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We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible
thermodynamics. For tight-coupling heat engines, a generic constitutive relation for nonlinear response accurate
up to the quadratic order is derived from the stalling condition and the symmetry argument. By applying this
generic nonlinear constitutive relation to finite-time thermodynamics, we obtain the necessary and sufficient
condition for the universality of efficiency at maximum power, which states that a tight-coupling heat
engine takes the universal efficiency at maximum power up to the quadratic order if and only if either the
engine symmetrically interacts with two heat reservoirs or the elementary thermal energy flowing through
the engine matches the characteristic energy of the engine. Hence we solve the following paradox: On the one
hand, the quadratic term in the universal efficiency at maximum power for tight-coupling heat engines turned
out to be a consequence of symmetry [Esposito, Lindenberg, and Van den Broeck, Phys. Rev. Lett. 102, 130602
(2009); Sheng and Tu, Phys. Rev. E 89, 012129 (2014)]; On the other hand, typical heat engines such as the
Curzon-Ahlborn endoreversible heat engine [Curzon and Ahlborn, Am. J. Phys. 43, 22 (1975)] and the Feynman
ratchet [Tu, J. Phys. A 41, 312003 (2008)] recover the universal efficiency at maximum power regardless of any
symmetry.
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I. INTRODUCTION

Energy-transduction devices such as heat engines [1–21],
nanomotors [22–25], and biological machines [26–30] are
crucial to our human activities. It is important to investigate
their energetics in our times of resource shortages. Since they
usually operate out of equilibrium, we need to develop some
concepts of nonequilibrium thermodynamics to understand
their operational mechanism. Finite-time thermodynamics
is a branch of nonequilibrium thermodynamics. One of its
most profound findings in recent years is the universality of
efficiency at maximum power. Up to the quadratic order of
ηC (the Carnot efficiency), the efficiencies at maximum power
for the Curzon-Ahlborn endoreversible heat engine [1], the
stochastic heat engine [31], the Feynman ratchet [32], and
the quantum dot engine [33], were found to coincide with a
universal form

ηU ≡ ηC/2 + η2
C/8 + O

(
η3

C

)
, (1)

where O(η3
C) represents the third- and higher-order terms of

ηC .
The door towards this universality was opened by Van

den Broeck [34] who proved that the linear term in Eq. (1)
holds universally for tight-coupling heat engines working
at maximum power. Next, considering a process of particle
transport, Esposito et al. found that the prefactor 1/8 of the
quadratic term in Eq. (1) is universal for tight-coupling heat
engines in the presence of left-right symmetry [35]. This
finding was confirmed by other nonlinear models of heat en-
gines [36–39]. Nevertheless, two typical heat engines recover
universal efficiency (1) in the absence of symmetry. First,
the efficiency at maximum power for the Curzon-Ahlborn
heat engine [1] is irrelevant to specific model-dependent
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parameters, and so regardless of any symmetry. Second, in the
extremely asymmetric case, one of the present authors [32]
optimized the power of the Feynman ratchet, and he found
that the efficiency at maximum power still equates universal
form (1). Additionally, Seifert pointed out that the Feynman
ratchet still recovers the universality in other asymmetric
cases [28]. Ironically, it is the Curzon-Ahlborn heat engine
and the Feynman ratchet that arouse the issue of universality
of efficiency at maximum power, on which researchers found
that the universality of the quadratic term in Eq. (1) is attributed
to the presence of symmetry, while both engines operating at
maximum power take universal efficiency (1) in the absence of
symmetry. This paradox has always puzzled researchers since
the relationship between the universality and symmetry was
discovered by Esposito and his coworkers [35].

We aim at solving the above paradox from irreversible
thermodynamics, a relatively mature framework in nonequi-
librium thermodynamics. Its core quantity, entropy production
rate, may be expressed as the sum of products of generalized
thermodynamic fluxes and forces. The relation between the
fluxes and forces is called constitutive relation. Although
irreversible thermodynamics has been developed for many
years, there still exists a controversy surrounding the definition
of the generalized thermodynamic flux related to the heat
flowing through a heat engine. One proposal is the rate of
heat absorbed from the hot reservoir [34]; another choice is
the mean rate of heat absorbed from the hot reservoir and
that released into the cold reservoir [40]. The present authors
resolved this controversy by introducing the weighted thermal
flux in recent work [39]. However, the generic constitutive
relation remains unknown for nonequilibrium heat engines
in the regime of nonlinear response. The quadratic terms of
thermodynamic forces have not been fully addressed in the
previous work [39] since they disappear in the constitutive
relation for the engines symmetrically interacting with two
reservoirs. Similarly, the symmetric situation is also the focus
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of the pioneer work by Esposito and his coworkers [35].
In contrast to the symmetric situation, the quadratic terms
of thermodynamic forces should appear in the constitutive
relation under asymmetric situations. We believe that a proper
characterization of the constitutive relation up to the quadratic
order is the key to solving the above paradox. In this paper, we
present a unified perspective on nonequilibrium heat engines,
and then derive a generic nonlinear constitutive relation up
to the quadratic order for tight-coupling heat engines from
the stalling condition and the symmetry argument. Based on
this generic relation, we obtain the necessary and sufficient
condition for the universality of efficiency at maximum power,
and hence solve the aforementioned paradox.

