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The computation of the critical exponent η characterizing the universal elastic behavior of crystalline
membranes in the flat phase continues to represent challenges to theorists as well as computer simulators that
manifest themselves in a considerable spread of numerical results for η published in the literature. We present
additional insight into this problem that results from combining Wilson’s momentum shell renormalization-group
method with the power of modern computer simulations based on the Fourier Monte Carlo algorithm.
After discussing the ideas and difficulties underlying this combined scheme, we present a calculation of the
renormalization-group flow of the effective two-dimensional Young modulus for momentum shells of different
thickness. Extrapolation to infinite shell thickness allows us to produce results in reasonable agreement with
those obtained by functional renormalization group or by Fourier Monte Carlo simulations in combination with
finite-size scaling. Moreover, our method allows us to obtain a decent estimate for the value of the Wegner
exponent ω that determines the leading correction to scaling, which in turn allows us to refine our numerical
estimate for η previously obtained from precise finite-size scaling data.
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I. INTRODUCTION

The paradigm of the renormalization group (RG) is without
doubt a cornerstone of modern theoretical physics with count-
less applications, and it has been enormously influential in
many areas of science beyond its origins rooted in high-energy
physics and statistical mechanics [1]. Indeed, the abstract RG
concept may be regarded as a cleverly organized successive
divide-and-conquer strategy to deal with problems that involve
a large number of mutually coupled degrees of freedom. How-
ever, concrete applications of an RG scheme may superficially
appear to look very different from one another. In the present
article, we will concentrate on Wilson’s momentum shell RG
(MSRG) approach to the field-theoretic formulation of critical
phenomena at second-order phase transitions [2]. The MSRG
is certainly an invaluable conceptual tool both for abstract
reasoning as well as in a first qualitative or even semiquantita-
tive analysis of a given problem. In a nutshell, one writes the
underlying Hamiltonian in terms of Fourier amplitudes f̃ (k)
of the underlying fields. Imposing a wave-vector cutoff �, one
tries to identify an effective Hamiltonian as it would emerge
after having integrated out all microscopic degrees of freedom
that describe the physics of the system below scales of size
1/�. In this effective Hamiltonian, only those couplings are
kept that are regarded as important in the long-wavelength
limit, while the effect of all other couplings that are related
to the eliminated short-ranged degrees of freedom is absorbed
into an assumed renormalization of these surviving couplings.
The fact that the choice of the cutoff � is arbitrary suggests
to iterate this prescription as follows. The effects of the
“fastest” degrees of freedom that reside in a momentum shell
�/b < |k| � �, b > 1 beneath the cutoff � are successively
integrated out from the partition function, which gives rise to
a yet another set of modified coupling constants. On properly
rescaling lengths and “renormalizing” the field, one derives a
flow pattern in the space of coupling constants. An analysis of
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the fixed points (FPs) of this flow then allows us to explain the
phenomenon of universality and to extract numerical values
for the critical exponents. Unfortunately, concrete analytical
implementations of this program usually rely on some type
of perturbative approximation, and calculations frequently
become intractable beyond one loop order. Thus, for actual
numerical calculations, other approaches such as the field-
theoretic RG [3] or the functional RG [4] are preferred, or
one resorts to real-space computer simulations in combination
with finite-size scaling (FSS) [5,6].

For the task of implementing Wilson’s MSRG scheme in a
simulation, real-space MC approaches are obviously not very
well suited. On the other hand, our Fourier Monte Carlo algo-
rithm (FMC) [7–11] is tailor-made for this problem. Recently,
we have demonstrated that it allows us to follow the MSRG
prescription step by step in simulation [12,13]. This is quite
appealing, as it eliminates the perturbative approximations
and the underlying need for a “small parameter” from the
concrete application of the MSRG, thus representing a truly
nonperturbative implementation. On the other hand, as in
any humanly possible MSRG calculation, one is still forced
to project the calculated RG flow from its native infinite-
dimensional coupling space to a suitable low-dimensional
subspace spanned by a finite number of effective coupling
parameters. Even though no perturbative approximation is
involved, the presence of this inevitable projection, which
amounts to ignoring the effects of the remaining directions
in the space of coupling constants, may do substantial harm to
the achieved numerical precision.

Inspired by early analytic work by Bruce, Droz, and
Aharony [14], subsequent work [13,15] indicates that by
optimizing the results with respect to the parameter b that
governs the thickness of the momentum shell (we will discuss
below in more detail how this works), MSRG can indeed be
turned from a qualitatively to a quantitatively useful tool.
To date, this has only been demonstrated for a particularly
convenient model system, namely the long-ranged Ising model
of Fisher, Ma, and Nickel [16]. One purpose of the present
paper is to test the ideas put forward in Refs. [13,15] on a
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nontrivial real-world problem, namely the elastic behavior of
crystalline membranes in the flat phase. It is well known [17]
that the corresponding universal behavior of long-wavelength
fluctuations is governed by a single exponent η. However, as
noted in Ref. [18], a glance at the existing literature reveals a
considerable spread of numerical results for η, obtained from
a variety of analytical approaches such as, e.g., self-consistent
field theory [19,20], ε expansion [21], large d expansion [22],
and functional RG [23–25], or from simulation approaches
derived in real space (see, e.g., Refs. [26,27]). In our own
simulations (Ref. [18]), which are based on our Fourier MC
algorithm in combination with FSS, we have noticed a rather
strong influence of corrections to scaling, which indicates the
importance of properly taking into account the role of RG-
irrelevant couplings if one aims at high numerical precision.
Interestingly, up to now nobody seems to have succeeded in
deriving a numerical estimate of the exponent ω governing
the corrections to scaling (cf. [28]) of a crystalline membrane
in its flat phase. It is the second goal of the present paper to
provide such a numerical estimate.

II. A DIFFERENT VIEW ON STANDARD MSRG

As explained in the Introduction, MSRG is a fairly standard
method. However, for the convenience of the reader, we will
summarize the main steps, emphasizing those aspects that
are particularly relevant to our present approach. A MSRG
transformation can be performed on an arbitrary Hamiltonian
H�

K [f ] formulated in terms of the Fourier amplitudes f̃ (k)
of a field f (x) defined for wave vectors of moduli up to a
chosen momentum space cutoff �. The formal vector K holds
all “coupling constants” that are admissible for the symmetry
constraints imposed on the underlying system. Let K denote
the infinite-dimensional space of all such coupling vectors.
One chooses a shell thickness parameter b > 1 and splits
the Fourier amplitudes f̃ (k) ≡ f̃<(k) + f̃>(k) into “slow” and
“fast” contributions,

f̃<(k) = θ (�/b − |k|)f̃ (k), (1)

f̃>(k) = θ (|k| − �/b)f̃ (k), (2)

where θ denotes the Heaviside step function. Functional
integration over the fast modes

e−H̃�/b

K̃
[f<] ≡

∫
Df>e−H�

K [f<+f>] (3)

then yields a coarse-grained Hamiltonian for the remaining
slow modes and induces a mapping K → K̃ . This coarse-
graining step is followed by a rescaling k′ = bk of “momenta”
(i.e., inverse length) scales and restoration of the original cutoff
�. Finally, one performs a renormalization

f̃<(k′/b) = z(b,K )f ′(k′) (4)

of field amplitudes with

z(b,K ) = bd−[f ]− η[K ]
2 . (5)

Here, d is the spatial dimension, [f ] is the canonical momen-
tum dimension of f , and the so-called anomalous dimension
η[K ]/2 is a function that characterizes the specific FP to
be investigated (see below). For the example of a coupling

constant C multiplying a monomial containing n powers of the
field f and p spatial derivatives in the effective Hamiltonian,
it is straightforward to show that the coarse-grained coefficient
C̃ undergoes a total rescaling,

C ′ = b[C]−n
η[k]

2 C̃, (6)

where p is implicitly accounted for in the canonical momen-
tum dimension [C] = d − n[f ] − p.

