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Asymptotic densities of ballistic Lévy walks
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We propose an analytical method to determine the shape of density profiles in the asymptotic long-time limit
for a broad class of coupled continuous-time random walks which operate in the ballistic regime. In particular,
we show that different scenarios of performing a random-walk step, via making an instantaneous jump penalized
by a proper waiting time or via moving with a constant speed, dramatically effect the corresponding propagators,
despite the fact that the end points of the steps are identical. Furthermore, if the speed during each step of the
random walk is itself a random variable, its distribution gets clearly reflected in the asymptotic density of random
walkers. These features are in contrast with more standard nonballistic random walks.
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I. INTRODUCTION

Ballistic motion is ubiquitous and often lies at the origin
of stochastic transport phenomena. Swimming bacterial cells,
scattered photons, or atoms in optical lattices [1-8] move
with fixed speeds between tumbles and collisions which
reset their velocities to new values and eventually lead to
the randomization of the dispersal process. However, there
is a large class of diffusion processes where the ballistic
behavior of particles between the reorientation events is
retained at larger scales [3,9—11]. Such ballistic diffusion
processes can be modelled on the stochastic level by certain
classes of random walks, the so-called Lévy walks, where the
displacements and the time intervals between the successive
direction renewals are coupled [12—15]. What all these ballistic
random walks do have in common is that the probability
density function (pdf) of the time intervals has a slowly
decaying power-law tail v (7) oc ~!=7 with 0 < y < 1. This
pdf lacks a typical scale (has a divergent mean) and gives
rise to the ballistic scaling of the whole density profile of
diffusing particles. Depending on the implementation of the
space-time coupling one has to distinguish between jump and
velocity models [16]. In velocity models a particle moves at
a certain random but constant velocity during the flight time
and at each renewal a new velocity and a new flight time are
chosen from the corresponding probability distributions. In
the jump models [17], the displacement of the particle takes
place instantaneously but is penalized by a certain waiting
time—Ilonger jumps will require longer waiting before another
jump may occur. In the wait-first model the particle jumps at
the end of the waiting time, whereas in the jump-first model
the particle jumps and then rests for the corresponding waiting
time. Such random walks were previously considered in the
literature [18-26] and recently also with a method of infinite
densities [27] in the sub-ballistic superdiffusive regime (flight
or waiting times with finite mean, 1 < y < 2). However, in
general the exact analytical solutions describing the density of
random walking particles are rare and can be obtained only for
some particular values of y [16,28].

In this paper we suggest a method to compute explicitly
the asymptotic densities of random walks in the regime of
ballistic scaling. We show that this approach can be applied
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both to coupled jump models and to the models with random
velocities, the latter being related to weak ergodicity breaking.
Remarkably, the choice of whether the particle jumps at the
beginning or end of the waiting time (jump models), as well as
the distribution of velocities (velocity models) has a dramatic
effect on the shape of the particles’ density, a result which
could not be obtained from the standard asymptotic analysis
routinely employed in random walks.

II. MODELS

Let us briefly recap the basic microscopic equations of
the models considered in the present paper. Here we restrict
ourselves to the one-dimensional case. In the jump models
the jumps are penalized by a waiting time. For the jump-first
model, the particle performs a jump according to a jump-
length pdf f(x) and then waits for a time t drawn from an
x-dependent waiting-time pdf ¥ (t|x). This process is then
renewed. For the wait-first model, the particle waits first for a
time t drawn from the waiting-time pdf ¥/(t) and then jumps
over a distance x given by f(x|t) at the end of the waiting
time (see Fig. 1). Thus it is easy to construct a balance equation
for the probability density of particles Q,(x,?) to end a step
at x at time f(o = “j” or “w”, denoting jump- or wait-first
models, respectively). The pdf that the step ends at x at time
t is determined by the joint pdf K (x’,t) that the actual jump
had length x” and duration 7, provided that the particle ended
its previous jump at x — x" at ¢ — t,

0u(x.1) = /Oo dx’/ Ko 1) Qulx — ¥t — T)dT
—00 0
+8(x)8(¢). (1)

