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Phase diagram of fluid phases in 3He-4He mixtures
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Fluid parts of the phase diagram of 3He-4He mixtures are obtained from a mean-field analysis of a suitable
lattice gas model for binary liquid mixtures. The proposed model takes into account the continuous rotational
symmetry O(2) of the superfluid degrees of freedom associated with 4He and includes the occurrence of vacancies.
This latter degree of freedom allows the model to exhibit a vapor phase and hence can provide the theoretical
framework to describe the experimental conditions for measurements of tricritical Casimir forces in 3He-4He
wetting films.
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I. INTRODUCTION

Binary mixtures of the helium isotopes 3He and 4He exhibit
a very rich phase behavior due to the presence of pronounced
quantum effects. For example, below a certain threshold value
of the pressure the zero-point fluctuations of the helium atoms
demolish the solid phase. Accordingly, the liquid phase persists
down to temperature T = 0. The solid phase forms only at high
pressures, whereas for sufficiently low pressures and T > 0
helium forms the vapor phase. The bulk phase diagram of
4He is shown schematically in Fig. 1. The liquid phase can be
either a normal fluid or superfluid. These two fluid phases
are separated by a line of second-order phase transitions,
which is called the λ-line. This line terminates at the critical
end points ce+ and ce at the liquid-solid and liquid-vapor
coexistence lines, respectively. The liquid-vapor coexistence
line terminates at the critical point c.

Adding 3He atoms to the pure 4He liquid dilutes the
4He carriers of superfluidity and thus lowers the critical
temperature of the superfluid transition. (Superfluid transitions
of 3He atoms occur at very low temperatures, which are not
considered here.) Beyond a certain dilution due to 3He atoms
the superfluid transition turns into a first-order phase transition;
this occurs at a tricritical point tc. The schematic phase diagram
of 3He-4He mixtures at fixed pressure is shown in Fig. 2. The
transition temperature Tλ of the second-order phase transition
to the superfluid phase depends on the concentration X3 of
3He atoms. For temperatures below the tricritical point tc,
the mixture undergoes a first-order superfluid-normal phase
transition which is accompanied by a two-phase region.

The schematic phase diagram of 3He-4He mixtures in the
(T ,Z,P ) space, where Z is the fugacity of 3He, is shown in
Fig. 3 [1]. In the plane Z = 0, i.e., in the case of pure 4He,
the phase diagram is the same as the one in Fig. 1. A1 and
A2 are the surfaces of first-order solid-liquid and vapor-liquid
transitions, respectively, whereas A3 and A4 are the surfaces of
second- and first-order phase transitions, respectively, between
the superfluid and the normal fluid. Accordingly, A3 and A4 are
separated by a line TC of tricritical points, which terminates
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at the tricritical end points tce+ and tce. The points tce+
and ce+ as well as tce and ce are connected by lines of
critical end points on A1 and A2, respectively. The surface
A4 intersects the surfaces A1 and A2 along triple lines of
three-phase coexistence between the solid and the two liquid
phases and the vapor and the two liquid phases, respectively.

Classical lattice models have turned out to successfully
describe the essential features of the phase diagram of binary
liquid mixtures. Such a model for describing the phase
diagram of 3He-4He mixtures near the tricritical point was
first introduced and studied by Blume, Emery, and Griffiths
(called the BEG model) [2]. In this classical spin-1 model,
the superfluid order parameter is mimicked by two discrete
values; the remaining possible value for the state variable
indicates whether a lattice site is occupied by a 3He atom
instead of a 4He atom. Since this interpretation of the spin-1
model does not allow for vacancies, it does not exhibit a vapor
phase. Furthermore, due to the discrete values assigned to the
superfluid order parameter, this model does not capture the
actual complex character of the superfluid order parameter.
Another interpretation of the BEG model is to allow for
vacant sites in a classical binary liquid mixture of species
A and B, which leads to the formation of an A-rich liquid, a
B-rich liquid, a mixed fluid phase, and a vapor phase. Such a
model has been used to study the condensation and the phase
separation in binary liquid mixtures [3–5]. The reduced phase
diagrams of ternary mixtures have also been studied within
this model [6].

Further improvements in the theoretical description of the
phase diagrams of 3He-4He mixtures have been achieved by
enriching the classical spin-1/2 model (i.e., without vacancies)
by a continuous value for the superfluid order parameter.
Although this model takes into account the continuous O(2)
symmetry of the superfluid order parameter, it does not
incorporate the occurrence of a vapor phase. Such a model
with no vacancies and O(2) symmetry of the superfluid
order parameter is given by the so-called vectorized BEG
(VBEG) model, which has been proposed and studied in
two dimensions (d = 2) by Cardy and Scalapino [7] and,
independently, by Berker and Nelson [8]. More recently it
has been investigated in d = 3 within mean-field theory and
by Monte Carlo simulations [9].

In order to be able to study wetting films in 3He-4He
mixtures which have been used to analyze experimentally the
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FIG. 1. Schematic bulk phase diagram of 4He exhibiting the
vapor, superfluid, normal fluid, and solid phases. The liquid-vapor
critical point is denoted by c, whereas ce+ and ce are critical end
points. The λ-line is the line of second-order phase transitions
between the superfluid and the normal fluid.

tricritical Casimir effect [10], the theoretical description of
3He-4He mixtures requires us to take into account the occur-
rence of a vapor phase. Tricritical Casimir forces acting on the
liquid-vapor interface of 3He-4He wetting films arise due to
the confinement of the tricritical fluctuations of the superfluid
order parameter and of the composition near the tricritical
point of the mixture. The considerable interest in this subject
has been triggered both by theoretical predictions [1,11] and
by experiments in which superfluid wetting films (4He [12,13]
and 3He-4He [10]) were used to provide reliable evidence for
critical Casimir forces. Specifically, concerning tricriticality,
a 3He-4He mixture was prepared in a thermodynamic state

T
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Tλ(X3)

two-phase region

FIG. 2. Schematic bulk phase diagram of 3He-4He mixtures at
fixed pressure. X3 is the concentration of 3He and Tλ(X3) is the
line of continuous superfluid transitions, which turn into first-order
superfluid transitions at the tricritical point tc. Note that Tλ(X3) meets
the two-phase region at its top. If Tλ(X3) met the two-phase region
below Ttc, this would imply that there is a discontinuous phase
transition either between two normal fluid phases or between two
superfluid phases, which is not the case.
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FIG. 3. Schematic phase diagram of 3He-4He mixtures in the
(T ,Z,P ) space, where Z = exp(μ3/T ) is the fugacity of 3He and P

is the pressure. A1 and A2 are the surfaces of the first-order solid-liquid
and vapor-liquid phase transitions, respectively, whereas A3 and A4

are the surfaces of second- and first-order phase transitions between
the normal fluid and the superfluid, respectively. A3 intersects A1 and
A2 along a line of critical end points connecting ce+ with tce+ and ce
with tce, respectively. The surfaces A3 and A4 are separated by a line
of tricritical points TC which meets A1 and A2 at the tricritical end
points tce+ and tce, respectively. A2 terminates at a line of critical
points, starting from c in the plane Z = 0. The phase diagram in the
plane Z = 0 is the same as the one in Fig. 1. The dashed lines have
no physical meaning; they indicate that the corresponding surface
continues. The arrow lw indicates the thermodynamic path along
which tricritical end point wetting occurs.

of the vapor phase, close to coexistence with the liquid phase.
Upon decreasing undersaturation (see the thermodynamic path
lw in Fig. 3), a complete wetting film was grown at the plates
of capacitors, the equilibrium thickness of which could be
determined very accurately from capacitance measurements.
From the balance of the effective forces acting on the depinning
liquid-vapor interface such as to thicken or to thin the film, the
universal scaling function of the tricritical Casimir force was
determined.

At present, the only available corresponding theoretical
analysis [14] of the behavior of the tricritical Casimir scaling
functions describing the 3He-4He wetting film thicknesses
employs the VBEG model without vacancies and thus does not
incorporate the vapor phase. Within this simplified approach,
the wetting films have been modeled by a slab geometry with
the boundaries introduced by fiat and not of via the actual
self-consistent formation as a wetting film. Therefore, it is
an open question how the critical Casimir forces emerge
in the 3He-4He wetting films when the system is brought
towards the critical or the tricritical end point, i.e., approaching
liquid-vapor coexistence from the vapor side. The present bulk
analysis is a prerequisite of such investigations.