Consecutive application of these three steps induces a
mapping K̃ → K ′, which defines the RG transformation Rb :
K → K. The crux of the whole construction is the observation
that as a result of the rescaling operation, the correlation
lengths of systems at K and K ′ are related by ξ [K ′] = ξ [K ]/b.
At a FP K ∗ = Rb(K ∗), this leaves only the possibility of an
infinite or zero correlation length. Each such FP characterizes
a different universality class of critical behavior, and nontrivial
behavior is, of course, found for infinite correlation length.

In principle, the operation Rb can be defined for any b > 1,
and it satisfies the eponymous semigroup property

Rb1b2 = Rb1 ◦ Rb2 , (7)

where “◦” denotes composition of maps, which is paramount
to the emergence of power laws that dominate the subsequent
analysis as well as to the independence of the associated
exponent values of the particular choice of the shell thickness
parameter b. In the vicinity of K ∗ where Rb can be linearized,
most directions in the space K turn out to be exponentially
attractive (“irrelevant”), while typically only one or two
are exponentially repulsive (“relevant”), and thus must be
carefully tuned to “reach” the FP K ∗ under successive iteration
of Rb. Ultimately, this explains the observed universality of
critical phenomena. The RG flow resulting from the above
scheme is defined in the infinite-dimensional coupling constant
space K. In practical calculations, we are nevertheless forced
to limit ourselves to working with effective Hamiltonians, i.e.,
Hamiltonians H�

K eff
[f ] that are parametrized exclusively by

coupling vectors K eff ∈ Keff taken from a low-dimensional
linear subspace Keff ⊂ K of dimension, say, deff , spanned by
the relevant and the least irrelevant directions with respect to
the FP K ∗. In terms of suitably chosen coordinates in the space
K, the projection πeff : K → Keff onto this finite-dimensional
space assumes the form

πeff(K1,K2, . . . ) = (K1,K2, . . . Kdeff ,0,0, . . . ). (8)

Except for trivial cases, Keff is not an invariant subspace under
the action of Rb, i.e., Rb and πeff do not commute, because
“new” couplings are inevitably generated from a generic
effective Hamiltonian under the coarse-graining operation, re-
gardless of our ability to perform the coarse-graining operation
exactly or by some approximate method. If the subspaceKeff ⊂
K has been chosen properly, the “missing” directions will
only correspond to strongly irrelevant directions in coupling
space, whose influence will be exponentially suppressed. In
mathematical terms, any humanly possible MSRG calculation
amounts to replacing the exact RG transformation R by the
effective transformation

Reff
b := πeff ◦ Rb ◦ πeff . (9)
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The crucial observation is, however, that, in contrast to Rb,
the effective transformations Reff

b do not strictly form a half-
group, i.e.,

Reff
b1b2 	= Reff

b1 ◦ Reff
b2 , (10)

since in the composite operation on the right side the additional
irrelevant couplings generated by Reff

b will be “lost” in the
subsequent application of πeff . Of course, nothing can prevent
us from studying iterations of the map Reff

b in a manner
similar to Rb. The harm that the failure of Reff

b to close
under composition causes to the subsequent analysis depends
on the “production rate” of coupling components generated
during the coarse-graining step that fall outside of Keff , which
in turn is controlled by the shell thickness parameter b.
In particular, the projection πeff(K ∗) of the “true” infinite-
dimensional FP K ∗ of Rb generally does not produce a FP
of Reff

b. Instead, the locations of FPs K eff
∗ = K eff

∗(b) ∈ Keff

of the transformations Reff
b will generally be b-dependent.

Furthermore, the same is true for the numerical values of
critical exponents calculated from a linearization of Reff

b

around K eff
∗(b).

In summary, even though the results of the exact RG
prescription in infinite-dimensional coupling space K are
guaranteed to be independent of the arbitrary parameter
b, the projection πeff to the low-dimensional space Keff

introduces such a b dependence that encodes the effects
of the remaining irrelevant directions. While this seems to
look pathological at first glance, it actually allows us to
optimize the resulting calculation scheme by determining the
value b∗ at which the drift of K eff(b) becomes stationary.
In this respect, our philosophy is similar to that of other
approaches in which an arbitrary parameter is introduced
whose value would drop out of the results of exact theory but
nevertheless may be used to optimize an approximated version.
A nice example illustrating the power of such a strategy is
Kleinert’s “variational perturbation theory” [29]. However, it
is very important to keep in mind that the present b-related
“pathologies” are nonperturbative in the sense that they do
not originate from the use of any perturbative approximation
in evaluating the CG step, but purely arise from the necessity to
limit ourselves to considering a finite number of couplings in
a real-world calculation. Amusingly, these effects are neither
noticed in standard perturbative MSRG calculations (where
it is extremely convenient to consider momentum shells that
are infinitesimally thin, since in the limit 	b := b − 1 → 0+
the appearing Feynman integrals are usually much easier to
evaluate than for finite 	b) nor in most popular real-space
RG schemes, where the value of b is usually dictated by the
decimation scheme chosen for the given lattice topology. In
fact, it is difficult to find any papers that use momentum shells
of finite thickness for anything beyond qualitative arguments.
One notable exception is the work of Bruce, Droz, and Aharony
[14], who argued that the influence of irrelevant couplings
in perturbative calculations of the exponents of a standard
short-ranged Landau-Ginzburg (LG) model should be greatly
diminished in the limit of large b. And indeed, notice that
b∗ → ∞ and b∗ → 1 are the only values of b∗ that allow
us to reconcile the expected b-dependent features discussed
above with the validity of the usual semigroup property
Rb∗2 = Rb∗ ◦ Rb∗ .

Our recently developed FMC method is nonperturbative
by definition and necessarily uses momentum shells of finite
thickness, since our simulations are done for a finite lattice
of linear size L with lattice constant a = 1, which implies
a minimum spacing of 	ki = 2π/L between components of
adjacent wave vectors. Thus, it is perfectly suited to study
the b dependence of Reff

b and check the predictions of Bruce
et al. that had been derived with the use of the ε expansion.
Of course, due to the discrete nature of the Brillouin zones
of our finite systems, neither the limit b → 1 nor the limit
b → ∞ are directly accessible, but we can monitor or even try
to extrapolate the behavior of the corresponding observables
towards these limits.