II. GENERIC MODEL

Above all, we briefly revisit a generic model for tight-
coupling heat engines proposed in our previous work [39],
which lays a solid theoretical foundation for the solution to
the paradox. A heat engine may be simplified as the following
schematic setup. The engine absorbs heat Q̇h from the hot
reservoir at temperature Th, and releases heat Q̇c into the cold
reservoir at temperature Tc per unit time. Simultaneously, it
outputs a certain amount of power Ẇ . By introducing two non-
negative weighted parameters sh and sc such that sh + sc = 1,
we define the weighted thermal flux

Jt ≡ shQ̇c + scQ̇h, (2)

and the weighted reciprocal of temperature

β ≡ sh/Th + sc/Tc. (3)

The values of weighted parameters sh and sc depend on
specific models and they are related to the degree of symmetry
of interactions between the heat engine and two reservoirs.
In particular, sh = sc = 1/2 indicates that the engine sym-
metrically interacts with two reservoirs. From definition (2)
and the energy conservation Q̇h − Q̇c = Ẇ , we obtain Q̇h =
Jt + shẆ and Q̇c = Jt − scẆ , which lead to a refined generic
model depicted in Fig. 1. In this new physical picture, the
engine absorbs heat Q̇h per unit time from the hot reservoir,
an amount of heat shẆ will be transformed into work output
per unit time due to the interaction between the engine and
the hot reservoir. A thermal flux Jt flows through the heat
engine, then an amount of heat scẆ will be transformed into

s Wh
Jt

Th

Tc

Qh

Qc

s Wc

FIG. 1. (Color online) Refined generic model of a tight-coupling
heat engine (reproduced according to Ref. [39]).

work output per unit time due to the interaction between the
engine and the cold reservoir. Finally, the engine releases heat
Q̇c per unit time into the cold reservoir. The contribution of
interactions between the heat engine and the two reservoirs
is explicitly included in this picture since the engine operates
in a finite period or at a finite rate rather than in a quasistatic
state. The reasonability of this picture and the significance of
the weighted thermal flux were fully discussed in our previous
work [39], which will not be repeated here.

The generalized thermal force conjugated to Jt may be
expressed as

Xt ≡ 1/Tc − 1/Th. (4)

For a cyclic heat engine, the generalized mechanical flux Jm

and mechanical force Xm may be defined as

Jm ≡ 1/t0 and Xm ≡ −βW, (5)

respectively, where t0 is the period for completing the whole
cycle. We emphasize that the sign of t0 is of physical signifi-
cance. t0 takes a positive sign when the thermodynamic cycle
corresponds to a genuine heat engine, while the negative sign
represents the reverse cycle corresponding to a refrigerator.
Here we have adopted the reciprocal of period as the definition
of the generalized mechanical flux Jm, which was proposed by
Izumida and Okuda [15] for a Brownian Carnot cycle. For
an autonomous heat engine operating in the steady state, the
mechanical flux and mechanical force may be defined as

Jm ≡ r and Xm ≡ −βw, (6)

respectively, where r is the net rate and w denotes the
elementary work in each mechanical step.

With the consideration of definitions (2)–(6), the entropy
production rate σ = Q̇c/Tc − Q̇h/Th of the whole system
may be expressed as a canonical form σ = JmXm + JtXt .
Let us focus on a tight-coupling heat engine, in which the
heat-leakage vanishes so that the thermal flux is proportional
to the mechanical flux,

Jt/Jm = ξ, (7)

where the ratio ξ represents the elementary thermal energy
flowing through the heat engine per thermodynamic cycle for
a cyclic engine, or per spatial step for an autonomous engine.
Then the entropy production rate may be further expressed as
σ = JmA, where

A ≡ Xm + ξXt (8)

is called affinity. Particularly, A = 0 represents a situation
that the thermodynamic forces Xm and Xt balance each other.
In this situation, the engine system is in a stalling state or
quasistatic state with vanishing fluxes.

From (2), (5)–(7), we can derive the power output

Ẇ = −β−1JmXm (9)

and the efficiency

η = −Xm/(βξ − shXm). (10)

Maximizing Ẇ with respect to Xm for given Tc and Th, we
obtain the optimization formula

Xm(∂Jm/∂Xm) + Jm = 0. (11)
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III. CONSTITUTIVE RELATION FOR
NONLINEAR RESPONSE

Now we generalize irreversible thermodynamics to the
nonlinear regime by considering two essential arguments as
follows.

First, we consider the stalling condition mentioned be-
low (8) that Jm should vanish when A = 0. This condition
requires Jm to be formally expressed as

Jm = LA[1 + v(A + uXt )] + O
(
A3,X3

t

)
, (12)

where L, v and u are model-dependent coefficients. O(A3,X3
t )

represents the third- and higher-order terms of A and Xt .
Second, we consider the contribution of symmetry by

introducing an asymmetry parameter λ ≡ sh − sc. The situ-
ation of λ = 0 (i.e., sh = sc = 1/2) corresponds to the case
of symmetric interaction between the heat engine with two
reservoirs. In this case, Jm should be exactly reversed as
all thermodynamic forces are reversed, which requires that
all even-order terms in Eq. (12) vanish, i.e., v = 0 when
λ = 0. This requirement leads to v = αλ provided that v is an
analytical function, where α is a model-dependent parameter,
which could depend on Tc, Th, λ (or sh), and so on. Substituting
this equation into (12), we transform Jm into a generic form

Jm = LA[1 + αλ(A + uXt )] + O
(
A3,X3

t

)
. (13)

For simplicity, the parameters L and α in Eq. (13) are
respectively called the first and second master coefficients.
This generic relation, as the first main result in this work,
is uniquely determined from the stalling condition and the
symmetry of system. The detailed derivation of (13) is depicted
in Appendix A.