The model proposed here is a classical spin-1 model,
including the continuous O(2) symmetry of the superfluid
order parameter, which does allow for vacant sites and
therefore exhibits a vapor phase if the number of vacant sites
is sufficiently large. The phase diagrams of this model are
obtained within mean-field theory. Since there are three order
parameters (i.e., the number densities of 3He and 4He as well as
the order parameter corresponding to the superfluid transition),
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the phase diagrams of the proposed model exhibit a rich
diversity of topologies. The main difficulty of the present study
resides in extracting from a high-dimensional parameter space
the range of parameters for which the phase diagrams have
the topology corresponding to the actual 3He-4He mixtures.
In the next section we introduce the model and continue by
obtaining various features of the phase diagram. We close with
a summary and conclusions.

II. THE MODEL

We consider a three-dimensional (d = 3) simple cubic
lattice with lattice spacing a = 1. The lattice sites {i | i =
1, . . . ,N } are occupied by either 3He or 4He or they are
unoccupied. The Hamiltonian of this system is

H = −J44N44 − J33N33 − J34N34

−μ4N4 − μ3N3 − JsÑ44 − H · Ñ4, (1)

where Nmn, with m,n ∈ {3,4}, denotes the number of pairs
of nearest neighbors of species m and n on the lattice
sites, Nm denotes the number of atoms of species m, and
−JsÑ44 denotes the sum of the interaction energy between
the superfluid degrees of freedom �i and �j associated
with the nearest-neighbor pairs 〈i,j 〉 of 4He with Js as the
corresponding interaction strength. J33, J44, and J34 describe
the effective interactions between the three types of pairs of He
isotopes. The 3He-3He and 4He-4He pair potentials between
the isotopes are not quite the same due to the slight differences
in their electronic states. Moreover, the corresponding effective
interactions differ due to the distinct statistics of the two
isotopes. The chemical potential of species m is denoted as μm.
H = (Hx,Hy) is the field conjugate to the superfluid degrees
of freedom given by the vector (cos �i, sin �i), provided that
the lattice site i is occupied by a 4He atom. (In 3He-4He
mixtures treated as a mixture of ideal Bose and Fermi gases
the phase transition to the superfluid phase depends only on
the concentration of 4He atoms. In the present model this
is captured by the last two terms in Eq. (1). However, a
refined theory such as the present one takes into account that
the exchange interactions between the three possible pairs of
helium isotopes affect the concentrations of the two species and
thus implicitly influence the phase transition to the superfluid
phase.)

In order to proceed, we express Nm and Nmn in terms of
occupation numbers of the lattice sites {i}. We associate with
each lattice site i an occupation variable si which can take the
three values +1, −1, or 0, where +1 means that the lattice site
is occupied by 4He, −1 means the lattice site is occupied by
3He, and 0 means the lattice site is unoccupied. Accordingly,
one has

N4 = 1

2

∑
i

si(si + 1) ≡
∑

i

pi ,

N3 = 1

2

∑
i

si(si − 1),

N44 = 1

4

∑
〈i,j〉

(si(si + 1)sj (sj + 1)) ≡
∑
〈i,j〉

pipj ,

N33 = 1

4

∑
〈i,j〉

(si(si − 1)sj (sj − 1)),

N34 = 1

4

∑
〈i,j〉

[si(si + 1)sj (sj − 1) + si(si − 1)sj (sj + 1)], (2)

where
∑

〈i,j〉 denotes the sum over nearest neighbors. Using
the above definitions one obtains

H = −K
∑
〈i,j〉

sisj − J
∑
〈i,j〉

qiqj − C
∑
〈i,j〉

(siqj + qisj )

−�−
∑

i

si − �+
∑

i

qi − Js

∑
〈i,j〉

pipj cos(�i − �j )

−Hx

∑
i

pi cos �i − Hy

∑
i

pi sin �i , (3)

where∑
〈i,j〉

pipj cos(�i − �j ) = Ñ44

=
∑
〈i,j〉

pipj

(
cos �i

sin �i

)(
cos �j

sin �j

)
,

∑
i

pi(cos �i, sin �i) = Ñ4, (4)

and

qi = s2
i ,

pi = 1
2 si(si + 1),

K = 1
4 (J44 + J33 − 2J34),

J = 1
4 (J44 + J33 + 2J34),

C = 1
4 (J44 − J33),

�− = 1
2 (μ4 − μ3),

�+ = 1
2 (μ4 + μ3),

(5)

and �i ∈ [0,2π ] represents the superfluid degree of freedom
at the lattice site i, provided it is occupied by 4He.

III. MEAN-FIELD THEORY

In this section we apply mean-field theory to the above
model. This approximation follows from a variational method
based upon approximating the total equilibrium density matrix
by a product of density matrices associated with each lattice
site [15].

Due to the variation principle, the free energy F obeys the
following inequality:

F � φ = T̂r(ρH) + (1/β)T̂r(ρ ln ρ), (6)

where ρ is any trial density matrix with T̂r(ρ) = 1, with
respect to which φ on the right-hand side of Eq. (6) should
be minimized in order to obtain the best approximation;

T̂r =
∑

s1=±1,0

∫ 2π

0
d�1 · · ·

∑
sN =±1,0

∫ 2π

0
d�N (7)
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denotes the trace and β = 1/T , where T is the temperature
times kB . The mean-field approximation assumes that any
lattice site experiences the same mean field generated by its
neighborhood so the total density matrix will be the product
of the density matrices corresponding to each lattice site:

ρ =
∏

i

ρi, (8)

with

Trρi =
∑

si=±1,0

∫ 2π

0
d�iρi(si,�i) = 1. (9)

For homogeneous bulk systems the local density matrix is
independent of the site.

The variational mean-field free energy per site for the
Hamiltonian introduced in the previous section is [with
cos(�i − �j ) = cos �i cos �j + sin �i sin �j ]

φ

N = − z

2
[K〈si〉2 + J 〈qi〉2 + 2C〈qi〉〈si〉

+ Js(〈pi cos �i〉2 + 〈pi sin �i〉2)]

−�−〈si〉 − �+〈qi〉 − Hx〈pi cos �i〉 − Hy〈pi sin �i〉
+ (1/β)Tr(ρi ln ρi), (10)

where N is the total number of sites and z is the coordination
number of the lattice (z = 2d, where d is the spatial dimension
of the system; here z = 6) and 〈. . . 〉 = Tr(ρi...) denotes
the thermal average, taken with the trial density matrix ρi

associated with the lattice site i.
Minimizing the variational function φ/N with respect to

ρi renders the best normalized functional form of ρi . There
are two approaches to find the variational minima. In the first
approach one parametrizes the density matrix ρi in terms of
the order parameters of the phase transitions and minimizes
φ/N with respect to the coefficients multiplying these order
parameters. In the second approach one treats ρ itself as
a variational function and minimizes φ/N with respect to
it [15]. We follow the second approach and calculate the
functional derivative of φ/N in Eq. (10) with respect to
ρi(si,�i) using δρi (si ,�i )

δρj (sj ,�j ) = δ(�i − �j )δsi ,sj
and equate it to

the Lagrange multiplier η corresponding to the constraint
Tr(ρi) = 1,

η = δ(φ/N )

δρi(si,�i)

= −z[K〈si〉si + J 〈qi〉qi + C(qi〈si〉 + 〈qi〉si)

+ Js(〈pi cos �i〉pi cos �i + 〈pi sin �i〉pi sin �i)]

−�−si − �+qi − Hxpi cos �i − Hypi sin �i

+ (1 + ln ρi)/β. (11)

Equation (11) can be solved for ρi(si,�i):

ρi = eβη−1−βhi , (12)

where
hi(si,�i) = − si(kX + cD + �−) − qi(jD + cX + �+)

− pi[(jsMx + Hx) cos �i+(jsMy + Hy) sin �i]
(13)

is the single-site Hamiltonian in which the coupling constants
are rescaled as j = zJ , c = zC, k = zK , js = zJs and where
the following order parameters are introduced:

X := 〈si〉,
D := 〈qi〉,

Mx := 〈pi cos �i〉,
My := 〈pi sin �i〉,

(14)

which in the bulk are independent of i. In accordance with
Eq. (4) one has 〈Ñ4〉 = NM. The normalization Tr(ρi) = 1
yields

e−βη+1 = Tr(e−βhi ) (15)

so

ρi = e−βhi

Tr(e−βhi )
, (16)

where hi is given by Eq. (13).
The order parameters defined in Eq. (14) allow one to

determine the number densities X4 = 〈N4〉
N = D+X

2 and X3 =
〈N3〉
N = D−X

2 so X = (〈N4〉 − 〈N3〉)/N = X4 − X3 is the dif-
ference of the number densities and D = (〈N4〉 + 〈N3〉)/N is
the total number density. The concentration of 4He and 3He is

〈N4〉
〈N4〉+〈N3〉 ≡ C4 = D+X

2D
= X4/D and 〈N3〉

〈N4〉+〈N3〉 ≡ C3 = D−X
2D

=
X3/D, respectively. Mx and My are the components of the
two-dimensional superfluid order parameter M = (Mx,My)
with M :=

√
|M|2 =

√
M2

x + M2
y . The equilibrium superfluid

order parameter M points into the direction of H. This
follows from the principle of minimum free energy together
with the relation ∂F

∂H = −M, where F is the free energy of
the system, which implies that for fixed T , �+, and �−
one has dF = −dH · M. Thus for H with an orientation
ψ , i.e., H = (Hx,Hy) = H (cos ψ, sin ψ) with H :=

√
|H|2 =√

H 2
x + H 2

y , M points into the same direction, i.e., M =
(Mx,My) = M(cos ψ, sin ψ).

