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Energy landscape of the finite-size mean-field 2-spin spherical model and topology trivialization
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Motivated by the recently observed phenomenon of topology trivialization of potential energy landscapes
(PELSs) for several statistical mechanics models, we perform a numerical study of the finite-size 2-spin spherical
model using both numerical polynomial homotopy continuation and a reformulation via non-Hermitian matrices.
The continuation approach computes all of the complex stationary points of this model while the matrix approach
computes the real stationary points. Using these methods, we compute the average number of stationary points
while changing the topology of the PEL as well as the variance. Histograms of these stationary points are presented
along with an analysis regarding the complex stationary points. This work connects topology trivialization to two
different branches of mathematics: algebraic geometry and catastrophe theory, which is fertile ground for further

interdisciplinary research.
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I. INTRODUCTION

Recently, in two independent studies, it was observed that
the mean number of real stationary points of a certain class of
statistical models changes drastically when changing a certain
parameter u [1-5]. It was shown that as p tends to a critical
value p., one observes a sharp transition separating a region
of exponential proliferation of critical points from one of only
finitely many.

Furthermore, in Refs. [1,2], the coupling parameter of
the nearest-neighbor ¢*-model on the two-dimensional lattice
was continuously varied and found that the number of real
stationary points changed from around 10® to O(1) for the
4 x 4 lattice case. Independently, in Ref. [4], the problem of
computing the real stationary points of the function Ej(x) =
—%XTHX — h”x was considered. Here, x = {x;, ... ,xy} are

N real variables subject to the spherical constraint ZlN=1 xi2 =
N, H is a random matrix from the Gaussian Orthogonal
Ensemble (GOE) and h is a vector whose entries are i.i.d.
random variables with zero mean and variance o2. It was
shown that the mean number of real stationary points of Ej(x)
canvary from 2N to 2. In between these two extreme cases, two
non-trivial regimes were identified: first, when o ~ O(N~1/?),
the number of stationary points is of order N and second, when
o ~ O(N~Y/%), the number of solutions is of order one. This
gradual decrease of the complexity of the random manifold
was termed topology trivialization. A similar phenomenon is
also recently reported in random dynamical systems [6].
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In Ref. [5], the results were extended to a generalized
class of models, namely, to the p-spin spin glass model
defined on the sphere and a model of a Gaussian landscape
in a confining parabolic potential. Interestingly, in the p-spin
model with p > 2, which naturally generalizes the p = 2 case,
there exists a critical value of ¢ = o, such that for ¢ < o,
the landscape [7,8] (see also [9-11]) has an exponentially
large number of stationary points. For o > o, the landscape
behaves in much the same way as in the p = 2 case, i.e., it is
possible to find two different scaling regimes with system size
interpolating between a region with a large number of station-
ary points and a final region with only two. The abrupt change
in the number of stationary points at o, can be formally related
to a thermodynamic phase transition in the p-spin models.

Also in [5], the author shows similar results for a random
Gaussian landscape with a parabolic non-random confinement.
Nevertheless, the parameter which triggers the topology
trivialization effect is not an external field but a parameter
related to the curvatures of the confining potential and the
Gaussian manifold. Surprisingly, this model behaves in a
qualitatively similar way as the p-spin model.

A unifying methodology of these works was to relate the
properties of the mean number of stationary points and also
of extrema (minima and maxima) of Gaussian manifolds to
known properties of the eigenvalue distributions of random
matrices, specifically of matrices belonging to the GOE.

In this work, we use two different numerical algorithms to
compute several quantities related to the topology trivialization
scenario in the two-spin spin glass model with a spherical
constraint. The Numerical Polynomial Homotopy Continua-
tion Method [12-14] allows us to compute all the complex
stationary points of a polynomial function. This enables us to
make an exhaustive search of the (complex) stationary points.
We also use a method based on a link between the two-spin
spherical model and non-Hermitian random matrices. This
second method, which does not readily generalize to p > 2,
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only computes the real stationary points and allows for larger
N.In particular, we present results for the mean number of real
stationary points for finite system sizes. Interestingly, there
exists in the literature analytic results for this quantity in terms
of the density of eigenvalues of the GOE for any finite N [15].
Our numerical results are in agreement with the predictions of
analytic calculations for finite N, and we also show how the re-
sults approach the asymptotic prediction in the limit N — oo.
In particular, our computations verify the existence of the two
scaling regimes predicted in [4]. We also present calculations
for the variance of the number of stationary points as a function
of scaling parameters characterizing the two regimes of topol-
ogy trivialization together with results for the full probability
distributions. To the best of our knowledge, no theoretical
results exist predicting the behavior of these quantities.