IV. NECESSARY AND SUFFICIENT CONDITION

Now we address the efficiency at maximum power for
a tight-coupling heat engine. By substituting (8) and (13)
into (11), we obtain the optimal mechanical force X∗

m =
−ξXt/2 + αλξ 2X2

t /8 + O(X3
t ). Substituting it into (10) and

considering (4) and ηC ≡ 1 − Tc/Th, we finally achieve the
efficiency at maximum power

η∗ = 1

2
ηC + 1

8
η2

C + λ(1 − αβξ )

8
η2

C + O
(
η3

C

)
, (14)

from which we obtain that the necessary and sufficient
condition for the universal prefactor 1/8 of the quadratic term
in Eq. (1) is λ(1 − αβξ ) = O(ηC). This condition may be
further expressed as

λ = 0 + O(ηC) or αβξ = 1 + O(ηC). (15)

The physical meanings of (15) are interpreted as follows.
First, λ = 0 + O(ηC) is called symmetry condition, which
represents that the heat engine interacts symmetrically with
both heat reservoirs. Second, αβξ = 1 + O(ηC) is called
the energy-matching condition, which indicates that the
elementary thermal energy (ξ ) flowing through the heat
engine matches the characteristic energy (1/β) of the heat
engine since 1/β may be interpreted as the effective temper-
ature [39] of the heat engine and the Boltzmann constant has
been set to unit. More precisely, the ratio of the characteristic

energy of the heat engine to the elementary thermal energy
flowing through the heat engine equals to α, the second master
coefficient of constitutive relation.

So far we get the second main result in the present
work: Either the symmetry condition or the energy-matching
condition results in universal efficiency (1) for tight-coupling
heat engines working at maximum power. Indeed, it was
proved that both the low-dissipation heat engine [11,31]
and the minimally nonlinear irreversible heat engine [36]
take universal efficiency (1) when the symmetry condition
is satisfied. We conjecture that the reason why the Curzon-
Ahlborn heat engine and the Feynman ratchet operating at
maximum power recover universal efficiency (1) regardless of
any symmetry is that the energy-matching condition is satisfied
in both engines.

V. SOLUTION TO THE PARADOX

In this section, we investigate the reason why typical
heat engines such as the Curzon-Ahlborn endoreversible
heat engine and the Feynman ratchet recover the universal
efficiency at maximum power regardless of any symmetry.

A. Curzon-Ahlborn heat engine

The Curzon-Ahlborn endoreversible heat engine [1] un-
dergoes a cycle consisting of two isothermal processes and
two adiabatic processes. In the isothermal expansion process,
the working substance is in contact with a hot reservoir at
temperature Th. Its effective temperature is assumed to be The

(The < Th). During time interval th, an amount of heat Qh is
transferred from the hot reservoir to the working substance
with the heat transfer law

Qh = κh(Th − The)th, (16)

where κh is the thermal conductivity in this process. The
variation of entropy in this process is denoted by 
S. In the
isothermal compression process, the working substance is in
contact with a cold reservoir at temperature Tc. Its effective
temperature is Tce (Tce > Tc). During time interval tc, an
amount of heat Qc is transmitted from the working substance
into the cold reservoir with the heat transfer law

Qc = κc(Tce − Tc)tc, (17)

where κc denotes the thermal conductivity in this process. The
heat exchange and the entropy production are vanishing in
the two adiabatic processes. The period (t0) for completing
the whole cycle is assumed to be proportional to tc + th. In
addition, the endoreversible assumption Qh/The = Qc/Tce is
imposed on the engine.

According to Eqs. (F2)–(F9) in Ref. [39], this engine may
be mapped into the generic model. The main results are as
follows:

sh = Thγc

Thγc + Tcγh

, sc = Tcγh

Thγc + Tcγh

; (18)

λ ≡ sh − sc = Thγc − Tcγh

Thγc + Tcγh

, (19)

Jt = TcThβ
SJm + O
(
J 3

m

)
, (20)
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and

Jm = γcγh

(γc + γh)
S2
A

(
1 + 1


S
λA

)
+ O

(
A3,X3

t

)
, (21)

with γh ≡ κhth/t0, γc ≡ κctc/t0, and λ ≡ sh − sc = (Thγc −
Tcγh)/(Thγc + Tcγh). Obviously, (21) is a special form of
generic expression (13) with model-dependent parameters
L = γcγh/(γc + γh)
S2, α = 1/
S and u = 0. In addition,
Eq. (F6) in Ref. [39] implies ξ = TcThβ
S. Thus we
obtain αβξ = TcThβ

2 = 1 + O(ηC) with the consideration
of (3), which conforms with the energy-matching condition
in Eq. (15). This is the underlying reason why the Curzon-
Ahlborn endoreversible heat engine recovers the universal
efficiency at maximum power regardless of any symmetry.