Within the aforementioned mean-field approxima-
tion the order parameters X(�−,�+,H,T ) = Tr(ρisi),
D(�−,�+,H,T ) = Tr(ρiqi) and M(�−,�+,H,T ) [with
the latter obtained from Mx = Tr(ρipi cos �i) and My =
Tr(ρipi sin �i)] are given by three coupled self-consistent
equations:

X = −W (X,D; �−,�+,H,T ) + R(X,D; �−,�+,H,T )I0(βjsM + βH )

1 + W (X,D; �−,�+,H,T ) + R(X,D; �−,�+,H,T )I0(βjsM + βH )
, (17)

D = W (X,D; �−,�+,H,T ) + R(X,D; �−,�+,H,T )I0(βjsM + βH )

1 + W (X,D; �−,�+,H,T ) + R(X,D; �−,�+,H,T )I0(βjsM + βH )
, (18)

and

M = R(X,D; �−,�+,H,T )I1(βjsM + βH )

1 + W (X,D; �−,�+,H,T ) + R(X,D; �−,�+,H,T )I0(βjsM + βH )
, (19)
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where I0 and I1 are modified Bessel functions (see Sec. 9.6
in Ref. [16]). The functions W (X,D; �−,�+,H,T ) and
R(X,D; �−,�+,H,T ) are given by

W (X,D; �−,�+,H,T ) = eβ[(c−k)X+(j−c)D+�+−�−] > 0
(20)

and

R(X,D; �−,�+,H,T ) = eβ[(c+k)X+(j+c)D+�++�−] > 0
(21)

so D > X. The equilibrium free energy φ(�−,�+,H,T ) is
given by

φ(�−,�+,H,T ) = N
[
k

2
X2 + j

2
D2 + cXD + js

2
M2

+ 1

β
ln(1 − D)

]
. (22)

In the limit �+ → +∞ both W and R diverge so, according
to Eq. (18), one has D(�−,�+ → +∞,H,T ) → 1, i.e., all
lattice sites are occupied and the concentrations reduce to C4 =
(1 + X)/2 and C3 = (1 − X)/2. With the explicit expressions
in Eqs. (20) and (21), in the limit �+ → +∞, Eqs. (17)
and (19) reduce to:

X = −e−β(2kX+2c+2�−) + I0(βjsM + βH )

e−β(2kX+2c+2�−) + I0(βjsM + βH )
, �+ = ∞,

(23)
and

M = I1(βjsM + βH )

e−β(2kX+2c+2�−) + I0(βjsM + βH )
, �+ = ∞.

(24)
Expressing X in Eqs. (23) and (24) in terms of C4 renders

C4 = I0(βjsM + βH )

eβ(−k̃C4+�̃−) + I0(βjsM + βH )
, �+ = ∞, (25)

and

M = I1(βjsM + βH )

eβ(−k̃C4+�̃−) + I0(βjsM + βH )
, �+ = ∞, (26)

where k̃ = 4k and �̃− = 2(−�− + k − c). For H = 0 these
equations have the same form as the corresponding ones in
Ref. [9], which do not allow for vacant sites from outset.
Thus in the limit �+ → +∞ and for H = 0 our present more
general results reduce to those of the more restricted model
studied before.

IV. PHASE DIAGRAM

In this section we determine the phase diagram of the VBEG
model within mean-field theory. Although certain features of
the phase diagram can be obtained analytically, most parts
of it can be determined only numerically. In order to find
the coexisting states of phase equilibria, one has to identify
those distinct states (Xν,Dν,Mν), which share the same values
for the chemical potentials and the pressure at a common
temperature. The chemical potentials can be obtained by
solving Eqs. (17) and (18) together with Eqs. (20) and (21)

for �+ and �−:

�+(X,D,M; H,T )

= T

2
ln(D2 − X2) − T ln(2(1 − D)) − cX − jD

−T

2
ln(I0(jsM/T + H/T )) (27)

and

�−(X,D,M; H,T )

= T

2
ln

D + X

D − X
− kX − cD − T

2
ln(I0(jsM/T + H/T )).

(28)

Within the grand-canonical ensemble the pressure is given by
φ/N = −P . (Note that the sample volume is V = Na3, here
with a = 1). According to Eqs. (17)–(19), the order parameters
of any state must fulfill the relation

2M

X + D
= M

X4
= I1(βjsM + βH )

I0(βjsM + βH )
, (29)

which expresses M in terms of X+D
2 = X4, T , and H .

Depending on the value of the coupling constant js the phase
diagram exhibits various topologies.

A. Phase diagram for a simple, normal liquid mixture: js = 0

For js = 0 and H = 0 there is no superfluid phase and
M is always zero [compare Eq. (29) with I1(y → 0) = 1

2y

and I0(y → 0) = 1]. For js = 0, due to I0(0) = 1, the last
term in Eq. (27) and in Eq. (28) drops out. Thus the phase
diagram will be that of a simple binary normal liquid mixture
of species 3 and 4, similar to the ones shown in Refs. [3–5].
The first-order demixing transitions occur at low temperatures,
whereas at high temperatures the liquid is mixed. The demixing
transitions terminate in a line of critical points which, due to
∂φ

∂X
= −�− [see Eqs. (10) and (14)], are given by [15]

d�−
dX

∣∣∣∣
�+,T

= d2�−
dX2

∣∣∣∣
�+,T

= 0,
d3�−
dX3

∣∣∣∣
�+,T

> 0, (30)

where dn�−
dXn |�+,T denotes the nth total derivative of �− [see

Eq. (28)] with respect to X at constant �+ and T . Note that the
independent variables are (T ,�+,�−). Since �− as given by
Eq. (28) depends on D, which for �+ = const in turn depends
implicitly on X via Eq. (27), calculating the total derivative
of �− with respect to X requires the knowledge of the partial
derivative of D with respect to X. Thus the first condition in
Eq. (30) reads

d�−
dX

∣∣∣∣
�+,T

= ∂�−
∂X

∣∣∣∣
�+,T

+ ∂�−
∂D

∂D

∂X

∣∣∣∣
�+,T

= 0, (31)

where ∂�−
∂X

and ∂�−
∂D

follow from Eq. (28) and where ∂D
∂X

|�+,T

is obtained by taking the derivative of Eq. (27) with respect to
X at fixed �+ and T and by solving for ∂D

∂X
|�+,T . Accordingly,

the first condition in Eq. (30) leads to a quadratic equation:

T 2 + a1T + a0 = 0, (32)
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with

a1 = −D(−2cX + j + k) + X(kX − 2c) + D2j ,

a0 = (D − 1)(D2 − X2)(c2 − jk).
(33)

Equation (32) renders as a solution two branches T1,2(X,D).
Similarly, the second condition in Eq. (30) leads to an
equation G(X,D,T ) = 0, where, due to the first condition,
T = T1,2(X,D). Thus it takes the form G(X,D,T1,2(X,D)) =:
g1,2(X,D) = 0. Therefore, for a given value D(0) of D, the so-
lution of g1,2(X,D(0)) = 0 (which must be solved numerically)
renders X(D(0)

1,2) = X
(0)
1,2 so at T (0)

1,2 = T1,2(X(0)
1,2,D

(0)
1,2) the model

exhibits a critical point, provided the condition d3�−
dX3 |�+,T > 0

is fulfilled. This latter condition and the physical constraints
T > 0, P > 0, and D > |X| exclude one of the two branches
of T1,2(X,D). Thus, for various values of D, one obtains a
set of points {(D,X(D),T (X(D),D))}, which forms a line of
critical points in the space spanned by (X,D,T ). According to
Eqs. (27) and (28), the set {(D,X,T )} can be transformed to
the set {(�+(D,X; T ),�−(D,X; T ),T )}, which yields a line of
critical points in the space spanned by (�+,�−,T ). This line
ends at the liquid-vapor coexistence surface forming a critical
end point (see Fig. 4).