For the purpose of putting our ideas to the test, the
short-range LG model used in Ref. [14] is not very suitable
in view of the numerical smallness of its exponent, η =
ε2/54 + O(ε3). Instead, in Ref. [15] we considered the long-
range generalization of the LG model introduced by Fisher,
Ma, and Nickel in Ref. [16]. This model was particularly
convenient since the exponent η of its Wilson-Fisher FP is
exactly known, thus saving the numerical effort to determine
it numerically from the simulation data. In addition, detailed
analytical calculations and quite precise Monte Carlo data were
available for comparison [30]. Using our FMC implementation
of MSRG, we were indeed able to observe the b dependence
of K eff

∗(b) and its associated exponents. However, contrary
to our initial expectations, it turned out that the best accuracy
was not obtained in the large-b limit. Instead, for varying b,
the FP b �→ K eff

∗(b) moves along a “trajectory” in the plane
Keff that exhibits a turning point at a certain shell thickness b∗
that was actually found to be rather close to but distinct from
b = 1, and for this distinguished value b∗ we observed that
the values of the critical exponents ν and ω were in excellent
agreement with the benchmark results derived in Ref. [30].
A systematic study for different system sizes revealed the
surprising discovery that 1 < b∗ < ∞ is not a finite-size effect.
Nevertheless, we speculate that this peculiar finding is highly
specific to the model of Fisher, Ma, and Nickel, and we still
expect that usually b∗ → 1 or b∗ → ∞ will instead be found
in other systems. The rest of the paper will therefore be devoted
to the application of our ideas to a real-world system, whose
critical properties are still an active area of research: the elastic
behavior of crystalline membranes.

III. FMC IMPLEMENTATION OF MSRG FOR
CRYSTALLINE MEMBRANES

As explained in detail in Refs. [17,31], the flat phase
of a crystalline membrane is conveniently described in the
so-called Monge parametrization, which amounts to spec-
ifying a scalar “height” function f (x) that measures the
out-of-plane deformations of the membrane with respect to
a two-dimensional reference plane, which we take to be of
size L × L with periodic boundary conditions understood.
The long-wavelength physics of the system is captured by
the Fourier modes

f̃ (q) = θ (� − |q|)
∫

d2xf (x)e−iq·x, (11)
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where the Heaviside step function is used to impose a cutoff �

in the space of wave vectors. Formally embedding the vectors
q, Q in R3 and abbreviating Q̂ = Q/| Q|, we define

F̃( Q) =
∫

d2q

(2π )2

(
Q̂ × q

)2
f̃ (q)f̃ ( Q − q). (12)

In terms of this generalized convolution, the effective Hamil-
tonian that describes the universal properties of the flat phase
at long wavelengths is given by

H�[f ] = κ

2

∫
d2q

(2π )2
q4|f̃ (q)|2 + K

8

∫
d2Q

(2π )2
|F̃( Q)|2. (13)

Its first contribution, the bending energy, is represented by
a local dispersion term as found in a standard LG model,
except that the usual gradient term (∇f )2 is replaced by a
Laplacian (	f )2. In addition, while its second contribution
also involves four powers of f , the nonlocal characteristic of
the generalized convolution (12) hints at physics that is quite
different from that of the standard LG model. As discussed in
Refs. [17,32], this nonlocality encodes an effective long-range
anharmonic self-interaction of the out-of-plane deformations
f mediated by in-plane phonons that had been integrated out
in the calculation steps leading to (13).H[f ] involves only two
coupling constants, namely the bending stiffness κ and the the
effective two-dimensional (2D) Young modulus K = 4μ(μ +
λ)/(2μ + λ) composed from the in-plane Lame constants λ

and μ of the membrane. Implicit in all these constants as well
as in the formulas (13) but suppressed in our present notation
is a dependence on the cutoff �.

To implement our FMC algorithm, we replace the mem-
brane reference plane by a square L × L lattice with N = L2

sites and lattice constant a = 1, and we keep the imposed
periodic boundary conditions. Assuming L to be even without
loss of generality, we may parametrize wave vectors inside
the full first Brillouin zone of this lattice by qi = 2πmi/L,
mi = −L/2 + 1, . . . ,0, . . . ,L/2, and the above integrals over
the Brillouin zone are replaced by finite sums. In view of the
rectangular structure of the underlying lattice, it is natural to
replace spherical cutoffs � that are convenient in analytic
continuum calculations by a more suitable cubic version.
Parametrized by an integer l, in our simulation a cutoff � =
2πl/L is applied to each separate wave-vector component,
and in order to avoid problems with “umklapp” terms and
minimize the effects of lattice anisotropy, it is recommended
to choose l � L/2. To implement the coarse-graining step in
FMC, we furthermore choose an inner cutoff �′ = 2πl′/L
with 0 < l′ < l. The shell thickness parameter is then given
by b = �/�′ = l/ l′.

The discrete Fourier transform convention

f̃ (q) =
{∑

x f (x)e−iq·x, |qi | < �,

0, otherwise
(14)

with inversion

f (x) = 1

N

∑
|qi |<�

f̃ (q)eiq·x, (15)

in which the Fourier amplitudes are extensive quantities,
may look somewhat asymmetric. It proves to be convenient
in comparing discrete to continuous formulas. Since the

membrane’s elastic free energy does not depend on the average
distance of the membrane to the Monge reference plane but
merely on variations of its height, only derivatives of f enter
in the continuum formulation (13). Therefore, we can further
assume without loss of generality that f̃ (0) = 0. In terms of
these discrete amplitudes, the above formulas (12) and (13)
are replaced by

F̃( Q) =
∑

q

(
Q̂ × q

)2
f̃ (q)f̃ ( Q − q) (16)

and

H�[f ] = κN

2

∑
q 	=0

q4|f̃ (q)|2 + KN

8

∑
Q 	=0

|F̃( Q)|2, (17)

where

κN = κ

N
, KN = K

N3
. (18)

In view of the extensive discussions already available in the
literature (cf. Refs. [8,10,33,34]) and the detailed layout of the
specific implementation for the case of crystalline membranes
presented in the companion paper [18], we would like to keep
the description of the basic Fourier Monte Carlo algorithm
and its general properties at a minimum in the present paper.
However, it turns out that setting up the coarse-graining step
of MSRG for a crystalline membrane requires us to define
different MC moves for slow and fast modes of the so-called
“tracer” configurations to be defined below. In the standard
cubic FMC scheme, the momentum shell corresponding to a
prescribed pair of cutoffs �′ < � is, of course, defined as the
set of wave vectors with components pi,i = 1,2 subject to the
constraints |pi | � � and maxi |pi | > �′. MC moves of fast
modes f̃>(q) are performed by picking a random wave vector
p from this shell, choosing a random complex number inside
a circle |ε| < ρ of radius ρ around 0 in the complex plane, and
considering the shift

f̃ (q) → f̃ (q) + εδq, p + ε∗δq,− p. (19)

Taking advantage of the special convoluted structure (12) of
the anharmonic term appearing in (13), it is then possible to
calculate the resulting change in energy in an efficient way, as
is explained in detail in Ref. [18].

Integrating out these fast modes by means of an FMC
simulation should then produce a coarse-grained Hamiltonian
of general structure,

H̃�/b[f ] = 1

2

∑
q

[κ̃Nq4 + · · · ]|f̃ (q)|2

+ 1

8

∑
Q

[K̃N + · · · ]|F̃( Q)|2 + O(f 6), (20)

with

F̃( Q) =
∑

q

( Q̂ × q)2f̃ (q)f̃ ( Q − q), (21)

from which we wish to extract the two CG relations κN �→ κ̃N

and KN → K̃N , i.e., κ �→ κ̃ and K → K̃ . For this purpose, we
determine the value of the CG Hamiltonian (20) by restricting
the MC sampling to certain “tracer configurations” defined by
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a particularly simple and convenient choice of their slow mode
parts. In terms of simplicity, our preferred type of such a tracer
configuration would certainly be that of an isolated “dumbbell”
of just two slow modes with a common uniform real-valued
amplitude at the fixed wave vector ±k. This dumbbell is
surrounded by the shell of nonzero fast modes, but all other
slow modes are set to zero. In formal terms, the slow parts
of such dumbbell tracer configurations f̃ (k)(q) defined with
respect to ±k are restricted to be of the type

f̃ (k)
< (q) ≡ fd (δq−k + δq+k), fd ∈ R . (22)

As explained in detail in Refs. [7,8], for this class of tracer
configurations one now performs a multicanonical type of
simulation of, e.g., the Wang-Landau type, in which the
probability distribution P (fd ) of the “reaction coordinate”
fd in the “bath” of fast modes is calculated. A polynomial
fit of − ln P (fd ) then yields a set harmonic and lowest-order
anharmonic coefficients a2(k),a4(k), . . . for each chosen wave
vector k. A comparison of these coefficients with the general
k-dependent structure of the bare effective Hamiltonian then
allows us to determine a “new” set of bare parameters. In other
words, one obtains all the information required for completing
the coarse-graining step of the MSRG prescription.