B. Feynman ratchet

The Feynman ratchet [41–43] may be regarded as a
Brownian particle walking in a periodic potential with a fixed
step size θ . The Brownian particle is in contact with a hot
reservoir at temperature Th in the left side of each energy
barrier while it is in contact with a cold reservoir at temperature
Tc in the right side of each barrier. The particle moves across
each barrier from left to right and outputs work against a load z.
The height of energy barrier is ε. The width of potential in the
left or right side of the barrier is denoted by θh or θc = θ − θh,
respectively. In the steady state and under the overdamping
condition, according to the Arrhenius law [41], the forward
and backward jumping rates can be respectively expressed as

RF = r0e−(ε+zθh)/Th , and RB = r0e−(ε−zθc)/Tc , (22)

where r0 represents the bare rate constant with dimension of
time−1.

The Feynman ratchet may be mapped into the refined
generic model as shown in Ref. [39]. The main results are
as follows:

sh = θh/θ, sc = θc/θ ; (23)

λ ≡ sh − sc = (θh − θc)/θ = (θh − θc)/(θh + θc), (24)

Jt = εJm, (25)

and

Jm = r0e−β̄εA

[
1 + λ

2
(A − εXt )

]
+ O

(
A3,X3

t

)
, (26)

where β̄ = (1/Th + 1/Tc)/2. Obviously, (26) is a specific
form of generic expression (13) with model-dependent pa-
rameters L = r0e−β̄ε , α = 1/2 and u = −ε = −ξ .

In Ref. [32], one of the present authors optimized the
power of the Feynman ratchet with respect to both the external
load z and the internal barrier height ε under an extremely
asymmetric situation (λ = 1). He achieved the efficiency
at maximum power η∗ = ηC/2 + η2

C/8 + O(η3
C) and the

corresponding optimal barrier height ε∗ = Tc[1 − η−1
C ln(1 −

ηC)] = Tc[2 + O(ηC)]. Thus, we can easily verify αβξ =
βε∗/2 = 1 + O(ηC) with the consideration of α = 1/2, ξ =
ε∗ and (3). In fact, for any case (−1 � λ � 1), we can easily

derive the corresponding optimal barrier height ε∗ = Tc[(1 −
shηC)(1 − ηC)−1 − η−1

C ln(1 − ηC)] = Tc[2 + O(ηC)] follow-
ing the same optimization procedure as Ref. [32]. It is
straightforward to verify αβξ = βε∗/2 = 1 + O(ηC). There-
fore, the Feynman ratchet always satisfies the energy-matching
condition in Eq. (15) when we optimize the power with respect
to both the external load and the internal barrier height. This
is the reason why the Feynman ratchet recovers the universal
efficiency at maximum power in the absence of any symmetry.

VI. CONCLUSION

In the above discussions, we dealt with nonequilibrium heat
engines from a unified perspective and achieved the necessary
and sufficient condition (15) for the universality of efficiency at
maximum power up to the quadratic order for tight-coupling
heat engines. We found that both the Curzon-Ahlborn heat
engine and the Feynman ratchet satisfy the energy-matching
condition that guarantees universal efficiency (1) in the
absence of symmetry. Hence we solved the paradox perfectly.
More importantly, we phenomenologically wrote out generic
nonlinear constitutive relation (13) according to the stalling
condition and the symmetry argument. Such formula filled the
knowledge gap in the literature and contributed substantially
to nonequilibrium thermodynamics. This generic formula is
well confirmed by typical models of heat engines such as the
Curzon-Ahlborn heat engine, the Feynman ratchet mentioned
above, and several examples illustrated in Appendix B.
Particularly, these models suggest that α in Eq. (13) might
be independent of the asymmetry parameter λ. In fact, we
can verify that α in Eq. (13) is indeed independent of λ for
homotypic heat engines [47].

The present work may shed light on the future studies
of nonequilibrium processes. First, it is valuable if one can
derive generic relation (13) from statistical mechanics. The
application of fluctuation theorem [28,44–46] in heat engines
might be a starting point for this derivation. Second, low-
dissipation heat engines [11] and linear irreversible Carnot-like
heat engines [12] have the same bounds of efficiency at
maximum power. It is possible to construct a connection
between these two different types of heat engines within the
present framework.

Finally, molecular motors [22–30] in nanoworld or bio-
logical realm look different from the heat engines in the
above discussions. Most of them operate in a single heat
reservoir and output work by utilizing the difference of
chemical potentials rather than the temperature difference. By
taking account of this distinction, we expect that the present
unified perspective on nonequilibrium heat engines may be
transplanted to understanding the optimization mechanism in
energetics of molecular motors.
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APPENDIX A: DETAILED DERIVATION OF GENERIC
CONSTITUTIVE RELATION

Here we generalize irreversible thermodynamics to the
nonlinear regime by considering the stalling condition and
the symmetry argument. The constitutive relation between
the generalized fluxes and forces is regarded as an analytical
function such that the Taylor series is meaningful. This
assumption is reasonable since response functions are indeed
analytical for physical systems free of phase transition. Here
we confine our discussions to this kind of system.

1. Stalling condition

According to Eq. (8), the affinity A ≡ Xm + ξXt is the
linear combination of generalized forces Xm and Xt . The
generalized mechanical flux Jm is an analytical function,
which may be expanded into a Taylor series with respect to
generalized forces Xm and Xt (or equivalent variables A and
Xt ). Since Jm should be vanishing when all generalized forces
vanish, we may write out

Jm = L
[
A + aXt + v

(
A2 + uAXt + bX2

t

)] + O
(
A3,X3

t

)
(A1)

up to the quadratic order, where L, a, v, u, b are five
coefficients. O(A3,X3

t ) represents the third- and higher-order
terms of A and Xt .