Z

Td

b

SL

SV

LL

a c

P
solid liquid

vapor

VL

e
of pure 4 fluid
sublimation curve

melting curve
of pure 4 fluid

FIG. 4. (Color online) The schematic phase diagram for H = 0
and js = 0 (i.e., without coupling between the superfluid degrees
of freedom). The phase diagram in the plane Z = 0 is that of a
one-component system consisting of particles “4.” Upon increasing
the fugacity Z of particles “3,” the transition lines in the plane Z = 0
extend to form three distinct surfaces. The surface SL is a surface of
first-order phase transitions between the solid and the liquid phases.
The transition surfaces between the vapor and the liquid phases, and
between the solid and the liquid phases, are denoted by VL and SV,
respectively. The surface VL terminates at a line of critical points
(green line). The critical point of the pure system of “4” particles is
denoted by e. The liquid can be either mixed or demixed. Concerning
the demixed phases, LL denotes the surface of first-order phase
transitions between the phase rich in component 3 (large Z) and
the phase rich in the component 4 (small Z). This surface terminates
at a line of critical points (brown line), which meets the surfaces SL
and VL at the critical end points b and c, respectively. The point a is
a quadruple point, whereas d is a triple point. The lines a-b, a-c, and
a-d are triple lines. The dashed lines have no physical meaning; they
indicate that the corresponding surfaces continue.

The schematic phase diagram for js = 0 in the (T ,Z,P )
space is shown in Fig. 4, with Z = exp(μ3/T ). There are
four surfaces separating various phases: the surface SL of
first-order phase transitions between the solid and the liquid
phases, the surface VL of first-order phase transitions between
the vapor and the liquid phases, the surface SV of first-order
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0.1 0.7
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X l
3

ce )b()a( 3-rich
4-rich

-0.10 -0.05Xv

0.8

1.0

0.87 0.97

T/k

Dl

ce(c) (d)3-rich

4-rich

0.05 0.15Dv

0.8

1.0

0.04 0.12

T/k

P/k

ce )f()e(

0.16 0.18Z

ce

two-phase

region

two-phase

region

FIG. 5. Phase diagrams for the coupling constants
(c/k,j/k,js/k) = (1,5.714,0) and H = 0. Along the triple
line of three-phase coexistence (see line a-c in Fig. 4) the figures
show the first-order demixing transitions of the liquid at coexistence
with the vapor phase (a) in the (Xl

3, T ) plane, with Xl
3 = 〈N3〉l/N

corresponding to the 3-particles in the liquid phase; (b) in the
(Xv , T ) plane at coexistence with the two liquid phases, where
Xv = (〈N4〉v − 〈N3〉v)/N in the vapor phase; (c) in the (Dl , T ) plane,
where Dl = (〈N4〉l + 〈N3〉l)/N in the liquid phase; and (d) in the
(Dv , T ) plane, where Dv = (〈N4〉v + 〈N3〉v)/N in the vapor phase.
The indices l and v refer to the values of the order parameters in the
liquid and in the vapor phase, respectively. The critical end point ce
here corresponds to the point c in Fig. 4. Panels (e) and (f) show the
dependencies of the pressure P and of the fugacity Z = exp(μ3/T )
on the temperature along the triple line a-c in Fig. 4. The two liquid
states become identical at the critical end point ce at Tce/k = 1.947,
above which the liquid is mixed. The coexisting liquid and
vapor phases at ce are (Xce

l ,Dce
l ,Mce

l ) = (0.050,0.913,0) and
(Xce

v ,Dce
v ,Mce

v ) = (−0.120,0.180,0), respectively. The transitions
between the vapor phase and the liquid phases are always first order.
According to (e) and (f), along a-c both P and Z vary as function
of T , with the requirement of staying in coexistence with the vapor
phase. This implies that the white domains in (a) and (c) are not
projections of a three-dimensional surface, given by the equation
of state, onto the (T ,X3) and (T ,D) plane, respectively. The black
lines provide only the T dependence of X3 and Dl along the line a-c,
which contains two branches. Similar remarks hold for Figs. 9–12.
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phase transitions between the solid and the liquid phases, and
the surface LL of first-order phase transitions between the
phase rich in component 3 and the phase rich in the component
4. This latter surface terminates at a line of critical points
(brown line), and VL terminates at a line of critical points
(green line).

In Fig. 5, the demixing transitions at coexistence with
the vapor phase (see the line connecting the points a and
c in Fig. 4) are shown for the coupling constants chosen
as (c/k,j/k,js/k) = (1,5.714,0). Along this triple line of
first-order liquid-liquid transitions at coexistence with the
vapor phase, three thermodynamic states with distinct number
densities and concentrations coexist. The values of the order
parameters of these three states are shown in Figs. 5(a)–5(d).
The corresponding values of the pressure P/k and of the
fugacity, Z = exp(μ3/T ) = exp(μ3

k
1

T/k
) of the component

3 of the mixture (μ3 = �+ − �− and T are rescaled by
the coupling constant k), are shown in Figs. 5(e) and 5(f),
respectively. The vapor phase is characterized by a small value
Dv of the order parameter D, whereas a large value Dl of the
density order parameter D corresponds to the liquid state.
In Fig. 5, at fixed temperatures below the critical end point
(ce) (which is denoted as c in Fig. 4), three values for X3,
i.e., two values Xl

3 for X3 in the liquid phases [Fig. 5(a)]
and one value for the vapor phase [Xv in Fig. 5(b)], and
three values for D [Figs. 5(c) and 5(d)] characterize the

three states which share the same values of the pressure
[Fig. 5(e)] and of the chemical potentials [and thus the fugacity,
Fig. 5(f)]. At Tce/k = 1.947 the two liquid states merge into a
single state with (Xce

l ,Dce
l ,Mce

l ) = (0.050,0.913,0), which co-
exists with the vapor state characterized by (Xce

v ,Dce
v ,Mce

v ) =
(−0.120,0.180,0). For T > Tce the liquid is mixed. The
transitions between the vapor and the liquid phases are always
first order, above and below Tce.

B. Phase diagram including the superfluid phase: js > 0

For js > 0 the model exhibits superfluid transitions, which
can be either first or second order. In order to find the surface
of second-order phase transitions to the superfluid phase (see
A3 in Fig. 3), we introduce the appropriate thermodynamic
potential A as the Legendre transform of φ:

A(�−,�+,M,T ) = φ(�−,�+,H (�−,�+,M,T ),T )

−MH (�−,�+,M,T ), (34)

where, according to Eq. (1), ∂φ(�−,�+,M,T )
∂H

= M , which im-

plicitly renders H = H (�−,�+,M,T ) so ∂A(�−,�+,M,T )
∂M

=
−H (�−,�+,M,T ). In order to determine H (�−,�+,M,T )
we use Eq. (29). Because we are interested in the phase diagram
for H = 0, we replace the right-hand side of Eq. (29) by its
approximation linear in H :

2M

X + D
= I1 (jsM/T )

I0 (jsM/T )
+ H

T

I ′
1 (jsM/T ) I0 (jsM/T ) − I ′

0 (jsM/T ) I1 (jsM/T )

I 2
0 (jsM/T )

. (35)

Solving this equation for H [using I ′
0 = I1, I ′

1 = (I0 + I2)/2, and I2(a) = I0(a) − 2
a
I1(a)] leads to

H = I1(jsM/T )

M/T

2MI0(jsM/T ) − (X + D)I1(jsM/T )

I 2
0 (jsM/T ) + I0(jsM/T )I2(jsM/T ) − 2I 2

1 (jsM/T )

= −jsT I1(jsM/T )[−2MI0(jsM/T ) + (D + X)I1(jsM/T )]

2[−jsM(I1(jsM/T ))2 + I0(jsM/T )[T I1(jsM/T ) + jsMI2(jsM/T )]]
. (36)

Due to ∂A
∂M

= −H the conditions for the critical points, where
M vanishes continuously (see A3 in Fig. 3), are [compare
Eq. (30)]

dH

dM

∣∣∣∣
�+,�−,T

= d2H

dM2

∣∣∣∣
�+,�−,T

= 0,
d3H

dM3

∣∣∣∣
�+,�−,T

> 0,

(37)

with all total derivatives to be taken at M = 0 and at constant
�+, �−, and T [compare Eq. (31)]. Note that the independent
variables are (T ,�+,�−). According to Eq. (36), calculating
the total derivatives of H with respect to M requires the
expression for ∂H

∂M
and the knowledge of the partial derivatives

of X and D with respect to M . These latter ones are obtained
by taking the partial derivatives of Eqs. (27) and (28) with
respect to M at fixed �+ and �− and by solving the resulting
two coupled equations for the required derivatives ∂X

∂M
and ∂D

∂M
.