We also use our methods to obtain rather detailed statistics
on the global minimum of Ej;(x). The distribution of this
random variable was investigated heuristically in [4] using
the powerful technique of replicas. The authors obtained a
prediction for the large deviations function of the distribution
of Enin, valid for N > 1 and up to some critical value of
the energy E.. This later inspired the recent work of Dembo
and Zeitouni [16] who rigorously derived a different large
deviations formula for Ey;,. Although the latter formula
largely confirms the heuristic predictions of [4], it revealed
a small interval of energies near E. where the corresponding
rate functions are actually different. Remarkably, it turns out
that the difference between the two rate functions is small
enough to be virtually undetectable from a numerical point
of view. Our numerical results show good agreement with the
large deviations predictions in the region where these are valid.

In the last section we address the computation of all the
complex solutions in the different regimes of interest. This
clearly show how as the topology of the landscape becomes
simpler a corresponding growth of the imaginary parts of the
solutions emerge.

II. THE MEAN-FIELD TWO-SPIN SPHERICAL MODEL

The two-spin spherical model is defined by the Hamiltonian
or energy function:

Ep(x) = —3x" Hx —h'x, (1)

where X = (x1, ... ,xy) € RY is a set of N real degrees of
freedom subject to the spherical constraint

N
S a2 =N @)
i=l1

which restricts x to lie on an (N — 1)-sphere of radius VN.
The coupling constants H are N x N real symmetric

matrices with elements H;; independently drawn from a

Gaussian distribution with zero mean and variance (Hl%) =

J?/N for i < j and diagonal elements with zero mean and
variance (H?) = 2J?/N. The external field h is a real random
vector with each entry independently drawn from a Gaussian
distribution with zero mean and variance 2.

In order to derive the equations for the stationary points of
the energy, it is convenient to introduce a Lagrange multiplier

A. With the spherical constraint and the energy function, we
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obtain the Lagrangian function

N
E(x,A) = Ej(x) + A (—N + Zx,?) . A3)

The stationary points of the energy are defined by the system
of N + 1 equations:

Z)E(x A) Z

—h;i +2\x; =0, i=1,...,N,

N
M:Zx?—zvzo. @)

A. Known results

In [4], the authors identified two scaling regimes as a
function of the intensity of the external field. The first regime
is observed when o2 o N~!. In this regime, for any finite

y =NZ5 Jz , the mean number of real solutions of the stationary
equations is of the order of N'(y) ~ O(N), i.e., the system
has a large number of solutions, if N is large. An explicit
expression for A/(y) was obtained in the asymptotic limit
N — oo, equations (12) and (13) in [4]. The second scaling
regime is observed when o2 o« N~!/3, In this regime, it is
useful to introduce another control parameter k = N/ 3‘;—2.
Then, for any fixed «, the number of real solutions turns out to
be of order N (k) ~ O(1). As « increases without bound, the
number of stationary points converges to 2. This is the minimal
possible number of real solutions, and these correspond to a
unique maximum and a minimum. One sees this phenomena
occur in both the y and « regimes, i.e., the number of solutions
gradually diminishes until the energy function has a single
minimum and a maximum. This process, driven by the strength
of an external field applied to the system, is called fopology
trivialization [4,5]. While analytical approaches are usually
limited to large-N calculations, an exact expression for the
real number of stationary points of processes in the GOE is
known for any N [4,17]:

2(J2+O'2) 1/2 J2 N/2
2J2 +0? ) <J2+02)

0 No? 52
x f Egor{py (V)}e 5" di, )

[ee]