For LG-type models with a local anharmonic energy
contribution, this class of tracer configuration allows us to
determine the flow of coupling parameters. Unfortunately,
however, for our present problem the dumbbell class (22) is
insufficient to capture the flow of the anharmonic part of the
bare Hamiltonian. In fact, in the formula

F̃ (k)
< ( Q) = ( Q̂ × k)2[δQ−2k + 2δQ + δQ+2k]f 2

d (23)

that results for amplitudes F̃( Q) built exclusively from
the slow part f̃ (k)

< (q) = fd (δq−k + δq+k), the vector Q is
constrained to be either zero (which is forbidden) or parallel
to k, in which case the leading cross product vanishes, i.e.,
F̃ (k)

< ( Q) ≡ 0. To overcome this difficulty, we instead consider
a “cross” tracer configuration with slow parts of the type

f̃ k
<(q) = fc(δq−k + δq−k⊥ + δq+k + δq+k⊥ ), (24)

where fc ∈ R and |k| = |k⊥|, k · k⊥ = 0, which map out a
symmetric “cross” spanned by two orthogonal vectors k and
k⊥ of equal length around 0 with one common real-valued
amplitude, all remaining slow modes being silenced to zero.
For this class of tracer configuration, a lengthy but elementary
calculation yields

F̃ k( Q) = 2( Q̂ × k)2f 2
c [δQ−k−k⊥ + δQ+k−k⊥

+ δQ−k+k⊥ + δQ+k+k⊥]. (25)

In particular, if the arms of the cross are chosen to point along
the directions k = (k,0), k⊥ = (0,k) of the Cartesian axes, we
have

( Q̂ × k)2δQ±k±k⊥ = k2

2
δQ−(±k,±k), (26)

and the above equation simplifies to

F̃ k( Q) = k2f 2
c ×

{
1, Q = (±k, ± k),

0, otherwise.
(27)

Using this result, we calculate the total energy contribution of
a cross configuration without fast modes as

Ek(fc) = 2κNk4f 2
c + KN

2
k4f 4

c . (28)

From the MC point of view, (24) imposes an extra constraint
on the allowed phase space in addition to the reality condition
f̃ (k) = f̃ ∗(−k) for the fast modes during the sampling. We
thus need to calculate the effect of a variation,

δf (q) = r(δq−k + δq−k⊥ + δq+k + δq+k⊥ ), (29)

of the cross configuration by the real number r on the total
energy. For the harmonic contribution, it is easy to see that

δEharm = 4κNk4(rfc + r2/2). (30)

It remains to calculate the change of the anharmonic contribu-
tion to the energy under a MC move (29). In terms of the shift
δF̃( Q), for which a lengthy and tedious calculation yields

δF̃( Q) = 2r( Q̂ × k)2[f̃ ( Q − k) + f̃ ( Q + k) + rδQ−k−k⊥]

+ (k ↔ k⊥), (31)

this last missing piece of information is readily obtained from
the general variation formula

δEanharm = KN

8

∑
Q 	=0

[2F̃( Q)δF̃(− Q) + |δF̃( Q)|2] (32)

valid for all types of FMC moves.
Recently [18], we introduced a variant of FMC that is able

to efficiently suppress critical slowing down, i.e., exponential
growth of integrated autocorrelation times in critical or nearly
critical systems. This is achieved by iteratively optimizing
the MC acceptance rates of individual Fourier amplitudes
during the start-up phase of the simulation for each wave
vector separately, aiming at acceptance rates between 30%
and 40% for each amplitude. In the present simulations, such
an optimization was, of course, also implemented.

In what follows, we shall assume that without loss of gen-
erality, κ = 1, such that only a dependence on the anharmonic
coupling parameter K remains. The coarse-graining procedure
outlined so far produces a shift

K :=
(

1

K

)
�→

(
κ̃

K̃

)
=: K̃ . (33)

According to (6), rescaling of lengths and further “wave-
function” renormalization then leads to

K̃ �→
(

b−η(K)κ̃

b2−2η(K)K̃

)
=:

(
κ ′

K ′

)
=: K ′ (34)

since [κ] = 0 and [K] = 2. A concrete RG flow K → K ′

is only defined after specifying the function η(K). Imposing
invariance κ ′ ≡ 1 of the harmonic dispersion term gives

η(K) = ln κ̃(K)

ln b
, (35)

where we explicitly indicate the dependence of κ̃ on the
parameter K . On the other hand, an invariance condition
K ′ ≡ K would implicitly define a function ηK (K) by

ηK (K) ≡ 1 + ln K̃(K)
K

2 ln b
. (36)
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At a FP K ′ ≡ K ≡ K∗, the common value

η(K∗) = ηK (K∗) ≡ η (37)

of the two functions η(K) and ηK (K) is the critical exponent η.
Thus K∗ can be numerically determined as the location of the
common intersection point of these functions plotted against
K .

Since the RG transform K �→ K ′(K) is designed to be
analytic, we can linearize it around the FP value K∗, such that

K ′(K∗ + δK) ≈ K∗ + M · δK, (38)

where

M := dK ′(K)

dK

∣∣∣∣
K=K∗

(39)

denotes the slope of the function K �→ K ′(K∗) − K∗ at its zero
K = K∗, which can readily be assessed in our simulations. For
a nontrivial infrared attractive FP, we expect that K is irrelevant
and thus |M| < 1. If K ′(K) does not oscillate back and forth
around this FP during successive RG iterations, we should also
expect M > 0. The corresponding Wegner [35] exponent ω is
then defined through M ≡ b−ω, i.e.,

ω = − lnM
ln b

. (40)

IV. NUMERICAL EVALUATION STRATEGY

The membrane systems studied in our simulations may
be parametrized by a triple of integers (L,l,l′), such that
� = 2πl/L,�′ = 2πl′/L,b = l/ l′. Each of the integers j =
1, . . . ,l′ then defines a value

kj = 2πj/L (41)

for a cross (24) with arms

kj = (±kj ,0), k⊥
j = (0, ± kj ) (42)

that hosts a tracer configuration with real-valued amplitude fc.
In principle, each choice of inner cutoff parameters 1 � l′ < l

gives rise to k values k1, . . . ,kl′ . In Ref. [18], we have observed
strong finite-size irregularities for the correlation function
G̃(k) = 〈f̃ (k)f̃ (−k)〉 at the smallest accessible nonzero wave
vectors, so that it is recommended to exclude the k value
k1 from the following fits. Since one needs a minimum of
approximately five to six values to determine dispersions
with sufficient statistical reliability (see below), we are
confined to lower cutoffs of about l′ � 6, which in turn puts
an approximate lower limit of 1/b � 6/l on the b values
accessible in our simulations. On the other hand, due to the
discreteness of the Brillouin zones of our finite systems, the
closest accessible value of 1/b below its ultimate limit 1.0 is
1/b = (l − 1)/l.