Applying the conditions for critical points [Eq. (37)] leads
to the following expression for the surface A3 of superfluid

transitions:

Ts = js

4
(D + X). (38)

We note that the same relation follows independently from
Eq. (29) for H = 0 in the limit M → 0. The route via
Eq. (36) has, however, the additional advantage of facilitating
also the calculation of tricritical points [see Eqs. (39)–(41)].
Furthermore, expanding the right-hand side of Eq. (29) up
to and including the order H 3 leaves the result in Eq. (38)
unchanged.

With D and X given by Eqs. (17)–(19) in terms of �+,
�−, and T (note that H = 0 and that on this surface M = 0),
Eq. (38) renders Ts(�−,�+) which corresponds to a surface
in the space spanned by (�+,�−,T ).

This surface of second-order phase transitions between the
normal fluid (M = 0) and the superfluid (M 
= 0) ends at the
surface of liquid-vapor coexistence, forming a line of critical
end points (see the line connecting ce and tce in Fig. 3). The

022138-7



N. FARAHMAND BAFI, A. MACIOŁEK, AND S. DIETRICH PHYSICAL REVIEW E 91, 022138 (2015)

conditions for tricritical points are

dH

dM

∣∣∣∣
�+,�−,T

= d2H

dM2

∣∣∣∣
�+,�−,T

= d3H

dM3

∣∣∣∣
�+,�−,T

= d4H

dM4

∣∣∣∣
�+,�−,T

= 0,
d5H

dM5

∣∣∣∣
�+,�−,T

> 0,

(39)

with all total derivatives to be taken also at M = 0, which again
requires us to consider the partial derivatives of X and D with
respect to M , as discussed after Eq. (37). The vanishing of the
first four derivatives leads to a quadratic equation for D [where
Eq. (38) has been used to eliminate the dependence on T ]:

b2D
2 + b1D + b0 = 0, (40)

where the coefficients b0,1,2 are given in terms of the order
parameter X and the coupling constants:

b0 = X[16c2 − (4j + js)(4k + js)]

+ X2js(4k + js),

b1 = 2X
[
j 2
s − 8c2 + 8jk + 2js(j + k)

]
− (4c + js)

2 + 16jk,

b2 = 16c2 + js(8c − 4k + js) − 16jk.

(41)

We note that, also here, expanding the right-hand side of
Eq. (29) up to and including the order H 2 does not change
the results in Eqs. (40) and (41).

Accordingly, the solution of Eq. (40) yields D =
D0(X) which, due to Eqs. (17)–(19), leads to the relation
D(�−,�+,T ) = D0(X(�−,�+,T )). This turns into the re-
lationship T (�−,�+) which corresponds to a surface in the
space spanned by (�+,�−,T ). Simultaneously, Eq. (38) has to
hold, which also corresponds to a surface in this space. Thus
the tricritical points correspond to the intersection of these
two surfaces and thus form a line of tricritical points (TC in
Fig. 3). The condition for the fifth derivative along this line can
be checked only numerically. This condition and the fact that
D > |X| exclude one of the two solutions of Eq. (40). For small
values of js the model exhibits a superfluid transition in the
liquid phase (see Fig. 6). In certain parts of the phase diagram
this transition is second order, in other parts it is first order.
Thus upon switching on js a new surface LL3 raises above the
bottom (i.e., VL) of the phase diagram shown in Fig. 4 and
changes the character of the lower part of the surface LL in
Fig. 4, indicated as LL1, in Fig. 6.

The surface LL3 of continuous transitions separates the
superfluid and the normal fluid both 4-rich. The surface LL1

corresponds to first-order phase transitions between the 4-rich
superfluid and the 3-rich normal fluid. The surface LL1 ∪ LL2

terminates LL3 at a line f-i of critical end points.
Upon increasing the coupling constant js (Fig. 7), the

model exhibits as a new feature a line j-k of tricritical
points. In comparison with the phase diagram for weak js

(Fig. 6), a new surface LL4 emerges (j-k-f-i-j) which is the
surface of first-order phase transitions between the superfluid
and the normal fluid, both 4-rich (Fig. 7). The surface LL3

of the second-order phase transitions between the superfluid
and the normal fluid both 4-rich meet the surface LL4 at a

Z

T

SL

SV VL

b
g

d

3LL
LL2

a c
f

i

P
solid

vapor

liquid

h e

1
LL

FIG. 6. (Color online) Schematic phase diagram for small values
of js . SL, VL, and SV are surfaces of first-order phase transitions
with the same meanings as in Fig. 4. The points denoted as g and h
are critical end points of the continuous superfluid transition of the
4-pure fluid (i. e., Z = 0); g-h is the line of critical points for the
continuous superfluid transition of the 4-pure fluid. LL3 is a surface
of continuous superfluid transitions bounded by the red lines g-h,
h-f, i-g, and the violet line f-i. The triple point of the solid, vapor,
and superfluid phases of the 4-pure fluid is denoted as d. In the
plane Z = 0 the line to the left of d is the sublimation curve of the
4-pure fluid; d-h-e is the liquid-vapor coexistence line of the 4-pure
fluid, which ends at its critical point e; the extension of the latter to
Z > 0 forms the green line. The line d-g is the melting curve of the
4-pure solid into the superfluid and above g into the normal fluid.
The line d-a is the triple line along which solid, vapor, and superfluid
coexist; beyond a this line extends into a triple line along which solid,
vapor, and normal fluid coexist. At the quadruple point a solid, vapor,
normal fluid, and superfluid coexist. The surface LL1 ∪ LL2, which
corresponds to the surface LL in Fig. 4, is the surface of first-order
transitions between the 4-rich liquid at the back and the 3-rich liquid
in the front; it is bounded by the brown line b-c of critical points
which connects the critical end points b and c. The surface LL1 ∪ LL2

of first-order liquid-liquid demixing transitions terminates the surface
LL3 of continuous superfluid transitions. At this intersection this gives
rise to the violet line f-i of critical end points, which themselves end at
the end points i and f of this line of critical end points. At the surface
LL2 there are first-order phase transitions between two normal fluids,
whereas at the surface LL1 there are first-order phase transitions
between a normal fluid with high concentration of 3-particles and a
superfluid with high concentration of 4-particles. Accordingly, the
superfluid phase forms a dome formed by the plane Z = 0, SL, VL,
LL3, and LL1 with the vertices d, a, f, h, g, and i.

line of tricritical points (dark blue line j-k). LL1 and LL2 meet
LL4 at a triple line (i-f), where the superfluid and the 4-rich
normal fluid coexist with the 3-rich normal fluid. Thus the
increase of js changes the character of that part of LL3 in
Fig. 6, which is close to LL2, from second-order to first-order
phase transitions.