N=2N<

where Egog{on (1)} is the mean eigenvalue density of the GOE
for which there are exact expressions for arbitrary N in terms of
Hermite polynomials [15]. We compared our exact numerical
results for finite N with this expression in each regime. It is
also of interest to compare numerical results for finite N with
the asymptotic result obtained in [4]. In the N — oo limit, the
mean eigenvalue density of the GOE leads to the well-known
semicircular law. Then, it is easy to obtain the resulting limit
of expression (5). In the y regime, it reduces to

Jim %—N(y)—e_y/ V2 —22e ””M (6)

which is equation (12) in [4]. In the « regime, the integral
in Eq. (5) is dominated, in the large N limit, by the edge of
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the mean eigenvalue density, pedee. Performing the limit as
N — oo while keeping « finite, one arrives at the asymptotic
expression for the mean number of solutions in this regime:
oo
lim N(k) = 4e /2 / 2% pedge(2) dz (7
N—o0

—00

as given by equation (15) in [4].

III. THE NUMERICAL POLYNOMIAL HOMOTOPY
METHOD SPECIALIZED FOR THE TWO-SPIN MODEL

One approach for computing all of the stationary points
of the two-spin model is by solving a system of multivari-
ate polynomial equations using the numerical polynomial
homotopy continuation (NPHC) method [1,2,12—-14,18-25].
In particular, in Refs. [21,23,25], the method was used to
explore the potential energy landscapes of different potentials
with random disorders, and in Ref. [26] in a different
statistical setting. The NPHC method can find all the isolated
complex solutions of the system (see, e.g., [27-29] for related
approaches). It works by first determining an upper bound on
the number of isolated complex solutions of the given system.
One such upper bound is the Bézout bound, which is simply
the product of the degree of each polynomial equation. In many
structured systems, such as Eq. (4), this upper bound is much
larger than the actual number of solutions. A refinement of this
is the multi-homogeneous bound, which will be used below to
obtain a sharp upper bound of 2N for Eq. (4).

From such a bound, one constructs another system that has
exactly that many isolated nonsingular solutions which is easy
to solve. A homotopy from this system to the given system
is constructed which defines solution paths. The endpoints of
convergent paths form a superset of the isolated solutions of
the given system.

A. Upper bound on the number of stationary points

The Bézout bound for the stationary equations (4) of the
two-spin model is 2N+ However, due to the structure of the
system which has a natural partition of the variables, namely x
and A, this Bézout count is far from sharp. In fact, a well-known
bound on the maximum number of real stationary points is
2N [4], which can be obtained, for example, by taking h = 0.
The following shows that 2N is also a sharp upper bound on
the number of complex stationary points derived via a two-
homogeneous Bézout bound.

The two-homogeneous bound arises from the natural
partition of the variables, with the first group consisting of
the N variables arising from x and the second group being A.
To compute this bound, we first need to find the degrees of the
polynomials which respect to each group, in this case, called
the bidegree of each polynomial. The first N polynomials in
Eq. (4) have bidegree (1,1) since they are linear in x and linear
in A. The last polynomial has bidegree (2,0) since it is quadratic
in x and A does not appear.

Computing the two-homogeneous bound now turns into a
combinatorial problem. In particular, one needs to determine
all the ways in selecting N nonzero entries in the first spot
and one nonzero entry in the second spot. Here, N and 1
correspond to the dimensions of the spaces, i.e., x € C and
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A € C, respectively. The bound is simply the sum over the
products of the corresponding entries. In particular, since the
last polynomial has bidegree (2,0) and the other N polynomials
have bidegree (1,1), the two-homogeneous bound is simply 2
times the number of ways of selecting N — 1 items out of a
total of N items, i.e., 2N.

Since there is a system which has 2N real solutions, i.e.,
taking h = 0, it follows that, with probability 1, Eq. (4) has ex-
actly 2N complex solutions. Therefore, the two-homogeneous
bound is (generically) sharp. That is, from a corresponding
start system with precisely 2N solutions, there is a bijection,
defined by the solution paths of the homotopy, between the
2N solutions of the start system and the 2N solutions of each
system that corresponds to the selected random data.

We obtained the data via parallel computing which is based
on the independence of solving each random instance and the
independence of tracking each of the 2N paths. In particular,
we solved using BERTINI [13,30] on a cluster of nine processors,
each with eight cores running at 2.3 GHz.