The affinity A = 0 represents a situation that the thermody-
namic forces Xm and Xt balance each other. In this situation,
the engine system is in a stalling state or quasistatic state with
vanishing fluxes. The requirement that Jm should vanish when
A = 0 is called stalling condition. From this requirement we
obtain a = 0 and b = 0 in Eq. (A1). Then the above equation
is further simplified as Eq. (12). Therefore, Eq. (12) is a unique
form determined from the stalling condition.

2. Symmetry argument

In the symmetric case, Jm should be exactly reversed as
the thermodynamic forces Xm and Xt are reversed. That is,
quadratic terms in the expression of Jm should vanish when
the asymmetry parameter λ is vanishing, which implies that
v = 0 when λ = 0 in Eq. (12). Considering this point, we can
expand v into Taylor’s series with respect to λ:

v = λ(α0 + α1λ + α2λ
2 + · · · ). (A2)

If denoting α ≡ α0 + α1λ + α2λ
2 + · · · , we have

v = αλ, (A3)

where α is a model-dependent parameter, which may depend
on Tc, Th, λ (or sh), and so on. Substituting Eq. (A3) into
Eq. (12), we obtain Eq. (13). So far, we see that the constitutive
relation (13) is uniquely determined from the stalling condition
and the symmetry of system. Hence, Eq. (13) is universal up
to the quadratic order, which is confirmed by typical models
of heat engines shown in Sec. V and Appendix B.

APPENDIX B: TYPICAL MODELS OF FINITE-TIME
(OR FINITE-RATE) HEAT ENGINES

Here we will consider typical models of finite-time (or
finite-rate) heat engines in the literature. We will verify
that all these models conform to the generic constitutive
relation (13) and the behaviors of efficiency at maximum power
of these models comply with the necessary and sufficient
condition (15).

1. Low-dissipation engine

A low-dissipation engine [11] undergoes a thermodynamic
cycle consisting of two isothermal and two adiabatic processes.
The word “isothermal” merely indicates that the heat engine
is in contact with a heat bath at constant temperature. In the
process of isothermal expansion during time interval th, the
engine absorbs heat Qh from the hot bath at temperature Th.
The variation of entropy in this process is denoted as 
S.
On the contrary, In the process of isothermal compression
during time interval tc, the engine releases heat Qc into the
cold bath at temperature Tc. There is no heat exchange and
entropy production in two adiabatic processes. Assume that
the time for completing the adiabatic processes is negligible
relative to tc and th. So the period of the whole cycle is t0 =
tc + th. The entropy production in each isothermal process is
assumed to be proportional to the reciprocal of time interval
for completing that process, which is called low-dissipation
assumption [11]. This assumption is quite reasonable for large
enough t0. According to this assumption, the heats Qh and Qc

may be expressed as

Qh = Th(
S − �h/th), −Qc = Tc(−
S − �c/tc), (B1)

with two dissipation coefficients �h and �c, respectively.
According to Eqs. (22)–(27) in Ref. [39], this engine may

be mapped into the generic model. The main results are as
follows:

sh = Th�̄h

Th�̄h + Tc�̄c

, sc = Tc�̄c

Th�̄h + Tc�̄c

; (B2)

λ ≡ sh − sc = Th�̄h − Tc�̄c

Th�̄h + Tc�̄c

, (B3)

Jt = βThTc
SJm, (B4)

and

Jm = 1

�̄h + �̄c

A, (B5)

with parameters �̄h ≡ �ht0/th and �̄c ≡ �ct0/tc. Obviously,
Eq. (B5) is a special form of generic constitutive relation (13)
with ξ = βThTc
S, L = 1/(�̄h + �̄c), and α = 0. Particu-
larly, α = 0 implies that the energy-matching condition in
Eq. (15) cannot be satisfied. Thus, this engine takes the
universal efficiency at maximum power if and only if the
symmetry condition is satisfied. This conclusion is consistent
with the results in Refs. [11,31].
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2. Minimally nonlinear irreversible heat engine

The minimally nonlinear irreversible model of heat engines
proposed in Ref. [36] is applicable to both autonomous heat
engines and cyclic heat engines. The generalized thermal
flux and thermal force are defined as J2 ≡ Q̇h and X2 ≡
1/Tc − 1/Th, where Tc (or Th) denotes the temperature of the
cold reservoir (or hot reservoir). Qh is the heat absorbed from
the hot reservoir by the working substance. The generalized
mechanical flux and mechanical force are defined as J1 ≡ ẋ

and X1 ≡ −F/Tc for autonomous heat engines (or J1 ≡ 1/t0
and X1 ≡ −W/Tc for cyclic heat engines). The dot denotes
derivative with respect to time, and t0 is the period to complete
the cycle. Then the relations between fluxes and forces may
be described by extended Onsager relations [36]:

J1 = L11X1 + L12X2,
(B6)

J2 = L21X1 + L22X2 − γ̃hJ
2
1 ,

where L11 � 0,L11L22 − L12L21 � 0 and L12 = L21 are still
satisfied. γ̃h is assumed to be a positive constant.

Under the tight-coupling condition L11L22 − L12L21 = 0,
the second terms of Eqs. (14) and (15) in Ref. [36] are
vanishing. Thus, the absolute value of heat absorbed from
the hot reservoir and released to the cold reservoir per unit
time may be expressed as

Q̇h = L21

L11
J1 − γ̃hJ

2
1 , Q̇c = L21Tc

L11Th

J1 + γ̃cJ
2
1 , (B7)

respectively, with γ̃c ≡ Tc

L11
− γ̃h > 0.