If the coupling constant js is increased further (Fig. 8),
first-order phase transitions between liquid phases occur only
between the superfluid and the normal fluid phase. There are
no longer first-order demixing transitions between two normal
fluids. Thus, upon increasing js , the surface LL3 ∪ LL4 moves
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FIG. 7. (Color online) Schematic phase diagram for a value of
js , for which both critical (b-c and LL3) and tricritical (j-k) phase
transitions between liquids occur. SL, VL, and SV are the surfaces of
first-order phase transitions similar to those in Fig. 4. The superfluid
dome is characterized the vertices a, f, k, h, g, d, j, and i. Outside
this region the liquid is a normal fluid. LL1 is the surface of first-
order phase transitions between the 3-rich normal fluid and the 4-rich
superfluid, LL2 (enclosed by the lines i-b, b-c, c-f, and f-i) is the
surface of first-order demixing phase transitions between 3-rich and
4-rich normal fluids, whereas LL3 is the surface of second-order phase
transitions between the normal fluid and the superfluid. The blue line
(j-k) is the line of tricritical points where the surface LL3 connects
to the new surface LL4 of first-order phase transitions between the
normal fluid and the superfluid liquid phases both being 4-rich. The
surfaces LL2 and LL3 ∪ LL4 meet at the line of triple points (light blue
line i-f). The brown and the green lines are lines of critical points; a, i,
and f are quadruple points, d is a triple point, whereas b, c, g, and h are
critical end points. The line of triple points (i-f) ends on the surfaces
SL and VL at the points i and f, respectively. The points j and k are
tricritical end points. Note that in Fig. 6 the line i-f is a line of critical
end points, whereas here it is a triple line. This different character
motivates their different color code (violet versus light blue). This
different character also implies that the lines a-i-b and a-f-c have a
break in slope at i and f, respectively, here, but not in Fig. 6.

up (i.e., towards higher P and T ) so, accordingly, the line
i-f also moves up towards the line b-c. This implies that
LL2 shrinks and the wedge between the lines i-b and i-j
becomes shorter. Finally, LL2 and b-c disappear and LL1 and
LL4 become a single surface of first-order transitions between
4-rich superfluid and 3-rich normal liquid; this implies that the
line i-f disappears, too. Accordingly, the phase diagram is left
with only a (blue) line of tricritical points k-j. This topology
of the phase diagram is shown in Fig. 8. In this case the
liquid-liquid phase transitions are either second-order phase
transitions on LL3 between the normal fluid and the superfluid
mixed liquid or first-order phase transitions on LL4 ∪ LL1

between the normal fluid and the superfluid liquid.
As discussed in the introduction, in the case of actual

3He-4He mixtures the solid phase is formed only at high
pressures, whereas for sufficiently low pressures the superfluid
reaches down to T = 0. In order to obtain this topology from
that of Fig. 8, by fiat one has to pull up and tilt the surface SL

Z

T
a

SV

SL

j

g

VL

d

k

P

liquid

vapor

solid

h e

LL
3

LL
1

LL
4

∪

FIG. 8. (Color online) Schematic phase diagram for a value of
js , for which only a tricritical line occurs. In this case, first-order
phase transitions between liquid phases occur only between the
superfluid and the normal fluid so the model exhibits only a (blue)
line of tricritical points (j-k). SL, VL, and SV are the surfaces of
first-order phase transitions as described in Fig. 4. The superfluid
dome is characterized by the vertices a, k, h, g, d, and j. Outside
this region the liquid is a normal fluid. The surface LL2 from Fig. 7
does not exist anymore and the transitions between liquid phases
are either second-order phase transitions between the normal fluid
and the superfluid mixed liquid (LL3) or first-order phase transitions
between the normal fluid and the superfluid liquid (LL1 ∪ LL4). The
surfaces LL3 and LL1 ∪ LL4 meet at the line j-k of tricritical points
(blue line). The points g and h are critical end points, whereas j and
k are tricritical end points. The point a is a quadruple point and d is a
triple point.

and to shift the superfluid dome down to T = 0 so the surface
SV disappears. This transforms the phase diagram in Fig. 8
to the one shown in Fig. 3 such that g = ce+, h = ce, e = c,
LL3 = A3, j-k = TC, j = tce+, k = tce, and LL1 ∪ LL4 =
A4. In this sense the bulk phase diagram shown in Fig. 8 is
supposed to mimic the one of the actual 3He-4He mixtures.

The demixing transitions at coexistence with the vapor
phase for various sets of the coupling constants are shown
in Figs. 9–12. In these figures the values of c/k and j/k are
the same; only the value of js is changed. For the choice
of coupling constants (c/k,j/k,js/k) = (1,5.714,1.717) (see
Fig. 9), the phase diagram exhibits the topology of the
schematic phase diagram shown in Fig. 6. The red line in
Fig. 9(a) provides the temperature dependence of X3 along the
red line in Fig. 6 emanating from f towards h. The green point e
in Fig. 9 corresponds to the point f in Fig. 6 and the black point
in Fig. 9 corresponds to the point c in Fig. 6. Because in Fig. 6
the red line h-f is a line of continuous phase transitions right
up to the point f, the line a-f-c does not exhibit a break in slope
at f. Below e, the liquid transitions are first-order transitions
between the normal fluid and the superfluid liquid, whereas
above e the demixing curve remains the same as in the case of
js = 0 (see Fig. 4).

As discussed in Fig. 7, for even larger values of js , both con-
tinuous and first-order superfluid transitions occur, giving rise
to the occurrence of a line of tricritical points. For the choice
of coupling constants (c/k,j/k,js/k) = (1,5.714,2.231) and
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FIG. 9. (Color online) Phase diagram for the coupling constants
(c/k,j/k,js/k) = (1,5.714,1.717) and H = 0 corresponding to
Fig. 6. Along the triple line a-f in Fig. 6 the figures show the
coexistence between vapor, normal fluid, and superfluid (a) in the (Xl

3,
T ) plane, with Xl

3 = 〈N3〉/N corresponding to the number density of
3-particles in the liquid phase; (b) in the (Xv , T ) plane at coexistence
with the two liquid phases, where Xv = (〈N4〉v − 〈N3〉v)/N =
〈Xv

4〉 − 〈Xv
3〉 in the vapor phase; (c) in the (Dl , T ) plane, where

Dl = (〈N4〉l + 〈N3〉l)/N is the total number density in the liquid
phase; and (d) in the (Dv , T ) plane, where Dv = (〈N4〉v + 〈N3〉v)/N
is the total number density in the vapor phase. The indices l and
v refer to the values of the order parameters in the liquid and the
vapor phases, respectively. Panels (e) and (f) show the temperature
dependence of P and Z along the triple line a-c Fig. 6 (black) and
along the red line f-h near f in Fig. 6. The red line is the line of
second-order transitions between the normal fluid and superfluid
at coexistence with vapor, which ends at the demixing curve at
the green critical end point e (i. e., f in Fig. 6). At e the liquid
state (Xe

l ,D
e
l ,M

e
l ) = (0.773,0.994,0) coexists with the vapor state

(Xe
v,D

e
v,M

e
v ) = (−0.051,0.059,0) at Te/k = 0.758. N and S denote

normal fluid and superfluid, respectively. The transitions between the
vapor and the liquid phases are always first order. The points ce and
e here correspond to the points c and f in Fig. 6.

(c/k,j/k,js/k) = (1,5.714,2.747) Figs. 10 and 11, respec-
tively, show the liquid-liquid transitions at coexistence with
the vapor phase for such a topology of the phase diagram. In
both figures one finds two types of first-order liquid-liquid
transitions, one between two normal liquids, which occur
between ce and qp, and another one between the normal
liquid phase and the superfluid liquid phase, which occur
below tce. The points ce, tce, and qp in Figs. 10 and 11
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N

FIG. 10. (Color online) Phase diagram for the coupling constants
(c/k,j/k,js/k) = (1,5.714,2.231) and H = 0 which corresponds to
Fig. 7. Along the triple lines a-f and f-c in Fig. 7 the figures show
the first-order demixing transitions of the liquid phase at coexistence
with the vapor phase (a) in the (Xl

3, T ) plane, with Xl
3 = 〈N3〉l/N

as the number density of 3-particles in the liquid phase; (b) in the
(Xv , T ) plane at coexistence of the vapor with the two liquid phases,
where Xv = (〈N4〉v − 〈N3〉v)/N in the vapor phase; (c) in the (Dl ,
T ) plane, where Dl = (〈N4〉l + 〈N3〉l)/N in the liquid phase; and
(d) in the (Dv , T ) plane, where Dv = (〈N4〉v + 〈N3〉v)/N in the vapor
phase. The indices l and v refer to the values of the order parameters
in the liquid and the vapor phases, respectively. Panels (e) and (f)
show the temperature dependence of P and Z along the triple lines
a-f, f-c, and f-k in Fig. 7. The red line corresponds to second-order
phase transitions between normal fluids and superfluids (line k-h in
Fig. 7). At tce, the liquid state (Xtce

l ,Dtce
l ,M tce

l ) = (0.662,0.982,0)
coexists with the vapor state (Xtce

v ,Dtce
v ,M tce

v ) = (−0.074,0.100,0) at
Ttce/k = 0.917. The point ce remains as in the case js = 0. N and S
denote normal liquid and superfluid, respectively. At the quadruple
point qp the four coexisting states at Tqp/k = 0.887 are two normal
liquids (Xqp

l ,D
qp
l ,M

qp
l ) = {(−0.493,0.904,0),(0.594,0.982,0)}, a su-

perfluid (Xqp
l ,D

qp
l ,M

qp
l ) = (0.701,0.987,0.281), and the vapor state

(Xqp
v ,Dqp

v ,Mqp
v ) = (−0.082,0.105,0). The points ce, tce, and qp here

correspond to the points c, k, and f, respectively in Fig. 7. In (b),
(d)–(f), the long black coexistence curves are expected to exhibit a
break in slope at qp; on the present scales this is not visible.