Here the coupled jump kernels for each model are K, =
Y(r)f(x'|7) and K; = f(x")¥(r]x’), and the last summand
is the initial condition. Note that the distinction between
the Q, at this point is only a formal one. The Q, are
mathematically the same for both jump models. Still, both
models qualitatively differ, and the K, contain the information
about which variables are dependent or independent (and thus
implicitly on what happens between the start and end of a jump)
which comes into effect in the following equations for the
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FIG. 1. (Color online) Trajectories of the three stochastic models
investigated in the text. Lévy walk (blue), wait-first (green), and
jump-first (red) models produce trajectories which take different paths
but pass through the same end points on the (x,?) plane. Therefore,
only the very last, uncompleted step distinguishes these three models.
t, is the last renewal event before the measurement time ¢, and ¢ — t,
is called the backward recurrence time.

densities. We assume that the process starts at x = Oand ¢ = 0
so the beginning of the first waiting-time interval coincides
for all sample trajectories. The expressions for the density of
particles are then:

pulet) = / W) Qu (.t — D)1, @
0

piwn= [~ av [ n -y - o
—00 0
)

where \Il(t)zl—fol Y(t)dt and W(t|x)=1—[] ¥(t'|x)d7’
are the survival probabilities, which are equivalent to the
probabilities that no renewal occurs up to time ¢.

The initial conditions for the jump-first model must be
treated with some care. As stated in Eq. (1) at time r =0
the system is prepared and the particle is at the origin. We
assume that a jump took place at + = 0T. In that sense the
process begins at the start of the measurement. Thus, if
taking t — O™ one finds with Eq. (1) for the wait-first case
Eq. (2) puw(x,0) = 6(x) and for the jump-first case Eq. (3)
pj(x,0) = f(x), as expected.

In particular, we will look at the linear coupling for the jump
models, meaning that the waiting time is linearly proportional
to the jump distance. This results in the simple coupling
functions [16]

fx]t) = 8(]x] — vo1), “4)

Y(tlx) = 8(r — vy ' |x]). (5)
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We denote the proportionality constant by vy as it has the
dimension of a velocity (and can indeed be considered as
the speed of the single particle if one measures the ratio of the
distance traveled to the duration of the step). The particular
form of the primary waiting-time pdf () and jump-length
pdf f(x) will be specified later when needed. The following
general considerations do not require such specification yet.

A different scenario is a velocity model (see Fig. 1), where
during each step of duration t drawn from Y (t) a particle
moves with a constant speed v drawn according to a velocity
pdf h(v). Equivalently to the loss flux in the jump model,
we now write down the balance equation for the probability
density v(x,?), which describes the frequency of velocity
changes at point x at a given time 7,

v(x,t) = foo dv/ v(x —vt,t — Dh()Y(t)dT
—00 0
+8(x)8(t). (6)

A velocity change can occur in x and at time ¢ if the previous
velocity change to the value v took place at x — vt at the time
t — 7. With this we get the particle density

po(x,t) = /Oodv/ v(x —vt,t — )h()¥(t)dr, (7)
—00 0

where ¥ (1) =1 — for Y (t')dt’ is again the probability not to
have a renewal until 7.

Note that in the special case of the velocity model (Lévy
walk) with just one speed h(v) = 1/2[(v — vy) + (v + vp)]
[16,18,29] the starting points and end points of the consecutive
steps coincide with those of the jump models with linear
coupling, although the paths in the (x,#) plane differ (see
Fig. 1). Therefore these models differ only by their last,
incomplete step. As we proceed to show, this seemingly
minor difference leads to dramatic effects on particles’ pdf
p(x,t). Beyond the fundamental interest in the long-time limit
of random walks, this issue is important also for computer-
generated random walks, since, in the normal situation, these
definitions of sample paths all converge to unique behavior.