According to Eqs. (G2)–(G7) in Ref. [39], this engine may
be mapped into the generic model. The main results are as
follows:

sh = γ̃h

γ̃c + γ̃h

, sc = γ̃c

γ̃c + γ̃h

; (B8)

λ ≡ sh − sc = γ̃h − γ̃c

γ̃c + γ̃h

, (B9)

Jt = L21

L11
TcβJm, (B10)

and

Jm = Th(γ̃c + γ̃h)

γ̃cTh + γ̃hTc

L11A, (B11)

which is a special form of generic constitutive relation (13)
with ξ = L21Tcβ/L11, L = Th(γ̃c + γ̃h)L11/(γ̃cTh + γ̃hTc),
and α = 0. Particularly, α = 0 implies that the energy-
matching condition in Eq. (15) cannot be satisfied. Thus, this
engine takes the universal efficiency at maximum power if and
only if the symmetry condition is satisfied. This conclusion is
consistent with the result in Ref. [36].

Apertet et al. investigated an autonomous thermoelectric
generator in recent work [37]. As depicted in Ref. [39], this
engine can also be mapped into the generic model. According
to Eq. (C6) in Ref. [39], the second master coefficient α

vanishes in this thermoelectric generator, which means the
energy-matching condition in Eq. (15) cannot be satisfied.
Thus, this engine takes the universal efficiency at maximum

power if and only if the symmetry condition is satisfied. This
conclusion is consistent with the result in Ref. [37].

3. Revised Curzon-Ahlborn heat engine

The thermodynamic processes and definitions of physical
quantities in the revised Curzon-Ahlborn endoreversible heat
engine [5] are exactly the same as those in the original Curzon-
Ahlborn heat engine depicted in Sec. V A except for the heat
transfer law in two isothermal processes. Here the law of heat
exchanges is revised to

Qh = κh

(
T −1

he − T −1
h

)
th,

(B12)
Qc = κc

(
T −1

c − T −1
ce

)
tc.

Similar to the procedure of mapping the Curzon-Ahlborn
endoreversible heat engine into the generic model, the revised
Curzon-Ahlborn heat engine may also be mapped into the
generic model. The main results are as follows:

sh = T 3
h /γh

T 3
h /γh + T 3

c /γc

, sc = T 3
c /γc

T 3
h /γh + T 3

c /γc

; (B13)

λ ≡ sh − sc = T 3
h /γh − T 3

c /γc

T 3
h /γh + T 3

c /γc

, (B14)

Jt = TcThβ
SJm + O
(
J 3

m

)
, (B15)

and

Jm = 1(
T 2

h /γh + T 2
c /γc

)

S2

A

(
1 + 2


S
λA

)
+ O

(
A3,X3

t

)
,

(B16)

with γh ≡ κhth/t0, γc ≡ κctc/t0. Obviously, Eq. (B16) is
a special form of generic constitutive relation (13) with
ξ = TcThβ
S, L = 1/(T 2

h /γh + T 2
c /γc)
S2, α = 2/
S and

u = 0. We note that the second master coefficient α in this
revised Curzon-Alhborn heat engine is equal to 2/
S rather
than 1/
S in the original one. It is easy to prove αβξ =
2TcThβ

2 = 2 + O(ηC) �= 1 + O(ηC) with the consideration
of Eq. (3), which implies the energy-matching condition in
Eq. (15) is not satisfied by this engine. Thus, the revised
Curzon-Ahlborn heat engine takes the universal efficiency at
maximum power if and only if the symmetry condition λ = 0
is satisfied. This conclusion is consistent with Eq. (31) in
Ref. [5].

4. Single-level quantum dot heat engine

A single-level quantum dot heat engine [33] is consisting of
three parts: a hot lead at temperature Th and chemical potential
μh; a cold lead at temperature Tc (Tc < Th) and chemical
potential μc (μc > μh); and a single-level quantum dot with
energy level ε (ε > μc), which located between the two leads.
In the forward process, an electron jumps from the hot lead to
the cold one via the quantum dot. The electron absorbs heat
qh ≡ ε − μh from the hot lead and releases heat qc ≡ ε − μc

into the cold one, and simultaneously outputs chemical work
w ≡ μc − μh. In the backward process, the electron absorbs
heat qc from the cold lead and releases heat qh into the hot
one, and simultaneously inputs chemical work w. In the steady
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state, the forward electronic flow and the backward one may
be expressed as [33]:

IF = I0

e(ε−μh)/Th + 1
, and IB = I0

e(ε−μc)/Tc + 1
, (B17)

respectively, where I0 is a coefficient independent of temper-
ature. The net flow from the hot lead into the cold one may be
expressed as

Jm ≡ IF − IB

= I0

[
1

e(ε−μh)/Th + 1
− 1

e(ε−μc)/Tc + 1

]
. (B18)

The heat absorbed from the hot lead and that released into the
cold one per unit time, as well as the power output may be
expressed as

Q̇h = (ε − μh)Jm, Q̇c = (ε − μc)Jm, (B19)

and

Ẇ = (μc − μh)Jm, (B20)

respectively.
Now, we will construct the mapping from single-level

quantum dot heat engine into the generic model. When this
engine operates in steady state, the quantum dot is assumed
to be locally in equilibrium. By introducing the effective
chemical potential μ (μh � μ � μc) of the quantum dot, we
can transform Q̇h and Q̇c into

Q̇h = (ε − μ)Jm +
(

μ − μh


μ

)
Ẇ ,

(B21)

Q̇c = (ε − μ)Jm −
(

μc − μ


μ

)
Ẇ ,

with 
μ ≡ μc − μh denoting the difference of chemical
potential between two leads.