correspond to the points c, k, and f, respectively, in Fig. 7.
The transitions between the two normal liquids correspond to
the line f-c in Fig. 7, the transitions between the normal liquid
and the superfluid correspond to the line a-f in Fig. 7, the small
two-phase region between tce and qp corresponds to the line
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FIG. 11. (Color online) The same as in Fig. 10 but for
the coupling constants (c/k,j/k,js/k) = (1,5.714,2.747)
and H = 0. At tce the order parameters of the liquid and
the vapor phases are (Xtce

l ,Dtce
l ,M tce

l ) = (0.644,0.961,0)
and (Xtce

v ,Dtce
v ,M tce

v ) = (−0.071,0.135,0), respectively, and
Ttce/k = 1.101. Again, ce remains as in the case of js = 0. N and S
denote normal liquid and superfluid, respectively. The four coexisting
states at the quadruple point qp are given by (Xqp,Dqp,Mqp) =
(−0.222,0.888,0),(0.334,0.954,0),(0.742,0.984,0.456),and (0.110,

0.157,0) at the temperature Tqp/k = 1.001. The long black lines in
(b) and (d) and the ones in (e) and (f) ending at ce are expected to
exhibit a break in slope at qp; on the present scales this is not visible.

f-k in Fig. 7, and the red line above tce corresponds to the
red line emanating from k towards h in Fig. 7. In Fig. 7 the
triple lines a-f and k-f merge at the quadrupole point qp = f,
where four phases coexist: two normal liquids, the superfluid,
and the vapor phase. Below qp, the liquid-liquid transitions
at coexistence with the vapor phase are first-order transitions
between the normal fluid and the superfluid. Upon increasing
js the tricritical end point tce = k is pulled towards higher
temperatures (compare Figs. 10 and 11).

In order to obtain phase diagrams with the topology
illustrated in Fig. 8, one has to choose the coupling constants
such that the demixing transitions at coexistence with the vapor
phase occur only between the normal fluid and the superfluid.
This means that in Fig. 7 the line f-c has to shrink to zero, which
implies that the critical point c coincides with the quadruple
point f. Within Fig. 11(a) this means that tce (=k in Fig. 7) has
to be pulled up to higher temperatures such that the demixing
critical end point ce (=c in Fig. 7) slides below the quadruple
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0.02 0.18Z
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two-phase
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two-phase
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FIG. 12. (Color online) Phase diagrams for the coupling con-
stants (c/k,j/k,js/k) = (1,5.714,3.674) and H = 0, corresponding
to Fig. 8. The panels show the same as in Figs. 10 and 11;
however, the critical end point ce has disappeared. At tce the liquid
state (Xtce

l ,Dtce
l ,M tce

l ) = (0.693,0.900,0) coexists with the vapor state
(Xtce

v ,Dtce
v ,M tce

v ) = (0.010,0.176,0) at Ttce/k = 1.462. For T > Ttce

there is only a second-order phase transition from a normal mixed
liquid to a superfluid. For T < Ttce the phase transitions between the
normal fluid and the superfluid are first order. N and S denote normal
liquids and superfluids, respectively.

qp (=f in Fig. 7) so the demixing phase transition between two
normal fluids becomes an unstable one within the two-phase
region of the superfluid and the mixed normal fluid [see
Fig. 12(a)]. For the coupling constants (c/k,j/k) = (1,5.714)
this is fulfilled, provided that js/k > 2.96. For the coupling
constants (c/k,j/k,js/k) = (1,5.714,2.96) at Tce/k = 1.047
only three thermodynamic states coexist: the critical state
(Xce,Dce,Mce) = (0.050,0.913,0), the vapor phase, and a
superfluid state (Xs,Ds,Ms) = (0.756,0.983,0.497). Accord-
ingly, for coupling constants (c/k = 1,j/k = 5.714,js/k >

2.96) one obtains the type of phase diagram shown in Figs. 8
and 12.

As can be inferred from Fig. 12(f), upon increasing the
temperature, the line of second-order phase transitions to
the superfluid phase (red line) approaches the plane Z = 0,
where the liquid becomes pure 4He. In order to explore the
phase diagram in the plane Z = 0, in Eqs. (17) to (21) we
have to take the limit μ3 → −∞. In this limit �− → +∞
and �+ → −∞ so W and R turn into

lim
μ3→−∞ W (�−,�+,H,T ) = 0, (42)
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and, due to �− + �+ = μ4,

lim
μ3→−∞ R(�−,�+,H,T ) = eβ((c+k)X+(j+c)D+μ4). (43)

Since Wμ3→−∞ = 0, due to Eqs. (17) and (18), one has
Xμ3→−∞ = Dμ3→−∞, where Dμ3→−∞ is given by

Dμ3→−∞ = lim
μ3→−∞

R(�−,�+,H,T )I0(jsM/T + H/T )

1 + R(�−,�+,H,T )I0(jsM/T + H/T )

= eβ((j+k+2c)D+μ4)I0(jsM/T + H/T )

1 + eβ((j+k+2c)D+μ4)I0(jsM/T + H/T )
, (44)

where, due to Xμ3→−∞ = Dμ3→−∞, in Rμ3→−∞ we have
replaced X by D.

In this limit Eq. (29) reduces to

D

M
= I0(jsM/T + H/T )

I1(jsM/T + H/T )
(45)

and the equilibrium free energy [Eq. (22)] reduces to

φ(μ3 → −∞,μ4,H,T )

= N
[
k + j + 2c

2
D2 + js

2
M2 + T ln(1 − D)

]
. (46)

In this limit the temperature of the superfluid transition is
given by

Ts = js

2
D, (47)

and μ4 follows from Eq. (44):

μ4(H,T ) = T ln
D

1 − D
− (j + 2c + k)D

− T ln I0(jsM/T + H/T ). (48)

For pure 4He, i.e., for Z = 0 and for the choice of
the coupling constants (c/k,j/k,js/k) = (1,5.714,3.674), the
phase diagram in the (T , P ) plane is shown in Fig. 13.
The dashed green line shows the λ-line of second-order
phase transitions between normal liquids and superfluids.
This line is terminated by the line of first-order liquid-vapor
phase transitions (blue line) at the critical end point ce. The
line of first-order liquid-vapor phase transitions ends at the
critical point c. For high pressures the system becomes solid
(see Fig. 1), which, however, is not captured by the present
model. Along the line of first-order liquid-vapor transitions
(T > Tce, blue line in Fig. 13), the difference between the
number densities of the liquid and the vapor phases decreases
upon increasing the temperature and vanishes at T = Tc.
Accordingly, the two phases merge into a single phase at the
critical point c given by

dμ4

dD

∣∣∣∣
T

= d2μ4

dD2

∣∣∣∣
T

= 0,
d3μ4

dD3

∣∣∣∣
T

> 0, (49)

where μ4 is given by Eq. (48). These conditions reduce to
[note that I0(0) = 1]

Dc = 0.5, Tc = 0.25(2c + j + k). (50)

For nonzero values of Z, i.e., in the presence of 3He atoms,
the critical points of the phase transitions between vapor and

0.0

1.0

2.0

1.4 1.6 1.8 2.0 2.2

P/k

T/k

ce

c

NS

V

Z = 0second-order
first-order

FIG. 13. (Color online) The (T ,P ) phase diagram for the cou-
pling constants (c/k,j/k,js/k) = (1,5.714,3.674) and H = 0 for
pure 4He, i.e., Z = 0. The dashed green line shows the λ-line of
second-order phase transitions between normal liquids and superflu-
ids. N, S, and V denote the normal liquid, the superfluid, and the
vapor phases, respectively. The blue line of first-order liquid-vapor
transitions terminates the λ-line at the critical end point ce and ends
at the critical point c of the liquid-vapor coexistence line. (We have
been unable to find a set of coupling constants for which the dashed
λ-line of second-order phase transitions exhibits a negative slope as
it is the case for actual 4He.)