III. PROPAGATORS
A. General expressions in Fourier-Laplace space

Equations (1), (2), and (3) for the jump models and Eqs. (6)
and (7) for the velocity model are solved with the help
of Fourier-Laplace transforms [30]. By setting the initial
distribution of particles to the § function p(x,t = 0) = §(x)
we can find the propagators G(x,t) for all three models. For
the jump models, in Fourier-Laplace domain we get [31] (see
Appendix A):

FL{f(x)W(|x)}
1 = FL{f ()¢ (z]x)}
L{¥ (1)}
1= FL{f(x[D)y (D)}

where F and L stand for Fourier and Laplace transforms,
with k and s denoting the coordinates conjugate to x and ¢,
respectively.

G,(k.s) = @®)

Gyk,s) =

©)
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Using Eqs. (6) and (7) and convolution theorems for Fourier
and Laplace transforms, we get in accordance with previous
studies [28,32] the propagator of the velocity model G, which
is given by

L{W(T)h(kT)}
1= L{y(@h(kr)}’
where kt is the Fourier variable conjugate to v and hence
the (spatial) Fourier transform of the velocity distribution
Flh(v)} = ffooo e " h(v)dv = h(kt).

Equation (10) retains the form of the well-known Montroll-
Weiss [33] equation for the pdf of the (uncoupled) continuous-
time random walk (CTRW) to find the particle at x at time ¢,
modified such that it applies to random jumps taking place
not in space but in velocity [34]. Equation (9) is a special
case of an equation for CTRW introduced by Scher and
Lax [12], accounting for coupled waiting times and jump
lengths. Equation (8) represents a further modification of the
latter, reflecting the fact that there the survival probability
W(7|x) depends on the jump length.

The numerators in Egs. (8) and (10) reflect the effect of the
last jump interval in the process on the final position of the
particle. This last incomplete time interval is called backward
recurrence time 7, =t — t,,, where ,, is the epoch of the last
renewal (see Fig. 2). As we will see later, this last interval
has a crucial effect on the shape of the asymptotic particle
pdfs, unlike usual random-walk theories. Note that, though in
a slightly different manner, the statistics of the last jump event
also plays an important role in the description of transport of
cold atoms in optical lattices [35].

An analytical representation and a direct inversion of
Egs. (8) and (10) is not feasible in most cases. As an alternative,
one has to resort to the asymptotic analysis for large space
and time scales x,# — oo. Going to Fourier-Laplace space
using the Tauberian theorem [14], this limit corresponds to
(k,s) — (0,0), in our (ballistic) case such that (k/s) = const.
However, even then the explicit analytical Fourier-Laplace
inversion is often not possible and has to be performed
numerically. In the following, we assume that the persistence
time and jump-length pdfs fall off like a power law:

1 14
70 (1 + /1)’

for the waiting time of the wait-first model and for the flight
time of the velocity model, and

Gy(k,s) =

(10)

Y(r) = O<y<l, (11)
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FIG. 2. Backward and forward recurrence times. Given a mea-
surement time ¢, the backward recurrence time 7, is the time elapsed
since the time 7, the last event took place. The forward recurrence
time 7/ is the time span between ¢ and the time ¢, at which the next
renewal will take place.
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for the jump-length distribution in the jump-first model. Note
that our final results are not sensitive to the specific small T
or x behavior. The power-law tails completely determine the
long-time behavior which is rooted in the generalized central
limit theorem, see, for example, Ref. [13]. Thus our results are
valid for the general class of waiting-time or jump-length pdfs
that have the same asymptotic limit as Eq. (11) or Eq. (12),
respectively.

Via the coupling relations (4) and (5), the Eqs. (11) and (12)
fully determine also the step lengths of the wait-first and time
intervals of the jump-first model, respectively. Thus in the
wait-first case the full coupled jump pdf is

1 Y

Ky(x, 1) = ¢ (1) f(x]7) = T—OWS(M — VUpT),
13)
from which we calculate the effective jump-length pdf,
> Y
fw(IXI)Z/ Y(x,1)dt = — ;
0 voto [1 + |x|/(voTo)]+”