IV. ALTERNATIVE REFORMULATION VIA
NON-HERMITIAN MATRICES

Although the NPHC method described in the previous
section applies quite generally to solving systems of mul-
tivariate polynomial equations, we can exploit the structure
of the two-spin spherical model to develop another solving
approach. This method is based on non-Hermitian random
matrices, which are matrices A such that AT # A, that was
suggested in [4] but has not yet been exploited for numerical
purposes.

The first step is to note that after diagonalizing the GOE
matrix H, the stationarity condition (4) can be solved:

N ~
x" = Xu;, X = h; )
= § : jWj,  Xj == T
j=1

Py

where h ji= hTu.,- and u; are the sequence of orthonormal
eigenvectors of H with corresponding eigenvalues A; <
)»2 < v <kNand5\=2k.

Next, we have to obtain an equation for A. From the spher-
ical constraint [|x*||> = N, formula (8) gives the condition
h"(H — X)"2h = N. This is equivalent to the determinantal
equation det[(H — X)> — N~'hh"] = 0. Finally, using the
well-known formula for the determinant of a block matrix, we
see that A satisfies Eq. (4) if and only if A is a real eigenvalue
of the following non-Hermitian block matrix:

H N~'hnT
A= ( ) )
Iy H

where Iy is the N x N identity matrix. Notice that when h =
0, A has the same eigenvalues of H, and there are 2N stationary
points. Then, the external field h # 0 breaks the symmetry of
A and pushes a non-trivial fraction of the eigenvalues into the
complex plane.

In summary, we see that to compute the real solutions of
Eq. (4), it is sufficient just to calculate the real eigenvalues
of the matrix A to obtain all possible values of A. The total
number of such real eigenvalues gives the total number of
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stationary points. Then, the positions of the stationary points
can be obtained by inserting all possible real values of A into
Eq. (8) to obtain x*. The energy of each stationary point can
then be computed from Eq. (1).

The reader might wonder whether this method might extend
to p-spin models with p > 2. Here we have heavily exploited
the fact that for p = 2, the stationarity conditions are systems
of linear equations that are well described by random matrices.
The question of whether random matrix models exist charac-
terizing the non-linear stationarity equations for p > 2 would
be a problem very much worth investigating in future work.

The numerical results of this procedure are described in
Sec. V. We also compare with the general purpose NPHC
method from the previous section. To calculate the mean and
the variance, as well as the frequency distribution of the total
number of stationary points, it suffices to generate enough
realizations of the matrix A in Eq. (9) and to count the real
eigenvalues for each realization. This was done by setting
up the block matrix A in Matlab and each time computing
the eigenvalues using the built-in function EIG. The number
of realizations used for the data presented here was 100 000
except for N =200 in which only 50000 realizations were
used.

V. RESULTS

In the following we present the results of the computations
based on the numerical approaches outlined above. When
investigating the behavior of the real solutions, though the
NPHC method can also solve systems for up to N = 200, the
non-Hermitian matrix method is preferred due to the speed
of the computation and collecting large statistics. We did,
however, verify the results matched computations using NPHC
method. When investigating the behavior of both the real and
imaginary parts of the Hamiltonian, this involved using the
NPHC method.

A. Mean number of stationary points

In Figs. 1 and 2, the average number of real solutions are
shown as a function of y and «, respectively. Each point in the
plots represents the average over 100 000 samples. Numerical
results from the non-Hermitian eigenvalue problem (9) are

1
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=z 08 N=30
g ——N=50
S 0.6f ——N=80
=z N=200
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©
o)
= 02

. 1 2 3 4 5

Y

FIG. 1. (Color online) Mean number of stationary points as a
function of y.
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FIG. 2. (Color online) Mean number of stationary points as a
function of «.

plotted for several different values of the dimension N,
together with the theoretical results in the asymptotic limit
from Eqgs. (6) and (7) and also with the exact expression from
Eq. (5).

In Fig. 1, the finite N numerical results show a qualitatively
similar trend to the asymptotic results, approaching this in a
relatively fast rate as N grows. The results are also compared
with the exact analytic formula (5) for a fixed size N = 20. The
numerical calculations agree excellently with the analytical
expressions. The same observations are valid for Fig. 2 which
shows the results for the x regime. Here N (x) — 2 for large
k, which is the limiting regime of topology trivialization
as described above. In summary, these results show both
the correctness of the analytical approaches for computing
the mean number of stationary points in the GOE, and
also the correctness of the numerical calculations from the
non-Hermitian eigenvalue problem (9).