Given such a system, we determine the unnormalized prob-
ability distribution P k(fc) within a certain interval −fmax �
fc � fmax by FMC, and thus the dimensionless coarse-grained
free energy

Ẽk(fc) := − ln
P k(fc)

P k(0)
. (43)

To reliably separate the contributions proportional to f 2
c from

those proportional to f 4
c in a comparison of (28) to these

data requires us to choose a suitable value for fmax. To
estimate this value, we analyze the bare energy expression
(28), assuming that its coarse-grained counterpart will not
differ by orders of magnitude from it. After fixing κ ≡ 1,
our only remaining parameter is the value of the remaining
bare coupling parameter K . Since both the harmonic as well
as the anharmonic contribution to (28) are proportional to k4,
it seems reasonable to choose a common value fmax for the
amplitude at which we expect to see a factor of λ between the
bare total energy E(c) and its purely harmonic part E(h)|KN=0

uniformly for all k. Numerically, fmax is determined from the
equation

2κNf 2
max + KN

2
f 4

max ≡ λ2κNf 2
max, (44)

i.e.,

fmax = 2N

√
(λ − 1)κ

K
. (45)

If λ is chosen too small or too large, it becomes numerically
hard to reliably separate harmonic and anharmonic contribu-
tions by a least-squares fit. Moreover, the free-energy range
that needs to be determined in the simulations increases
with growing λ. After performing various numerical tests,
we settled for a common factor of λ = 2.6, which was
used in all subsequent simulations. To actually explore the
potential shape in this region, a successful simulation approach
needs to overcome potentially large free-energy differences.
After monitoring the convergence and tunneling properties of
several variants of the family of multicanonical algorithms,
the 1/t variant [36,37] of the Wang-Landau algorithm [38,39]
emerged as a robust and reliable choice. Each single simulation
was performed with an order of magnitude of 200 tunneling
events between fc = 0 and fc = fmax at the 1/t stage, which
took about 106 single MC sweeps per simulation, and for
each value of K that we want to inspect, l′ such simulations
are needed, one for every k value out of the set {kj : j =
1,2, . . . ,l′}. An example of the raw data obtained by such
simulations may be inspected in Fig. 1.

The numerical procedure to determine RG recursion re-
lations requires, therefore, a number of nested least-squares
fits. On the one hand, the function Ẽk(fc) obtained from a
simulation of the above type will, of course, be contaminated
by small contributions of powers higher than f 4

c , i.e., it will
not exactly resemble the simple structure of the bare effective
Hamiltonian (13). This well-known behavior of generating
“new” couplings beyond those present in the original bare
Hamiltonian, which is inherent to the RG, can only be dealt
with by fitting to a more general ansatz of type

Ẽk(fc) ≡ a(k)f 2
c + b(k)f 4

c + c(k)f 6
c + d(k)f 8

c (46)

and discarding all coefficients except a(k) and b(k) in the
analysis that follows. In a second level of fitting, the resulting
collection of coefficients {a(k),b(k)} is in turn fitted to
functions of structure

afit(k) ≡ 2κ̃Nk4 + a6k
6 + a8k

8 + · · · + anmaxk
nmax , (47)

bfit(k) ≡ K̃N

2
k4 + b6k

6 + b8k
8 + · · · + bnmaxk

nmax , (48)
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FIG. 1. (Color online) Raw simulation data for systems of size
L = 240 with outer cutoff l = 24, inner cutoff l′ = 10, and 2D
Young modulus K = 9.16. Enumerating the displayed lines from
bottom to top, the index j = 1, . . . ,10 labels the underlying tracer
configurations of type (24) with arms (42) parametrized by the wave
numbers kj as defined in Eq. (41).

from which the coarse-grained values κ̃N ,K̃N are extracted,
while all higher-order fit parameters, which correspond to other
higher-order couplings presumably generated by the coarse-
graining operation, are ignored once again.

In practice, these fits are not as straightforward to do as it
may seem. Our numerical tests did show that for the first level
of fitting, using the truncated eight-order polynomial (46) as a
fit function order gave numerically convincing results for all
considered parameter ranges. However, it turned out to be very
hard to decide in advance how to choose the maximum power
nmax of k kept in the definition of the fit functions (48) in the
second level fitting that aims at extracting the lowest-order k
dependence of the functions a(k) and b(k). Truncating at too
low orders may yield a certain tradeoff among the resulting
fit parameters and thus adulterate the results. On the other
hand, remember that we are necessarily working in a finite
system with a discrete Brillouin zone, the minimum spacing
between k-vector components given by 2π/L, and so only a
few data points may be available for low inner cutoff parameter
l′. Specifically, for systems with small values of, say, l′ � 6, a
high-order polynomial fit will not produce meaningful results,
since too few unintegrated modes with small k vectors parallel
to a chosen direction are at our disposal.

Worse, the importance of higher-order terms in the ex-
pansion was observed to strongly vary with the particular
value of K chosen. The “optimal” truncation order nmax of
the polynomials may thus even depend on K , which makes it
very difficult to evaluate the large mass of data generated in our
simulations in this way. Worst, it may be difficult to figure out
possible “forbidden” powers in the sought-after expansion.
For instance, we have explicitly checked numerically that
no “surface tension” contribution ∝ k2 to a(k) is generated
from (17) by the coarse-graining operation, which justifies a
posteriori the use of (17) as our basic model Hamiltonian.
Theoretically, this absence can be contributed to the presence
of a Ward identity [see, e.g., the cancellation of k2 contributions

in the sum of contributions to Eqs. (30a)–(30d) of Ref. [25]].
However, it is beyond the scope of the present work to compute
all similar constraints on higher-order k-dependent expansion
coefficients imposed by Ward identities.

To summarize the above observations, we need to fit data
obtained for the collection of k vectors with a function of which
only the lowest expansion power is known with certainty. This
problem may look hopeless or at least somewhat ill-defined at
first glance. Not being aware of any preassembled approach
published in the literature on numerical mathematics, we had to
come up with our own custom solution. As is explained in more
detail in the Appendix, the basic philosophy of our approach is
not to focus on the unknown higher-order contributions to the
fit functions, but rather to determine the extent of validity of
the lowest-order approximation to the underlying data set and
reweighting the members of this data set accordingly. Despite
currently lacking a rigorous mathematical proof, this seems to
work quite well in practice.

Setting κ = 1 without loss of generality, the above pro-
cedure maps every “bare” coupling constant K and shell
thickness parameter b into a pair of coarse-grained coupling
constants (κ̃(K),K̃(K)). To determine the fixed point K∗
of the underlying RG transformation, it is thus necessary
to perform simulations for a large number of different K

values at each accessible b value to extract the values for
the fixed-point coupling K∗(b) and the exponents η(b) and
ω(b) for various system sizes. As explained above, for each
such K value, this required l′ separate Wang-Landau-type
simulations (one for each kj value) to determine the underlying
dispersion changes that govern the computation of exponent
η. For a numerical study, it is advantageous to switch to
a description that is continuous in K , at the same time
smoothing the statistical noise contained in the resulting data.
To analyze the possible K dependence of κ̃(K) and K̃(K), we
make use of the simple fact that for K → 0 evidently both
κ̃(K) → κ = 1 and K̃(K)/K → 1, such that any analytic fit
of these functions must start out with value unity at K = 0.
Otherwise, the only obvious requirement one may impose on
a candidate fit function is that it should give a smooth and
regular interpolation of the data. Numerical tests have shown
that an ansatz of type

f (K) = 1 + a ln(1 + b2K) + cK + dK2 + eK3 (49)

with five free parameters a, . . . ,e does a good job in this
respect both for κ̃(K) as well as for K̃(K)/K (cf. Fig. 2
for illustration). With these analytic interpolations at hand,
it is now an easy task to carry out the analysis outlined in
Eqs. (35)–(40).