Considering the physical meaning of weighted thermal flux
Jt discussed in Ref. [39], from Eq. (B21) we have

Jt = (ε − μ)Jm, (B22)

ξ = ε − μ, (B23)

sh = μ − μh


μ
, sc = μc − μ


μ
, (B24)

λ = sh − sc = 2μ − (μc + μh)


μ
, (B25)

and

μ = scμh + shμc. (B26)

From Eqs. (3), (6), and (B24), we have

β = 1


μ

(
μ − μh

Th

+ μc − μ

Tc

)
, (B27)

and

Xm = −βw = (μh − μ)/Th − (μc − μ)/Tc. (B28)

Then, we can easily verify that the entropy production rate can
be written in a canonical form σ = JmXm + JtXt .

Considering Eqs. (8), (B24)–(B28), and (B18), we may
obtain

Jm = I0

4 cosh2(β̄ξ/2)
A

[
1 + tanh(β̄ξ/2)

2
λ(A − ξXt )

]

+O
(
A3,X3

t

)
, (B29)

with β̄ = (T −1
c + T −1

h )/2. Obviously, the above equation
can be regarded as a specific form of generic expres-
sion (13) with model-dependent parameters ξ = ε − μ, L =
I0/4 cosh2(β̄ξ/2), α = (1/2) tanh(β̄ξ/2) and u = −ξ .

From Eqs. (B23) and (B26), and the results in Ref. [33], we
can derive the optimized coefficient

ξ ∗ = a0TcThβ + O(ηC), (B30)

when the engine operates at maximum power, where a0

satisfies a transcendental equation (a0/2) tanh(a0/2) = 1 [33].
Finally, from Eqs. (B27) and (B30), and β = β̄ + O(ηC),
we can verify αβξ ∗ = (βξ ∗/2) tanh(β̄ξ ∗/2) = [(a0/2) +
O(ηC)] tanh[(a0/2) + O(ηC)]=(a0/2) tanh(a0/2) + O(ηC) =
1 + O(ηC). That is, when the engine operates at maximum
power, the energy-matching condition in Eq. (15) is satisfied.
Thus, this engine always recover the universal efficiency when
operating at maximum power. This conclusion is consistent
with the results in Ref. [33].
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[8] B. Jiménez de Cisneros and A. Calvo Hernández, Collective
working regimes for coupled heat engines, Phys. Rev. Lett. 98,
130602 (2007).

[9] B. Gaveau, M. Moreau, and L. S. Schulman,
Stochastic thermodynamics and sustainable efficiency
in work production, Phys. Rev. Lett. 105, 060601
(2010).

022136-7

http://dx.doi.org/10.1119/1.10023
http://dx.doi.org/10.1119/1.10023
http://dx.doi.org/10.1119/1.10023
http://dx.doi.org/10.1119/1.10023
http://dx.doi.org/10.1063/1.434122
http://dx.doi.org/10.1063/1.434122
http://dx.doi.org/10.1063/1.434122
http://dx.doi.org/10.1063/1.434122
http://dx.doi.org/10.1119/1.14240
http://dx.doi.org/10.1119/1.14240
http://dx.doi.org/10.1119/1.14240
http://dx.doi.org/10.1119/1.14240
http://dx.doi.org/10.1063/1.335977
http://dx.doi.org/10.1063/1.335977
http://dx.doi.org/10.1063/1.335977
http://dx.doi.org/10.1063/1.335977
http://dx.doi.org/10.1063/1.455832
http://dx.doi.org/10.1063/1.455832
http://dx.doi.org/10.1063/1.455832
http://dx.doi.org/10.1063/1.455832
http://dx.doi.org/10.1088/0022-3727/27/6/011
http://dx.doi.org/10.1088/0022-3727/27/6/011
http://dx.doi.org/10.1088/0022-3727/27/6/011
http://dx.doi.org/10.1088/0022-3727/27/6/011
http://dx.doi.org/10.1063/1.362674
http://dx.doi.org/10.1063/1.362674
http://dx.doi.org/10.1063/1.362674
http://dx.doi.org/10.1063/1.362674
http://dx.doi.org/10.1103/PhysRevLett.98.130602
http://dx.doi.org/10.1103/PhysRevLett.98.130602
http://dx.doi.org/10.1103/PhysRevLett.98.130602
http://dx.doi.org/10.1103/PhysRevLett.98.130602
http://dx.doi.org/10.1103/PhysRevLett.105.060601
http://dx.doi.org/10.1103/PhysRevLett.105.060601
http://dx.doi.org/10.1103/PhysRevLett.105.060601
http://dx.doi.org/10.1103/PhysRevLett.105.060601


SHIQI SHENG AND Z. C. TU PHYSICAL REVIEW E 91, 022136 (2015)

[10] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck,
Quantum-dot Carnot engine at maximum power, Phys. Rev. E
81, 041106 (2010).

