · ZT], (A11)

R = 2q

∫ t

0
dξ [ψ(ξ )φ(ξ )� + φ(ξ )κ(ξ )Z · �

+ψ(ξ )λ(ξ )� · ZT + λ(ξ )κ(ξ )Z · � · ZT]. (A12)

In turn, the functions of time ψ and κ have the explicit form

ψ(t) = 1

μ1 − μ2
(eμ1t − eμ2t ), (A13)

κ(t) = χ

[
tζ (t) − 2

μ1 − μ2
ψ(t)

]
, (A14)

with ζ (t) = (eμ1t + eμ2t )/(μ1 − μ2), μ1,2 = −β/2 ±√
(β/2)2 − ω2, and χ = (μ1 + μ2)/(μ2 − μ1). Functions φ

and λ can be obtained by derivation, namely, φ(t) = dψ/dt

and λ(t) = dκ/dt .
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Finally, the components of �Xd read as

Xd,1(t) = 1

μ1 − μ2
[(μ1X0,1 − U0,1)eμ2t − (μ2X0,1 − U0,1)eμ1t ], (A15)

Xd,2(t) = 1

μ1 − μ2
[(μ1X0,2 − U0,2)eμ2t − (μ2X0,2 − U0,2)eμ1t ], (A16)

Xd,3(t)= 1

μ1 − μ2
[(μ1X0,3 − U0,3)eμ2t − (μ2X0,3 − U0,3)eμ1t ] + γ̇ χ

μ1 − μ2

{
eμ1t

[
X0,1 −

(
t − 2

μ1 − μ2

)
(μ2X0,1 − U0,1)

]

+ eμ2t

[
X0,1 −

(
t − 2

μ2 − μ1

) (
μ1X0,1 − U0,1

)]}− χ

(
1 − eμ1t

μ1
− 1 − eμ2t

μ2

)
v3 (�r0) ; (A17)

while the components of �Ud can be obtained from derivation of the previous expressions �Ud = d �Xd/dt .

APPENDIX B: MEMORY KERNELS FOR THE
FREQUENCY DEPENDENT DRAG FORCES

Functions β̃ and ˜̃β appearing in Eq. (17) have the explicit
form

β̃ (ω) = 2βα̃2

−ω2τ 2
s A + 2α̃2B

[(
1 + α̃ + 1

9
α̃2

)
B + 1

9
ω2τ 2

s A

]
(B1)

and

˜̃β (ω) = 2βα̃2

−ω2τ 2
s A + 2α̃2B

B

(
1 + α̃ + 1

3
α̃2

)
, (B2)

respectively. In these expressions, β must be considered as
the Stokes limit of the drag coefficient for stick boundary
conditions β = 6πηR, where η is the dynamic viscosity. In
addition, we have α̃ = (−iωτf)1/2 with Re {α̃} > 0; A = 1 +
α̃ + α̃2/3; and B = 1 + iωτs − ω2τ 2

s /3.
The auxiliary function βslip appearing in Eq. (28) is defined

by

βslip(ω) = β

3

(1 + λ̃)(18 + 18α̃ + 3α̃2 + α̃3) + 4(1 + α̃)λ̃2

(2 + 2λ̃ + λ̃2)(3 + α̃) + 2(1 + α̃)λ̃2/α̃2
,

(B3)

where β = 4πηR is the Stokes limit of the drag coefficient for
slip boundary conditions and λ̃ = ωτs/ (−1 − iωτd)1/2.

The definition and physical meaning of the characteristic
times τs, τf, and τd appearing in Eqs. (B1)–(B3) are discussed
in the main text.
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