(14)

which corresponds exactly to (12) if we set xop = vpTo. An
analogous derivation applies for the jump-first model, so
indeed Eqgs. (4) and (5) together with (11) and (12) yield
the same effective jump-length and waiting-time distributions.
Thus £,,(1x]) = Y(D)le—) and ¥;(1) = F(x ]}y for xo =
voTo, which allows us to compare between the two jump
models. The construction of the simple Lévy walk with two
velocity states h(v) = 1/2[8(v — vg) + 8(v + vp)] such that its
steps all end in the same points in time and space as in the jump
models requires us to choose the same vy for all models. Later
we will also see what changes in more complicated velocity
models with distributed velocities. The resultant (effective)
waiting-time pdfs of all these models lack a typical time scale
since the mean waiting time diverges, and hence the overall
motion of the particle will be governed by a few very large (of
the order of the observation time) persistence time intervals
during which the particle’s state of motion does not change.
Therefore this regime is referred to as the ballistic one [10,36].

B. Fourier-Laplace inversion in the ballistic scaling regime

When stating that the propagator of a random-walk model
has the ballistic scaling we imply that it can be written in the
following form:

Gx.1) = %@(?) t = oo, (15)

where @ is the scaling function. In Fourier-Laplace space this
would correspond to a similar relation,

1 (ik
G(k,s) = ;g(%). (16)

For the Fourier-Laplace inversion of this expression we will
follow a procedure similar to that given, e.g., in Ref. [37].
By using the characteristic function and the definitions of the
integral transforms we can write (see Appendix D)

G(k ) /oo —St< —ikX) dt 1< 1
) = e e = - -
0 S 1 + %Y

>. (17)
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Here angular brackets denote the averaging with respect to a
random variable X which has a pdf P(X),

(F(X)) = /OO FX)P(X)dX. (18)

o0
In our case, X is the coordinate of the particle at time ¢ and
therefore P(X) = G(X,t). In addition, we introduced a scaled
variable Y = X/t to obtain the second line of Eq. (17). Now
by comparing Egs. (17) and (16) we can identify the scaling
function g in Fourier-Laplace space as:

é) = <#> _ (19)
sO=\ixer) =
We use the definition ®(y) = (6(y —Y)) and the

Sokhotsky-Weierstrass theorem [38] to write

1 1
®d(y) = (8(y —Y)) = —— limI
() =8y = 1)) mlgg)m<y_y+l.6>
1 1 1
= —— lim Im - v
T €0 y+ie\l— e

Finally, if we compare the above formula with Eq. (19), we
obtain the recipe to find the analytical expression of the scaling
function ®(y) if its counterpart in Fourier-Laplace space g(§)
is known:

1 1 1
®(y) = —— lim Im — . 20
) T €0 [y+ieg( y+ie>i| 20)
A similar method was used before in Ref. [37] for the inversion
of adouble Laplace transform. Here it is generalized to the case

of time and two-sided space variables (as in Ref. [39]). Below
we demonstrate how it works in practice.

IV. RESULTS FOR JUMP MODELS
A. Two-sided jump models

We start with general analytical expressions for the propa-
gators of the jump models Egs. (8) and (9), use the simple
coupling relations Eqgs. (4) and (5), and proceed with the
asymptotic analysis. For a waiting-time distribution of the
form as in Eq. (11) in the long-time limit, its expansion in
Laplace space is given by [and similarly for the jump-length
pdf Eq. (12) in Fourier space]

Y(s)~1—1/T( —y)s’.

After some algebra (see Appendix B) we find for the
propagators in the Fourier-Laplace domain in the small-k and
-s limits

1)

1 (ikvo) + (—ikvo)?
Gjlk.s) = E[l T (s + ikv) + (s — ikuo)v] @22)
and

Golhos) = + 257 .
s [(s —ikvg)Y + (s + ikvg)]

We indeed see that these expressions assume the scaling form
as in Eq. (16), from which we identify the scaling functions
(=&)Y + (&)

SO Ty v arey 29

(23)
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FIG. 3. (Color online) Propagators of two jump models in the
ballistic scaling regime. The rescaled propagators for (a) the wait-first
and (b) the jump-first models from Eqs. (27) and (26) are shown for
different values of the exponent y determining the power-law tail of
the waiting-time and jump-length distributions.