Error bars for the numerical quantities derived by these
calculations are derived using a corresponding bootstrap
analysis [40] based on 100 bootstrap samples drawn from
the underlying set of considered coupling values K for each
particular choice of (L,l,l′).

V. RESULTS

In the present work, we studied three systems with one
common value of κ = 1 and � = π/5, with sizes defined
by the parameters (L,l) = (120,12), (240,24), and (360,36),
respectively. Unfortunately, a complete scan through all
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FIG. 2. Illustration of our numerical procedure for parameters L = 240, l = 24, and l′ = 10. Left column plots: fits of data for κ̃(K) and
K̃(K)/K to the ansatz (49). Each data point shown is derived from fits of the functions a(k),b(k) based on up to l′ different simulation data of the
type shown in Fig. 1. Note the excellent compliance of the numerical data with the necessary conditions limK→0 κ̃(K) = limK→0 K̃(K)/K = 1.
Right column, upper plot: illustration of the numerical solution of the equations η(K) ≡ ηK (K) as defined in Eqs. (35) and (36). Right column,
lower plot: determination of the slope of function K ′(K) − K∗ at K = K∗. The direction of the RG flow is schematically indicated. In this
particular example, the intersection point determined by Eq. (37) is located at K∗ = 9.801 27, and we derive exponents η = 0.865 07 and
ω = 1.544 56, respectively.

available b values was only possible for the smallest of
these systems due to the sheer amount of required computer
resources. The resulting fixed-point coupling value K∗(b) for
L = 120, which is shown in Fig. 3, indicates a monotonous
fall throughout the whole accessible range. For L = 240, the
observed behavior is not in conflict with this hypothesis, and
we would be very surprised if the behavior for L = 360
were fundamentally different. Thus, it seems reasonable to
assume that there is no critical maximum or minimum of
K∗(b) throughout the range 0 < 1/b∗ < 1, which only leaves
the possibilities b∗ = 1 or b∗ = ∞. Give a system defined
by (L,l,l′), the one with l′ = l − 1 is of course one for
which 1/b is closest to 1. For our present purposes, thin
momentum shells have some attractive features. For a thin
shell, the number of modes that need to be integrated out
during the CG step is rather small, such that the simulations
require less CPU time than for thicker shells. At the same
time, the large number of remaining unintegrated modes
inside the shell should increase the numerical reliability of
determining the dispersions a(k),b(k). Unfortunately, however,
there is a price to pay for this convenience. In fact, for a
thin shell, all values κ̃(K) and K̃(K)/K were found to be
extremely close to 1 over the whole range of considered values
of K , which represents a serious challenge to a numerical
evaluation. For the larger two systems, the closest accessible
estimates for η in this limit are around η ≈ 0.93, which is
definitely out of range in comparison to all other published
estimates. Although there may exist a common downward
trend of η(b) for b → 1, it is difficult to estimate the limiting
behavior.

8.5
9

9.5
10

10.5
11

11.5

K
∗

0.8
0.825
0.85

0.875
0.9

0.925
0.95

0.975

η

1
1.2
1.4
1.6
1.8

2
2.2
2.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ω

1/b

L=120, l=12
L=240, l=24
L=360, l=36

FIG. 3. Numerical results obtained for systems of sizes L =
120,240,360 with outer cutoff parameters l = 12,24,36, respectively.
Upper plot: b-dependent location K∗(b) of a fixed-point value of
parameter K . Middle plot: b-dependent value η(b) of exponent η. For
comparison, the black dotted horizontal line indicates the functional
RG result η = 0.85, while the horizontal gray bar refers to the
FSS estimate of Ref. [18]. Lower plot: b-dependent value ω(b) of
exponent ω.
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Turning to the opposite limit 1/b → 0, we observe a nice
linear decrease of η(b) with falling 1/b, with all the data from
various system sizes roughly collapsing on a common same
master curve, which indicates that for determining η(b), finite-
size effects are small to negligible in this limit. Again, it is
delicate to extrapolate the data to 1/b → 0. If we assumed
that the linear trend persists until 1/b → 0, we would arrive at
a rough estimate of

η ≈ 0.822, (50)

which is quite satisfying, as it puts our present calculations
roughly in the same ballpark as those done analytically in
the framework of the functional RG [23–25], where the
estimate η = 0.85 was derived. Nevertheless, in view of
the finite system size used, the imponderables of the above
extrapolation 1/b → 0, and the fact that even in this limit
the residual error due to the influence of irrelevant couplings
may only be minimized but not completely eliminated, one
clearly should not expect (50) to be equally precise as the
estimate η = 0.795(10) of Ref. [18] derived from a systematic
FSS analysis of the membrane’s mean-squared displacement
〈(	f )2〉.

Extrapolation of ω(b) to b → ∞ is also delicate. In fact,
to an unprejudiced reader, the data depicted in Fig. 3 will be
compatible with at least two scenarios:

(i) Linear extrapolation of ω(b) to b → ∞ produces a value
of roughly ω ≡ limb→∞ ω(b) ≈ 4/3 ± 0.3.

(ii) The b dependence of ω(b) may just as well already
have saturated for b → ∞ at an asymptotically constant value,
leading to any equally crude estimate of ω ≈ 3/2 ± 0.3.

Even though these estimates may not seem to be extremely
precise, they pave the way for a considerable further refinement
of our previous FSS result, as we show next. To explain this in
due detail, let us briefly recapitulate the approach followed in
Ref. [18].

The mean-squared displacement 〈(	f )2〉 is expected to
exhibit a finite-size scaling behavior of type

〈(	f )2〉 ∼ δ + αL2−η [1 + ζ (L)] . (51)

The main obstacle to overcome in an attempt to determine
the exponent η with high precision is to assess the factor
ζ (L) that hosts the subleading corrections to scaling by
constructing an appropriate ansatz. In principle, these cor-
rections arise from the presence of irrelevant couplings, and
thus the leading contributions to ζ (L) should correspond to
powers of 1/Lω,1/Lω2 , . . . , where ω2 denotes the Wegner
exponent of the next-to-leading irrelevant coupling [41,42]
[in Ref. [18], an additional logarithmic contribution of type
ζ (L) = β ln L + γ /Lω + · · · has already been ruled out].
Unfortunately, however, we had (and have) been unable to
spot any published numerical estimate for the correction
to scaling exponent ω in the literature. Interestingly, while
such an estimate may have been beyond reach for previous
simulation approaches to the flat phase of tethered membranes,
it seems as if ω is equally hard to extract from analytical
methods [28]. Lacking any estimate of the correction to scaling
exponent ω, in Ref. [18] we had chosen to monitor the error
bars for the remaining fit parameters produced by different
choices of ω in the interval [0,1]. Based on this reasoning, the
estimate η = 0.795(10) of Ref. [18] quoted above had finally

been derived for the “naive” choice ζ (L) = β/L + γ /L2.
Unfortunately, however, the sign of the resulting value δ

produced in this fit is positive, a fact that was not given
much attention in Ref. [18]. Recall that according to Eq. (5) of
Ref. [18]

〈(	f )2〉 ∼
∫

d2q

(2π )2
G̃(q), (52)

where asymptotically for |q| → 0

G̃(q) = 〈|f̃ (q)|2〉 ∼ 1

κq4−η
. (53)

Based on this ideal power law, a spherical cutoff geometry
2π/L � |q| � � results in

(	f )2 ∼
∫ �

2π/L

dk/(2π )2

κk3−η
= −�2−η + (L/2π )2−η

(2π )2(2 − η)κ
, (54)

which implies a negative value δ = −�2−η/(2π )2(2 − η)κ ,
and it is reasonable to expect that this heuristic observation
also carries over to the case of cubic cutoff geometry with
subleading scaling corrections included.