B. Variance of the number of real stationary points

While it is often possible to compute analytical expressions
for the mean number of real solutions of a random system of
equations, obtaining analytical expressions for the variances or
higher order moments of the distribution is often a very difficult
task, if not impossible. Indeed, for the two-spin spherical
model, analytical expressions for the variance for both finite
N and N — oo are completely unknown. It is here where
numerical methods can be most useful.

By means of the non-Hermitian matrix (9), we can find
all the real solutions for each sample of the two-spin model,
and then we can straightforwardly compute the variance of the
number of real solutions. This quantity, which is a measure
of the fluctuations of the mean number of real solutions, is of
particular relevance as it gives information on the occurrence
of real versus complex solutions of the system of equations in
the different regimes.

The variance as a function of y and « for different values
of N is plotted in Figs. 3 and 4, respectively. In Fig. 3, as we
increase through higher values of N, the variance shows a clear
convergence to a well-defined limiting curve, confirming our
normalization of Ny, by N /2 in this context. An important
open problem is to provide a theoretical justification for
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FIG. 3. (Color online) Variance of the number of stationary
points as a function of y.

this normalization and the resulting limiting curve. In the
k regime, shown in Fig. 4, the number of stationary points
is characterized by large fluctuations near the origin k = 07"
which are quickly suppressed for increasing values of «.

C. Frequencies of the no. of stationary points

Going beyond the mean and variance, we can also obtain
the full distribution of the number of stationary points. The
results are plotted in Fig. 5 in the y regime for N = 75, where
the left-most plot corresponds to ¥ = 4 and decrease through
the indicated values to y = 0.1 on the right-most plot. These
plots were generated from 100 000 realizations of the matrix
A in Eq. (9). For increasing values of y, we note the spread of
the distribution behaving in accordance with the variance plot
in Fig. 3. As with the variance, there is not yet any analytic
results about the full distribution of the number of stationary
points. Its theoretical investigation may be of broader interest
to practitioners of random matrix theory, as the number of
real eigenvalues were investigated by several authors when
the underlying matrix is composed of independent, identically
distributed entries [31] or satisfies invariance [32] with respect
to the action of an appropriate compact group. In these simpler
cases, it was proven that the fluctuations of the real eigenvalue

160} —~-N=10

—~—N=20

N=30

120} ——N=50

i ——N=80
! N=200

Var(N tot)

FIG. 4. (Color online) Variance of the number of stationary
points as a function of «.
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Probability

T40 80 120 160 200
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FIG. 5. (Color online) Probability densities of the number of
stationary points for different values of y.

count are Gaussian when N — oo, with mean and variance of
order +/N. In contrast, our study shows that for the matrix A
in the y-regime, the real eigenvalues instead have mean and
variance of order N.

D. Distribution of global minima

In order to obtain the distribution of the global energy
minimum with our methods, one simply takes the obtained
values of the Lagrange multipliers [namely, the eigenvalues of
the matrix A in Eq. (9)] and inserts the results into Eq. (8).
Then, numerically, it is a simple task to evaluate the energy
Ej(x) at the 2N critical points and minimize over all outputs.
The corresponding probability histogram is depicted in Fig. 6
for N =50, J =1, y = 2 with 100 000 realizations.

The statistical properties of the ground-state energy of the
two-spin spherical model were investigated analytically in [4]
and laterin [16]. In [4], alarge deviation asymptotic expression
for the probability density function of E\;, was derived, valid

14202
1+0?

depending on the parameter Ey, = —N+/1 + o2, the typical
value of Ey;,. Recently the corresponding rate function was
obtained rigorously in [16], revealing a surprising difference

and

up to a critical value of the energy E, := —N

0.18} | Numerics
* Large deviations

0.15¢

0.12f

0.09¢

0.06}

0.03f

60 -5 1A%50
typ EL Ec

-45 -40

FIG. 6. (Color online) Probability density of E;, for y = 2 and
N = 50.
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FIG. 7. (Color online) Probability density of E,;, for o = 1 and
N = 100.

with the one obtained in [4]. Specifically, it was shown
in [16] that there is a different critical parameter Ej :=

—N(1+ 2(%202)) for which the two rate functions disagree
on the interval [E},E.].