and
2
(I=&r+A+8&)y

with & = ivpk/s so the scaling variable becomes y = x/(vot).
This allows us again to perform the Fourier-Laplace inversion
in the scaling regime. By Eqgs. (20), (22), and (23) we find the
scaling solutions in original space-time domain:

guw() =

(25)

sin[ry] _
®;(y)= v
signy
= Islyl<oo
11 —ly=1}” :
TS e e BN M A
(26)
2sin[my] _
@, (y)="— |y
T
0 I<|yl<oo
X
(1-|y)" :
I e BN M A
(27)

where y = x/(vot) is the scaling variable (see Fig. 3). We
also find from Eq. (23) a mean-squared displacement (MSD)
(x?),, = (1 — y)yv3t?/2 or in terms of the scaling variable
(y*)w = (1 — y)y/2. Although the pdf for the jump-first
model scales ballistically, it does not possess a finite MSD.
This is to be expected, since the variance of the jump length
diverges and the jump is performed at the beginning of a
waiting time—the last jump can be very large when the
corresponding last waiting time is far from being completed.

B. One-sided jump models

The reason for the remarkable shape differences of the
scaled densities for the different models (see Fig. 3) becomes
immediately clear if we consider the following simplified
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example. In what follows we allow for jumps only in the
positive direction and indicate this in the scaling functions by
a superscript “+.” The scaling functions become

¥
g =1- ai—s)y g = ar e
Thus, the one-sided scaling solutions are
sin[m — _
q)j(y)zi(%y Iy -1 _10:;;201’ %)
Pr(y) = {gin[m Y Pey=oo , (29
L =y7yr— —oco<y<l

as shown in Fig. 4. The MSD of the jump-first model
again diverges. For the one-sided wait-first model (x2),, =
(14 y)yv2i2/2 and thus (y2),, = (1 4+ )y /2, or var(y), =
(1 —9y)y/2, as (y), = y. The propagators of the one-sided
jump models are closely related to the distributions of forward
and backward recurrence times 7 and 1, i.€., the time interval
from the measurement time to the next renewal and the time
interval that passed since the last renewal, respectively (see
Fig. 2). The positions x in the jump- and wait-first models are
x = vyt + 77), x™ = vo(t — 7,) and thus

) =1+L, (30)

Yo =1 = % 31)
Indeed, the forward and backward recurrence time scaling
distributions of the variables y/) = 7/t and y*) = 1/t are
obtained by performing the above transformations Egs. (30)
and (31) of the scaling variables y in Eqgs. (28) and (29), re-
spectively (see also Refs. [37,40]). This example demonstrates
strikingly that the difference between the models comes into
effect only through the last renewal period.

(a) wait first (b) jump first

3.0 : 1.0 :
| | o=
250 08F i | — =i
i 061 ]
— 1 1
>
g 150 |
04 %
1.0} !
0.5 0.2f
0.0 0.0 : : :
0.00.20.40.60.8 1.0 0 1 2 3 4
y y

FIG. 4. (Color online) One-sided jump models. In this particular
case only jumps to the right are allowed. One-sided wait-first (a) and
jump-first models (b) [Egs. (29) and (28)] are shown for different
values of the power-law tail exponent y governing the flight and
jump-length distributions. These results are related to the statistics of
the backward and forward recurrence times, as discussed in the text.
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V. RESULTS FOR THE VELOCITY MODELS

The propagator for the velocity model Eq. (10) can be
rewritten as

[25, dv(s + ikv)h(v)
1— [% dvy(s + ikv)h(v)’
where the W (s + ikv) and ¥ (s + ikv) are Laplace transforms
and the shift theorem was used (see Appendix C). This result
is exact, provided both integrals in Eq. (32) converge. In the

ballistic regime 0 < y < 1 we use the expansion given in
Eq. (21) to obtain the asymptotic version of this result,

101+ ikv/s) " h(v)dv
s [ (1 +ikv/s) h(v)dv

Gy(k,s) =

(32)

Gy(k,s) =

(33)

By comparing it with the scaling form of Eq. (16) we obtain

2 (4 Ev) " h(v)dy

&) = T (4 o hds

(34)

Finally, performing the inversion in the scaling regime accord-
ing to Eq. (20) yields