Our present RG approach, in which ω(b) is derived in (40)
as a by-product of locating the FP coupling K∗(b) and the
exponent η(b) without extra effort, now puts us in a position
to shed some new light on these problems, even though some
residual speculations on the structure of ζ (L) are still involved.
We propose the ansatz [5,41–44]

ζ (L) = β/Lω + γ /L2ω + · · · , (55)

which amounts to assuming that either ω2 ≈ 2ω or ω2 � 2ω,
and also to completely discarding additional “analytic” cor-
rections of type 1/L. While the first assumption is admittedly
difficult to justify based on our present knowledge, the latter
appears to be reasonable for periodic boundary conditions
where the renormalization of the scaling field gL = 1/L is
trivial [45]. To evaluate the impact of these scenarios on the
numerical estimate of η, we have carried out new fits of the FSS
ansatz (51) for various choices 0.6 � ω � 2.0 to the data for
〈(	f )2〉 generated in Ref. [18]. The results, which are shown
in Fig. 4, reveal a number of interesting points.

According to Fig. 4, δ < 0 appears to hold only for ω

somewhat larger than 2 − η ≈ 1.22, a range of values for
ω that had unfortunately not been considered in Ref. [18].
Our fits obviously become singular near this value, but this
should not come as a surprise: quite trivially, for ω equal to
2 − η, multiplication of the correction β/Lω in (55) with L2−η

produces yet another constant besides δ, which results in an
ill-defined fitting prescription in the close vicinity of this value
of ω. As the top left plot of Fig. 4 indicates, for both our two
possible extrapolations ω = 4/3 and 3/2, the parameter δ is
indeed negative. We obtain

η =
{

0.7935(34), ω = 4/3,

0.7927(29), ω = 3/2.
(56)

The accompanying goodness-of-fit parameter Q [46] displays
a minimum near ω = 3/2 (cf. the top right plot of Fig. 4),
thus slightly favoring the second of the two scenarios (56). In
retrospect, we note that their common denominator, namely
the assertion ω > 1, could have been already anticipated from
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FIG. 4. Results of least-squares fits of the ansatz (51) to the data
for 〈(	f )2〉 obtained in Ref. [18] for various choices 0.6 � ω �
2.0. Data not within the range 4/3 � ω � 3/2 are plotted in gray
as a guide to the eye. Top left panel: fit results for η. Top right
panel: ω dependence of goodness-of-fit parameter Q and reduced
χ 2 parameter of the fits. Bottom right panel: ω dependence of fit
parameter δ. Note the discontinuous change of sign around ω ≈ 1.22.
Remaining panels: ω dependence of other fit parameters α, β, and γ .

a FSS analysis similar to the carried out in Ref. [18] if only
we had monitored the sign of the resulting fit parameter δ in
the ansatz (51) for 〈(	f )2〉.

In closing this section, we note that our asymptotic fitting
procedure, which we have used above to compute coarse-
grained parameters and which is explained in the Appendix,
offers a complementary way to estimate η from the FSS of
〈(	f )2〉. After all, it was designed for the very purpose of
extracting leading functional dependencies from data with
unknown higher-order corrections. Based on application of
the linear ansatz log〈(	f )2〉 ∼ log α + (2 − η) log L to the
logarithms of the data points, the result η = 0.7948 obtained
by our simple recipe is impressively close to that of our above
elaborate FSS analysis, with nothing more than the leading
scaling behavior as input, even though it may be difficult to
estimate the corresponding error bar.

VI. DISCUSSION AND OUTLOOK

In this paper, we have illustrated the practical feasibility
and usefulness of our FMC implementation of Wilson’s
MSRG for the flat phase of a crystalline membrane, a
nontrivial model of continuing physical interest. In particular,
we have demonstrated the ability of our method to derive
the—albeit crude—numerical estimate ω ± 0.3 ∈ [4/3,3/2]

for the correction to a scaling exponent in a situation in
which all other approaches have failed so far. However, for
a meaningful numerical analysis, it is mandatory to monitor
the dependence of observables on the thickness parameter b

of the employed momentum shell.
Our RG result for ω also allowed us to construct an

improved FSS procedure for 〈(	f )2〉. The resulting estimates
(56) for the exponent η deviate even more from the value η =
0.85 derived from functional RG [23–25] than our previous
one η = 0.795(10) given in Ref. [18]. In fact, they happen
to be much closer to the result η = 0.78 22(5) extracted from
a second-order self-consistent screening approximation [20].
On the other hand, even our own RG results (50) for η show
a similar tendency to exceed the FSS estimates. A heuristic
explanation for this common tendency of RG approaches to
overestimate η is as follows.

For the flat membrane model, Fig. 3 indicates that the
influence of irrelevant couplings is minimal for b → ∞. Still,
even in this limit our RG estimate (50) is noticeably higher than
all those obtained from FSS, no matter which kind of scaling
corrections we employ, even though the underlying data were
generated using the same underlying FMC algorithm. As
Fig. 3 indicates, our RG analysis seems not to be afflicted
with appreciable finite-size effects. Thus, the only explanation
for this discrepancy is a residual bias of the RG result due
to the influence of the irrelevant couplings that survives the
limit b → ∞. In fact, had we not been carefully monitoring
the b dependence of our results but had simply chosen one
particularly convenient shell configuration, our result for η

might have been still dramatically higher, as the middle
panel of Fig. 3 indicates. In view of the fact that generic
functional RG calculations also include choosing a projection
to a low-dimensional coupling constant space and a cutoff
function, these observations may hint at the source of the
persistent discrepancy between RG and FSS estimates for η.

In the near future, we plan to investigate the critical behavior
of hexatic membranes in the so-called crinkled phase [47–
50] using a similar strategy. Compared to that of crystalline
membranes, this problem is closely related but technically
much more involved due to the fact that for hexatic membranes,
a surface tension contribution of type

H�,s = μ

∫
d2q

(2π )2
q2|f̃ (q)|2 (57)

has to be taken into account, its coupling constant μ being
relevant in the RG sense [50]. Using conventional FMC, we
have found it very difficult to determine the critical value
μ∗

c (κ) to which μ must be tuned at a given value of κ to
actually observe the crinkled phase [51]. Our present approach
offers a way to do this, but at the expense of determining a
two-dimensional flow pattern in the variables κ and μ at fixed
parameter K . Work in this direction is currently in progress.
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APPENDIX

To demonstrate the fitting strategy used in extracting the
lowest-order dispersion coefficients from the functions a(k)
and b(k), we consider a simple toy model defined by the
function

f (x) = 0.09x2 − 0.1x4 − 0.2x6 + 0.9x8 (A1)

in the interval [0,1]. We choose the 20 equidistant points xn :=
0.05n, n = 1, . . . 20 from this interval, and we generate the
telescopic data sets

Fk := {(xn,f (xn)) : n = 1, . . . ,k}, k = 1, . . . ,20 . (A2)

We will use the largest considered data set F20 holding 20
function values as the input data to our procedure, whose goal
it is to reconstruct the leading coefficient 0.09 of f (x), based
only on the information that f (x) should start out with a term
∝ x2 multiplied by a non-negative coefficient.