In Fig. 6, we plot the large deviations functional in [4]
that was also proved rigorously in [16]. The results show a
good consistency between the two approaches in the regime
of validity of large deviations E <« E.. The values of E., E;,
and E,,, are almost identical here.

On the other hand, if we consider the regime of topology
trivialization, where o > 0 is fixed, we get an almost perfect
agreement with large deviations, see Fig. 7, where we set
o=1,J =1,and N = 100. The reason seems to be that for
fixed o, the threshold E, moves far out into the right tail of
the distribution, giving a wider range of validity. The triangles

show the Gaussian
(E - Etyp)2

P(E —_— 10

(E) o exp( i (10)

giving a good approximation to the tails of the dist-
ribution [4].

Il Numerics
e Large deviations (a)
Large deviations (b)

-128 -126 -124 -122 -120
EL/' E/

c

FIG. 8. (Color online) Probability density of E\,;, near the critical
energy, again with 0 = 1 and N = 100. (a) corresponds to [4] and
(b) to [16], with both estimates diverging at E..
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FIG. 9. (Color online) Probability density of E;, for x = 1 and
N = 50.

For o = 1, the critical parameters also begin to separate
out more and one can ask how the two large deviations
expressions differon [E , E.]. As seen in Fig. 8, this difference
is very small and is hard to detect numerically. Below E,,
the triangular data points are based on the rigorous large
deviations formula in [16] and circles the one in [4]. At the
level of rate functions, their difference is upper bounded by
10~ on the interval [E.,E.]. Away from this interval, the
two expressions are identical [16]. The plot also shows that as
one approaches E. the pre-exponential factor in [4] diverges
and should be replaced by a different expression beyond the
threshold E..

Finally, we plot the results for the «-regime in Fig. 9. Now,
the large deviation expressions gives an agreement somewhere
in between the last two regimes, as expected from the fact
that 0, < 0 < 1, where o, and o, denote the o values
corresponding to the y and k regimes, respectively.

E. Complex stationary points

As stated before, the NPHC method finds all complex
solutions of Eq. (4). Since, with probability 1, there are always
2N complex solutions for any random sample, only the number
of real solutions varies with y and «. In other words, while
increasing y and k, some of the real stationary points become
complex solutions. One way of studying this phenomenon
is by plotting real vs imaginary parts of Ej;(x), see Fig. 10.
The plots show that at small y and «, the imaginary part of
Ej(x) evaluated at all the 2N complex stationary points is
zero. As the parameters increase, the imaginary parts of Ej(x)
increases meaning that some of the real solutions became
non-real.

VI. DISCUSSION AND CONCLUSION

Exploring potential energy landscapes of various models
arising in physics and chemistry is a very active area of research
in different fields of science and mathematics. Recently, a
curious feature of the potential energy landscapes of a class
of statistical mechanics models has been observed, namely,
topology trivialization: while varying one or more parameters
of the potential, either continuously or varying the variance of
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FIG. 10. (Color online) Plots of the real and imaginary parts of the energy function Ej(x) evaluated at the complex stationary points for
values of y corresponding to (a) 0.1, (b) 1, (c) 3, (d) 5 and values of « corresponding to (e) 0.1, (f) 1, (g) 2, (h) 4.

the random distribution the parameter values are drawn from,
the mean number of real stationary points of the potential
varies from O(1) to O(N) or even higher. In the former case,
the topology of the N-dimensional landscape can be viewed
as being frivialized. In this work we have done a numerical
study of the topology trivialization scenario in the two-spin

spherical model. While the mean number of real stationary
points can be computed analytically using random matrix
theory tools, computing other quantities such as the variance
of the number of real stationary points and the full distribution
are prohibitively difficult for current analytical computation
techniques.
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We used two numerical methods, namely, the numerical
polynomial homotopy continuation (NPHC) method and non-
Hermitian matrix method. One first translates the problem of
finding stationary points into an algebraic geometry problem of
solving a system of polynomial equations. This interpretation
yields an upper bound on the number of complex solutions,
namely 2N which is equal to the known upper bound on the
number of real solutions for this system. In fact, 2N is equal
to the number of complex solutions, with probability 1, and
only the number of real solutions varies with each instance.
Hence, we have found a more general result for the number of
solutions of the two-spin model.