1 © (y+ie —v) Th(v)dv
@u(y) = —— lim il U (35)

0 [% (y+ie—v)Yh(v)dv

We should note that the problem of finding the propagator
in the velocity model corresponds to the problem of time
averaging the position of a subdiffusing particle subject to an
external binding potential as investigated in detail in Ref. [39]:
Indeed, we can view the velocity model as a decoupled CTRW
in velocity space, and the inference of the particle position
requires an integration over time. The scaled (here vy = 1)
position y = x/t of the single particle after a time ¢, provided
it started at 7o = 0, xo = 0 is given by

y(t) = 1 / v(t))dt'. (36)
t Jo

Thus, for the time-averaged CTRW, h(v) corresponds to
the Boltzmann equilibrium or steady-state distribution in
space [39].

Let us now furnish the above result with some examples.
We start with the two-state velocity pdf h(v) = [6(v — vg) +
8(v + vg)]/2. By repeating the same sequence of steps as for
the jump models we arrive at

o L= e
ST Ty arey

& = ikvog/s. With Eq. (20) the scaling form of the propagator
is found to be the Lamperti distribution [41],

(37

siny
(Dv(y) =

ly =117 [y+17 ! 4 [y 4117 [y=1!
[y = 12 + [y+117 +2[y—1]7[y+1]" cos Ty
(38)

where y = x/(vot) and |y| <1 and (y?) = (1 — y). This
distribution plays a role, for example, in the prediction of
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FIG. 5. (Color online) Theory and simulations for the wait-first
model [Eq. (27)] (solid line, triangles, red), the jump-first model
[Eqg. (26)] (dotted line, diamonds, blue) and the two-state velocity
model Eq. (38) (dashed line, squares, green). y = 1/2, scaling
variable y = x/(vot).

the time-averaged intensity of the light emitted by a blinking
quantum dot [9]. For y = 1/2 this scaling distribution assumes
a particularly simple form,

q)v(y) = T (39)

A=y Iyl <1,
the well-known arcsine distribution [40]. It is instructive
to compare the propagator of this type of Lévy walk with
those of the two jump models. As is clear from Fig. 1, the
trajectory of the walk passes through the same end points as
both jump models, yet it does it by a different path in the
(x,?) plane. As a result, the shape of the propagator is very
distinct, see Fig. 5. As before, the origin of the difference is
in the last unfinished step: In the case of the corresponding
one-sided walk, i.e. the walk with just one velocity h(v) +
8(v — vg), the position of the particle is given by a simple
x® = vyt, different from both jump models. We also use
Fig. 5 to compare our analytical results with direct numerical
simulations of random-walk models which show excellent
agreement. Figure 5 clearly demonstrates that the particles
spread further in the jump-first model if compared with the
velocity- and wait-first models, the latter being the slowest
process.

The distinct feature of the velocity model is the ability to
include the velocity distribution of the random walking parti-
cles. Below we show how different velocity pdfs change the
scaling shape of the corresponding propagator. For illustration,
in addition to the two-state velocity pdf, we chose a uniform
velocity distribution on finite-interval, Gaussian, and Cauchy
distributions.

For the uniform velocity pdf between £vgy, 6(vy — |v])/
(2vg), where 6 is the Heaviside step function, we find with
& = voik/s

(L+y) (=& —(1+8)")
(=6 —(1+&

&) = (40)
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o(y)

FIG. 6. (Color online) Scaling functions of the random walks
with random velocities model. Results for four different velocity pdfs
of the walking particles are depicted: two-state velocity v = vy
[Eq. (39)] (dash-dot, circles, gray), uniform on an interval [Eq. (42)]
[—vo,v0] (dashed, squares, green), Gaussian [Eq. (35)] (dotted,
diamonds, blue), and Cauchy [Eq. (45)] (full line, triangles, red);
y = 1/2. The result for the Gaussian velocity pdf was obtained using
MATHEMATICA. Theory and simulations nicely match without fitting.

and
2(1+y)sinmy
o) = —7—"—
Ty
(1—y2y
> ,
(=272 +(1+9)2 727 +2(1 — y)"*7 cos Ty

(41)

with the MSD (y2?) = 1/3(1 — y). For y = 1/2 it reduces to
a very simple expression,

1 —y?
(1 +3y?)

shown in Fig. 6 (dashed, squares, green). As we see, similarly
to the Lévy-walk case with two velocity states, the propagator
is bounded by ballistic fronts corresponding to the maximal
possible speed. However, it has more of a bell-shaped profile,
unlike the shape of the single-speed Lévy walk with its
distinct infinite peaks at |y| = 1.