We start by choosing the fit function

ϕ(x) := a2x2, (A3)

which deliberately ignores all higher-order corrections to this
leading x dependence that should gradually kick in for growing
values of x. Of course, the quality of a series of least-squares
fits of this function applied to the sets Fk will successively
degrade with growing k. Quantitatively, we will observe a
crossover from a slow to a steep rise of the accompanying χ2

parameters,

χ2
k :=

k∑
l=1

[f (xl) − ϕ(xl)]
2, k = 1, . . . ,20, (A4)

with growing k. The idea is to use the inverse values

wk :=
{

1/χ2
2 , k � 2,

1/χ2
k , k > 2

(A5)

[since trivially χ2
1 should vanish, we have put w1 ≡ w2 in

(A5)] as statistical weights for the data points (xn,f (xn)) in
a final least-squares fit of (A3) to the full data set F20, which
produces our final estimate for a2.
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FIG. 5. Illustration of the fit procedure outlined in Eqs. (A1)–
(A5). Main plot: original data set F20 produced from the function
(A1) and final fit with Eq. (A3) [but only shown in the interval
(0,0.6)]. Inset: normalized weights obtained for all 20 data points of
the data set F20 (note the logarithmic scale).

The described procedure is simple to implement and robust,
but, of course, far from perfect. Obviously, its success relies
on the high quality of the underlying data. In particular, it is
vulnerable to statistical outliers located inside the asymptotic
region x � 1. Nevertheless, at least in the context of the
present paper, where the unknown higher-order correction
terms can be expected to be small compared to the leading
term, it seems to produce sufficiently accurate results. For
example, in the case of the toy function (A1), we obtain
a = 0.297 81, which is within 0.73% of the exact value
0.3 = √

0.09. In view of the fact that we did not have to
make any assumptions on the structure of the fitting function
beyond its lowest-order term, the achieved precision is quite
satisfactory. Figure 5 illustrates the resulting final fit of ϕ(x)
to the full data set F20 obtained by reweighting its data using
the weights wk successively generated by the previous fits to
the data sets Fk .
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[10] A. Tröster, Comput. Phys. Commun. 179, 30 (2008).
[11] A. Tröster, Phys. Rev. B 81, 012406 (2010).
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[18] A. Tröster, Phys. Rev. B 87, 104112 (2013).
[19] P. Le Doussal and L. Radzihovsky, Phys. Rev. Lett. 69, 1209

(1992).
[20] D. Gazit, Phys. Rev. E 80, 041117 (2009).
[21] J. A. Aronovitz and T. C. Lubensky, Phys. Rev. Lett. 60, 2634

(1988).
[22] F. David and E. Guitter, Europhys. Lett. 5, 709 (1988).
[23] J.-P. Kownacki and D. Mouhanna, Phys. Rev. E 79, 040101

(2009).

022132-11

http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.1103/PhysRevB.76.012402
http://dx.doi.org/10.1103/PhysRevB.76.012402
http://dx.doi.org/10.1103/PhysRevB.76.012402
http://dx.doi.org/10.1103/PhysRevB.76.012402
http://dx.doi.org/10.1016/j.phpro.2010.09.035
http://dx.doi.org/10.1016/j.phpro.2010.09.035
http://dx.doi.org/10.1016/j.phpro.2010.09.035
http://dx.doi.org/10.1016/j.phpro.2010.09.035
http://dx.doi.org/10.1103/PhysRevLett.100.140602
http://dx.doi.org/10.1103/PhysRevLett.100.140602
http://dx.doi.org/10.1103/PhysRevLett.100.140602
http://dx.doi.org/10.1103/PhysRevLett.100.140602
http://dx.doi.org/10.1016/j.cpc.2008.01.007
http://dx.doi.org/10.1016/j.cpc.2008.01.007
http://dx.doi.org/10.1016/j.cpc.2008.01.007
http://dx.doi.org/10.1016/j.cpc.2008.01.007
http://dx.doi.org/10.1103/PhysRevB.81.012406
http://dx.doi.org/10.1103/PhysRevB.81.012406
http://dx.doi.org/10.1103/PhysRevB.81.012406
http://dx.doi.org/10.1103/PhysRevB.81.012406
http://dx.doi.org/10.1103/PhysRevE.79.036707
http://dx.doi.org/10.1103/PhysRevE.79.036707
http://dx.doi.org/10.1103/PhysRevE.79.036707
http://dx.doi.org/10.1103/PhysRevE.79.036707
http://dx.doi.org/10.1016/j.cpc.2010.11.005
http://dx.doi.org/10.1016/j.cpc.2010.11.005
http://dx.doi.org/10.1016/j.cpc.2010.11.005
http://dx.doi.org/10.1016/j.cpc.2010.11.005
http://dx.doi.org/10.1088/0022-3719/7/20/005
http://dx.doi.org/10.1088/0022-3719/7/20/005
http://dx.doi.org/10.1088/0022-3719/7/20/005
http://dx.doi.org/10.1088/0022-3719/7/20/005
http://dx.doi.org/10.1103/PhysRevB.81.125135
http://dx.doi.org/10.1103/PhysRevB.81.125135
http://dx.doi.org/10.1103/PhysRevB.81.125135
http://dx.doi.org/10.1103/PhysRevB.81.125135
http://dx.doi.org/10.1103/PhysRevLett.29.917
http://dx.doi.org/10.1103/PhysRevLett.29.917
http://dx.doi.org/10.1103/PhysRevLett.29.917
http://dx.doi.org/10.1103/PhysRevLett.29.917
http://dx.doi.org/10.1103/PhysRevB.87.104112
http://dx.doi.org/10.1103/PhysRevB.87.104112
http://dx.doi.org/10.1103/PhysRevB.87.104112
http://dx.doi.org/10.1103/PhysRevB.87.104112
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevLett.69.1209
http://dx.doi.org/10.1103/PhysRevE.80.041117
http://dx.doi.org/10.1103/PhysRevE.80.041117
http://dx.doi.org/10.1103/PhysRevE.80.041117
http://dx.doi.org/10.1103/PhysRevE.80.041117
http://dx.doi.org/10.1103/PhysRevLett.60.2634
http://dx.doi.org/10.1103/PhysRevLett.60.2634
http://dx.doi.org/10.1103/PhysRevLett.60.2634
http://dx.doi.org/10.1103/PhysRevLett.60.2634
http://dx.doi.org/10.1209/0295-5075/5/8/008
http://dx.doi.org/10.1209/0295-5075/5/8/008
http://dx.doi.org/10.1209/0295-5075/5/8/008
http://dx.doi.org/10.1209/0295-5075/5/8/008
http://dx.doi.org/10.1103/PhysRevE.79.040101
http://dx.doi.org/10.1103/PhysRevE.79.040101
http://dx.doi.org/10.1103/PhysRevE.79.040101
http://dx.doi.org/10.1103/PhysRevE.79.040101
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