The second method, though described here only for the two-
spin model, works more efficiently in this case by finding all
the real solutions for a given random instance and hence giving
an opportunity to reach much higher dimension N and sample
size. The method does not find complex solutions which were
analyzed using the NPHC method.

With the two powerful methods at our disposal, we first
reproduced the analytical predictions on the mean number of
real solutions with an excellent agreement. We also addressed
the issue of fluctuations of the number of solutions, showing
that for the y-regime, the variance of the number of critical
points is of order N as N — oo. To show this analytically
seems to us an important open problem. Little is known in
general about fluctuations of the number of critical points in
random Gaussian fields, although in a different context results
in this direction were obtained in [33].

We also investigated statistics of the global energy mini-
mum E.;,. When o > 0 is fixed and large enough that E, >
Ey, (corresponding to the regime of topology trivialization),
our findings give a strong agreement with the heuristic
arguments in [4]. Remarkably, it seems that in this regime,
the entire distribution of E;, yields precise agreement with the
large deviations expression in [4]. In the y and « regimes, the
agreement with large deviation theory is limited to the left tail
of the distribution. The reason seems to be that when o — 0,
the critical energy threshold E,. moves further into the bulk of
the distribution and we know that the pre-exponential factors
from [4] are not valid if E > E,. Analytical understanding of
the statistics of Ep;, in the right tail for the y and « regimes
therefore remains an outstanding issue.

We note that the topology trivialization phenomenon, at
least in the simple case of continuously varying parameters,
shares a deep connection with catastrophe theory, which is
now absorbed in a more general mathematical framework of
singularity theory and bifurcation theory. From catastrophe
theory, it is known that varying the parameters of the
potential continuously the real stationary points may appear
or disappear, or change their stability properties [34,35]. In
Refs. [1,2], it was observed that while continuously varying the
parameter of the two-dimensional nearest-neighbor ¢* model,
some of the real stationary points would merge to become
complex solutions and vice versa.

PHYSICAL REVIEW E 91, 022133 (2015)

The fact that the topology trivialization occurs when
varying the variance of the random distributions from which
the parameters are drawn, rather than varying the parameters
themselves, makes such a description more subtle. In the
present work, however, we have observed that a similar
phenomenon of real stationary points transforming to complex
and vice versa is occurring in thetwo-spin model too when
varying y and k.

Another description of the topology trivialization phe-
nomenon may come from our algebraic geometry interpre-
tation of the two-spin model: for a simple system ax? + bx +
¢ = 0, where a,b, and c are real parameters, the discriminant
b* — 4ac decomposes the 3D parameter space in to three
phases, i.e., no real roots, two distinct real roots, and double
roots. Thus, the number of real solutions goes from the highest
possible to zero. Similarly, a discriminant can be defined for
multivariate polynomials case and a similar classification of
the parameter space based on the number of real solutions
can be worked out using the so-called discriminant variety
method [36-38]. From this, one can study the topology trivi-
alization fairly straightforwardly for the case of continuously
varying parameters. However, the case of varying variances
of the random distributions of the parameters is still subtle
and largely unexplored even from the mathematics point of
view.

Thus, we anticipate that our results will merge the topology
trivialization phenomenon with the emerging mathematical
areas called Statistical Topology, or perhaps inspire a new
sub-branch that may be called statistical catastrophe theory or
statistical discriminant variety.

We also note that for higher N, numerical instabilities
become profound when finding stationary points of the p-spin
model using the above numerical methods. To resolve this
issue, one can employ, for example, Smale’s « theorem
to certify if a numerical approximate is provably within
the quadratic convergence region of the nearby exact root.
Combining this certification with the NPHC method then
gives a result equivalent to the exact result for each random
instance [39,40]. In the future, we plan to use this combination
to prove concrete results for higher values of N.
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