For a Gaussian velocity pdf h(v) = 2w vé)’l/2 exp[—v?/
(2v3)] we get a more involved expression,

S+ Ev]7 2 exp [—2“—55]511)

8u(§) = fj°oo[1+év]“zexp[—%]dv

(43)

For y =1/2, the corresponding Eq. (35) can be solved
(for example, in MATHEMATICA) and expressed in terms of
hypergeometric (or Kummer’s) functions of the first and
second kinds, see Fig. 6 (dotted, diamonds, blue). Since the
Gaussian pdf, in principle, allows for infinite speeds, the
profile of the propagator this time is unbounded. Still, the
MSD remains finite, (y2) =1 — y. Indeed, if the second
moment of a symmetric hy(v) = h(v/vp)/vy exists, we
always have (y?) = (1 — y)(v?)/v2, see also Ref. [39].
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A very special situation is induced by Cauchy-distributed
velocities, h(v) = 1/{mvo[l + (v/v)?]}. It was shown in
Ref. [28] that in this case the flight-time distribution, in
particular the value of y, has no effect on the resulting
propagator, which in turn is also Cauchy. To show this, let us
consider the exact answer for the velocity model as in Eq. (10)
and substitute the Fourier transform of the Cauchy velocity
distribution: h(kt) = exp(—vg|k|T). After simple algebra, and
without prescribing the particular form of v (t), we arrive at:

Gy(k,s) = (44)

s + volk|”
One can immediately recognize that the inverse Laplace and
Fourier transform of Eq. (44) will again lead to the Cauchy
distribution:

Vot

G,(xt)= ————=.
o) 7 (vdr* + x?)

45)
Therefore the scaling function, which we plot in Fig. 6 (full
line, triangles, red), has the simple form &,(y) = [7(1 +
yH]7!, and its MSD clearly diverges. For such a simple
answer for the propagator in Fourier-Laplace space, Eq. (44),
the application of the proposed inversion method becomes
somewhat redundant; however, it can be demonstrated that
it works here as well. To conclude this section we note that
the model of random walks is very sensitive to the shape of
the velocity distribution which gets reflected in the profile of
the asymptotic density. This was noticed before [39], as well
as a similar phenomenon in the sub-ballistic, superdiffusive
regime [27]. However, in the subballistic case the effect was
much weaker, as it appeared only at the far tails of the
distribution, whereas in the ballistic regime it dominates the
whole propagator.

VI. DISCUSSION

We considered the long-time scaling limit of the density
profiles of particles for a large class of one-dimensional
random walks that operate in the ballistic regime, which
implies a scaling variable y ~ x/¢. Depending on the model,
these densities differ strikingly. It is important to note that
especially the last renewal period plays a crucial role with
regard to these differences. If we compare the jump models
and the simple velocity model with constant speed where at
the renewal only the direction of motion is chosen, we find that
exactly at the instant of a renewal the jump-first, wait-first, and
the simple velocity models are the same (Fig. 1). Thus they
differ only by their last renewal interval, and this is the origin
of the difference between their densities.