normal liquids (M = 0) are given by [see Eqs. (5) and (27)]

d�+
dD

∣∣∣∣
�−,T

= d2�+
dD2

∣∣∣∣
�−,T

= 0,
d3�+
dD3

∣∣∣∣
�−,T

> 0, (51)

where in Eq. (27) also the partial derivatives of X with respect
to D must be taken into account. Having determined various
features of the phase diagram of the present model for a set
of coupling constants for which the topology of the phase
diagram is that of the experimental one, we can illustrate
quantitatively the phase diagram in the (P , Z, T ) space.
The phase diagram, which—for a suitable set of coupling
constants—resembles the schematic phase diagram proposed
in Ref. [1] and exhibits all relevant fluid phases, is given in
Fig. 14 (compare Fig. 3). Accordingly, Fig. 14 shows where
the vapor phase (V), the normal liquid phase (N), and the
superfluid phase are thermodynamically stable and where first-
or second-order phase transitions among each other occur. The
transitions between the vapor and the liquid phases are given
by the two surfaces o-ce-tce-b-b′′-o and ce-c-c′-b-tce-ce (the
union of which corresponds to A2 in Fig. 3), while the loci of
the phase transitions between the superfluid and the normal
fluid form the two surfaces b-tce-t-b′-b and tce-ce-c′′-t-tce
which, in Fig. 3, correspond to A4 and A3, respectively.

The points o, ce, c, and c′′ lie in the zero fugacity plane (Z =
0), whereas b′, t, and c′′ lie in the plane of constant pressure
P/k = 0.560. The points b′′ and o are located in the plane of
constant temperature T/k = 1.071, while b, b′, b′′, and c′ share
the same value of fugacity Z = 0.139. The black line b-tce and
the light red line tce-ce indicate first- and second-order liquid-
liquid phase transitions, respectively, at coexistence with the
vapor phase. These two lines are connected at the tricritical
end point tce. The dark red solid line (tce-t) connects the
surfaces A4 and A3 of first- and second-order liquid-liquid
phase transitions (b-b′-t-tce-b and t-tce-ce-c′′-t), respectively.
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FIG. 14. (Color online) Numerical results for the fluid parts
of the phase diagram for the choice of the coupling constants
(c/k,j/k,js/k) = (1,5.714,3.674) and H = 0 in (P , Z, T ) space.
The points o, ce, c, and c′′ lie in the zero fugacity plane (Z = 0)
and the points c′′, t, and b′ lie in the constant pressure plane
P/k = 0.560. The points o and b′′ have the same temperature
T/k = 1.071, while b, b′, and c′ share the same value of the fugacity
Z = 0.139. The surface (o-ce-tce-b-b′′-o) corresponds to first-order
phase transitions between the vapor phase (V) and the superfluid
phase (S), whereas (ce-c-c′-b-tce-ce) is the surface of first-order
phase transitions between the vapor phase and the normal liquid
phase (N); their union corresponds to A2 in Fig. 3. The surface
(b-tce-t-b′-b) is the surface of first-order phase transitions between the
superfluid and the normal liquid phase corresponding to A4 in Fig. 3
and (tce-ce-c′′-t-tce) is the surface of second-order phase transitions
between the superfluid and the normal liquid phase corresponding
to A3 in Fig. 3. The black line b-tce and the light red line tce-ce
are the lines of first- and second-order liquid-liquid transitions at
coexistence with the vapor phase, respectively, which meet at the
tricritical end point tce. The solid blue line c-c′ is the line of
critical points of the liquid-vapor phase transitions and the dark
red curve (tce-t) is the line of tricritical points. The lowest pressure
is p/k = 0, whereas the highest temperature is T/k = 2.179. The
line o-b′′ is the intersection of A2 and the plane T/k = 1.071,
the line c′-b-b′′ is the intersection of A2 and the plane Z = 0.139;
the line b-b′ is the intersection of A4 with the plane Z = 0.139; the
line b′-t and t-c′′ are the intersection of A4 and A3, respectively, with
the plane P/k = 0.560. We note that at ce the line o-ce-c does not
exhibit a break in slope (see Fig. 13).

The coexisting states along the two lines (b-tce, T < Ttce) and
(tce-ce, T > Ttce) are the ones shown in Fig. 12. The solid blue
line (c-c′) is the line of critical points of the liquid-vapor phase
transitions and the dark red curve (tce-t) is the line of tricritical
points with the tricritical end point tce.

By moving along the line b-b′′ towards b′′ the number
density in the liquid phase increases. This implies that the
larger the number density of the liquid phase at b is, the shorter
is the line b-b′′ (note that D < 1). This means that, by lowering
the temperature along the line of first-order liquid-liquid phase
transitions at coexistence with the vapor phase (tce-b), the
point b shifts towards the point b′′.

The liquid-liquid phase transitions at constant pressure are
given by the curve b′-t-c′′. The curve (b′-t) is a line of first-order
liquid-liquid phase transitions at constant pressure, which is
connected to the line of second-order liquid transitions (t-c′′)
at the tricritical point t. The coexisting states along these

1.4

1.5

2.01.0

T/k

X3

N
S

t

P = constTc /k

Tb /k

FIG. 15. (Color online) The liquid-liquid phase transitions at
fixed pressure P/k = 0.560 in the (X3, T ) plane for the choice of the
coupling constants (c/k,j/k,js/k) = (1,5.714,3.674) and H = 0.
The figure provides the temperature dependence of X3 along the
line b′-t-c′′ in Fig. 14. For Tt < T < Tc′′ the light blue dashed line
represents continuous phase transitions, whereas for Tb′ < T < Tt

the lines indicate the coexisting superfluid (S) and normal liquid (N)
states at first-order phase transitions. The two-phase region is shaded
in gray. The point t corresponds to a tricritical point.

two lines are shown in Fig. 15. For even higher pressures
the system solidifies, and the two surfaces (A4, b-tce-t-b′-b)
and (A3, tce-ce-c′′-t-tce) should continue towards a surface
of first-order liquid-solid phase transitions (see A1 in Fig. 3)
which is not supported by the present model.

V. SUMMARY AND CONCLUSION

The phase diagram of the general vectorized Blume-Emery-
Griffiths model has been explored within mean-field theory.
The model exhibits a liquid phase, which can be either a
superfluid or a normal liquid, and a vapor phase. Depending
on the choice of the coupling constants the model exhibits
various topologies of the phase diagram. Here we have
focused on those topologies of the phase diagram which are
associated with liquid-liquid phase transitions at coexistence
with the vapor phase. Knowledge of them is a prerequisite for
studying tricritical Casimir forces in 3He-4He wetting films.
If the coupling constant js , which facilitates the occurrence
of the superfluid phase, is turned off, the phase diagram is
that of a normal binary liquid mixture (see Figs. 4 and 5).
For nonzero but small values of this superfluid coupling
constant the transitions to the superfluid phase are second
order only (Figs. 6 and 9). For larger values of this coupling
constant, the transition to the superfluid phase can also be
of first order (Figs. 7, 10, and 11); the liquid-liquid phase
transitions can be either between two normal liquids or
between superfluid and normal liquids. For even larger values
of the superfluid coupling constant, the first-order liquid-liquid
phase transitions occur only between the superfluid and the
normal fluid (Figs. 8 and 12), as it is the case for actual 3He-4He
mixtures (see Figs. 1–3).

We conclude that for a suitable set of coupling constants,
various features of the phase diagram of 3He-4He mixtures
are captured by the present approach (see Figs. 12–15). The
detailed knowledge of the bulk phase diagram is necessary
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for studying wetting phenomena within the present model
and, further, tricritical Casimir forces acting on wetting films.
The present model lends itself also for investigations based
on Monte Carlo simulations. This model of a binary liquid
mixture incorporates vectorial degrees of freedom associated
with the 4He particles which covers the more complex behavior
of the superfluid order parameter. It is interesting to note that
the sequence of the phase diagrams [Figs. 9(a), 10(a), 11(a),

and 12(a)] exhibits the identical topologies as the phase
diagrams of one-component dipolar fluids upon increasing the
dipole strength with the isotropic and ferromagnetic liquid
corresponding to the normal liquid and the superfluid, respec-
tively [17,18]. For dipolar fluids the solid phase can be captured
by off-lattice density functional theory [19]. Similar topologies
have been observed in off-lattice symmetrical binary fluid
mixtures [20,21].
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