[11] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den
Broeck, Efficiency at maximum power of low-dissipation Carnot
engines, Phys. Rev. Lett. 105, 150603 (2010).

[12] Y. Wang and Z. C. Tu, Bounds of efficiency at maximum power
for linear, superlinear and sublinear irreversible Carnot-like heat
engines, Europhys. Lett. 98, 40001 (2012).

[13] Y. Izumida and K. Okuda, Onsager coefficients of a finite-time
Carnot cycle, Phys. Rev. E 80, 021121 (2009).

[14] Y. Izumida and K. Okuda, Work output and efficiency at
maximum power of linear irreversible heat engines operating
with a finite-sized heat source, Phys. Rev. Lett. 112, 180603
(2014).

[15] Y. Izumida and K. Okuda, Onsager coefficients of a Brownian
Carnot cycle, Eur. Phys. J. B 77, 499 (2010).

[16] J. P. S. Bizarro, The thermodynamic efficiency of heat engines
with friction, Am. J. Phys. 80, 298 (2012).

[17] J. Guo, J. Wang, Y. Wang, and J. Chen, Universal efficiency
bounds of weak-dissipative thermodynamic cycles at the maxi-
mum power output, Phys. Rev. E 87, 012133 (2013).

[18] R. Wang, J. Wang, J. He, and Y. Ma, Efficiency at maximum
power of a heat engine working with a two-level atomic system,
Phys. Rev. E 87, 042119 (2013).

[19] H. T. Quan, Maximum efficiency of ideal heat engines based
on a small system: Correction to the Carnot efficiency at the
nanoscale, Phys. Rev. E 89, 062134 (2014).

[20] K. Brandner, K. Saito, and U. Seifert, Strong bounds on Onsager
coefficients and efficiency for three-terminal thermoelectric
transport in a magnetic field, Phys. Rev. Lett. 110, 070603
(2013).

[21] H. Hooyberghs, B. Cleuren, A. Salazar, J. O. Indekeu, and C.
Van den Broeck, Efficiency at maximum power of a chemical
engine, J. Chem. Phys. 139, 134111 (2013).

[22] Z. C. Tu and X. Hu, Molecular motor constructed from a double-
walled carbon nanotube driven by axially varying voltage, Phys.
Rev. B 72, 033404 (2005).

[23] E. R. Kay, D. A. Leigh, and F. Zerbetto, Synthetic molecular
motors and mechanical machines, Angew. Chem. Int. Ed 46, 72
(2007).

[24] X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and
H. P. Fang, A. charge driven molecular water pump, Nature
Nanotechnology 2, 709 (2007).

[25] P. Hänggi and F. Marchesoni, Artificial Brownian motors:
Controlling transport on the nanoscale, Rev. Mod. Phys. 81, 387
(2009).

[26] T. Schmiedl and U. Seifert, Efficiency of molecular motors at
maximum power, Europhys. Lett. 83, 30005 (2008).

[27] C. Van den Broeck, N. Kumar, and K. Lindenberg, Efficiency of
isothermal molecular machines at maximum power, Phys. Rev.
Lett. 108, 210602 (2012).

[28] U. Seifert, Stochastic thermodynamics, fluctuation theorems and
molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[29] N. Golubeva and A. Imparato, Efficiency at maximum power of
interacting molecular machines, Phys. Rev. Lett. 109, 190602
(2012).

[30] Z. C. Tu, Bounds and phase diagram of efficiency at maximum
power for tight-coupling molecular motors, Eur. Phys. J. E 36,
11 (2013).

[31] T. Schmiedl and U. Seifert, Efficiency at maximum power:
An analytically solvable model for stochastic heat engines,
Europhys. Lett. 81, 20003 (2008).

[32] Z. C. Tu, Efficiency at maximum power of Feynman’s ratchet
as a heat engine, J. Phys. A 41, 312003 (2008).

[33] M. Esposito, K. Lindenberg, and C. Van den Broeck, Ther-
moelectric efficiency at maximum power in a quantum dot,
Europhys. Lett. 85, 60010 (2009).

[34] C. Van den Broeck, Thermodynamic efficiency at maximum
power, Phys. Rev. Lett. 95, 190602 (2005).

[35] M. Esposito, K. Lindenberg, and C. Van den Broeck, Univer-
sality of efficiency at maximum power, Phys. Rev. Lett. 102,
130602 (2009).

[36] Y. Izumida and K. Okuda, Efficiency at maximum power of
minimally nonlinear irreversible heat engines, Europhys. Lett.
97, 10004 (2012).

[37] Y. Apertet, H. Ouerdane, C. Goupil, and Ph. Lecoeur, From
local force-flux relationships to internal dissipations and their
impact on heat engine performance: The illustrative case of a
thermoelectric generator, Phys. Rev. E 88, 022137 (2013).

[38] S. Q. Sheng and Z. C. Tu, Universality of energy conversion effi-
ciency for optimal tight-coupling heat engines and refrigerators,
J. Phys. A 46, 402001 (2013).

[39] S. Q. Sheng and Z. C. Tu, Weighted reciprocal of temperature,
weighted thermal flux, and their applications in finite-time
thermodynamics, Phys. Rev. E 89, 012129 (2014).

[40] C. Jarzynski and O. Mazonka, Feynman’s ratchet and pawl: An
exactly solvable model, Phys. Rev. E 59, 6448 (1999).

[41] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics, Vol. 1 (Addison-Wesley, Reading, 1966).
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