For both the one- and two-sided wait-first models the
propagator is restricted to a finite interval of the scaling
variable, y € (0,1) and y € [—1,1], respectively, since the
particles can never overcome the front |x| = vgz. In contrast
to that, in the one-sided jump-first model the particles jump
further ahead whenever the front catches up with them,
therefore y € (1,00). In the two-sided jump-first model we
have y € (—00,00). The propagators of both jump-first models
exhibit heavy tails (Figs. 4 and 3, right panels) which renders
them somewhat unphysical. Nevertheless, they can serve as an
impressive demonstration of the large effect of the final jump.
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Whether the scaled propagators of the velocity model have
a heavy tail or live on a finite domain depends directly on
the underlying velocity pdfs which can exhibit heavy tails or
are constricted to a finite interval. We explicitly calculated the
scaled densities for some velocity and jump models, for which
we found excellent agreement with the results of direct Monte
Carlo simulations of the respective processes. Although we
considered §-function-like coupling between the jump distance
and time it takes, the method that we suggested only requires
the existence of the ballistic scaling. Therefore it can in
principle be applied to other, distributed, couplings as long as
they lead to the ballistic regime. The mathematical machinery
behind the method is specific to the ballistic regime, and it will
be necessary to develop other approaches for different scaling
regimes. We believe that the analytical results presented here
provide an important step in our quantitative understanding of
random walks and will facilitate the implementation of these
random-walk models in physics and other interdisciplinary
applications.
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APPENDIX A: JUMP MODELS: PROPAGATOR
IN THE FOURIER-LAPLACE DOMAIN

Fourier-Laplace transformation of Eq. (1) yields
Qa(kys) = Ka(k,S)Qa(k,S) + 17
(AL)

Oy (k,s) = T Koths)

where  K(k,s) = FL{f(x)¥(r|x)} and K,(k,s)=
FL{f(x|t)y(r)}. The Fourier-Laplace transform is defined
as FL{} = [° dx [ dte™**e™(-). For Eqgs. (2) and (3)
we have

puw(k,s) = L{W(T)} Qu(k,s), (A2)

pjk,s) = FL{f(O)W(z]x)} Qu(k,s). (A3)

Inserting (A1) results in Egs. (8) and (9).

APPENDIX B: JUMP MODELS: FORMAL
SCALING SOLUTION

Equations (8) and (9) simplify due to the shift theorem for
linear coupling, Egs. (4) and (5):

F(k,s)
1 — Flexp[—s&]raxp}’

where f is the coupling function between jump length and
waiting time. For the jump-first model,

Fj(k,s) = f{@(l — exp [—S%D } (B2)

G(k,s) = (B1)
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and

Fy(k.s) = #

(B3)

for the wait-first model. With Eq. (21) the denominator in (B1)
becomes

(1 —y)

~ T[(s + ikvg)” + (s —ikvg)’]. (B4)

Correspondingly, we have for Eq. (B2)

(0 1 x .
L a5 )o-etheran
+/°° lﬁ<£>(1 — e_%)ef"kx dx]
0 Vo

"I(] —
~ 1 |:1 — W[(—Hkvo)y + (=ikvo)"] — 1

N

/T —
+0( V)

5 [(s + ikvg)” + (s — ikvo)y]i| (BS)

and for Eq. (B3)

1 —
% ~ T = y)s.

(B6)

Inserting this back into Eq. (B1) yields Egs. (22) and (23),
respectively.
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APPENDIX C: PROPAGATOR IN THE VELOCITY MODEL

Let us write explicitly the numerator in the fraction of
Eq. (10)

L{V()h(kT)}(k,s)

o0 o0 .

=/ dr/ dve Ve T ()R (V)
0 —00
o0

= / dv ( f Oodre(“Jrik”)T\I/(r)h(v))
—00 0

= /OO dvW(s + ikv)h(v). (CD)
Analogously, for the denominator,
1 — L{y(v)h(kT)}(k,s)
=1- /-oo dvyr(s + ikv)h(v). (C2)

Inserting this into Eq. (10) yields Eq. (32).

APPENDIX D: FOURIER-LAPLACE TRANSFORM
OF THE SCALING FUNCTION

Explicitly, the Fourier-Laplace transform of Eq. (15) is

[e.¢] oo 1 x
/ f exp[—ikx — st];CD(?) dtdx. (D1)
—00 J0
Subsequent variable transformation leads to
oo [o.¢]
/ / exp[—(iky + s)t]P(y)dt dy
—o00 JO
*© D 1 (> @
=f 0 ‘f 20) 4 (o)
—eo iky +s K _oo%y+1

which is equivalent to Eq. (17).
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