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Anomalous velocity fluctuation in one-dimensional defect turbulence
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In this paper various eccentric hole dynamics are presented in defect turbulence of the one-dimensional complex
Ginzburg-Landau equation. Each hole shows coherent particlelike motion with nonconstant velocity. On the other
hand, successive hole velocities without discriminating each hole exhibit anomalous intermittent motions being
subject to multi-time-scale non-Gaussian statistics. An alternate non-Markov stochastic differential equation is
proposed, by which all these observed statistical properties can be described successfully.
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I. INTRODUCTION

Particle velocity fluctuations in equilibrium systems, such
as ideal gases, are subject to the Maxwell-Boltzmann law [1].
This is one of the main consequences of equilibrium statistical
mechanics. However, velocity fluctuations in nonequilibrium
systems, where energy and/or momentum exchange, exhibit
abundant anomalous behaviors being subject to non-Gaussian
statistics with large deviations. Many-body interactions among
collective inelastic gases, where momentum decreases after
collision, display Lévy type velocity distributions [2]. In
general, topological defects in phase-ordering systems have
velocity distributions with fat tails [3]. Lagrangian particles in
porous media show intermittent motions with long-time rests,
for which the velocity distribution is also characterized by
large deviations [4].

In order to understand the common nature of nonequi-
librium systems, one aspires to deal with a minimal model
describing spatiotemporal dynamics which can be observed
everywhere. Mathematical models such as amplitude equa-
tions have been derived from original equations by the
reductive perturbations methods or the method of multiple
scales. The complex Ginzburg-Landau equations (CGLE)
have been introduced to describe spatiotemporal dynamics
in oscillatory media with weak nonlinearity associated with
supercritical Hopf bifurcations [5–7]. When the CGLE is
not enough to describe more complicated spatiotemporal
dynamics, such as hexagonal pattern formations related to
non-Boussinesq convection (e.g., Ref. [8]), coupled CGLEs
and/or complex Swift-Hohenberg equation [5,7,9] and their
modifications must be introduced. In particular, defect velocity
fluctuations have been extensively investigated with the help
of the two-dimensional (2D) CGLE. In inclined layer thermal
fluid convection, non-Gaussian defect velocity distributions
have been observed experimentally [10], and have been iden-
tified by the theoretical framework of nonextensive statistical
mechanics [11]. On the other hand, a non-Gaussian velocity
distribution have been derived from a one-dimensional (1D)
transport equation [12]. We have introduced appropriate
identification methods for local structures, which are localized
nonlinear waves in 1D systems, such as the defect, the hole,
and the modulated amplitude wave, and have investigated
their statistical characteristics [13]. Using the method, we
have tracked successfully each hole in the defect turbulence
and have speculated that the hole velocity distribution can be
described by a generalized Cauchy distribution [14].

While the anomalous velocity distributions at steady states
have been investigated in many systems, their dynamical
properties, such as autocorrelation function (ACF) and mean-
square displacement (MSD), have yet to be described by a
unified theoretical model. In other words, dynamical stochastic
models of the abundant anomalous velocity fluctuations
remain to be fully elucidated. In many previous works, these
dynamical properties and probability distributions for random
fluctuations have been studied separately.

The ACF for a stochastic process has been used to inves-
tigate the existence of long memory, which is characterized
by a power-law decay. As such, stochastic models with long
memory, generalized Langevin equations [15], continuous
time random walks [16], time fractional Fokker-Planck equa-
tions [17], and nonstationary master equations [18] have been
developed. As far as we know, the MSDs of these stochastic
models show subdiffusive behaviors since long memory in
many systems can be ascribed to frequently trapped particle
motions in their transport processes [16,17,19].

Recently, many theoretical probability distributions have
been proposed for describing “large deviations” in statistics,
i.e., probability density functions (PDFs) with fat tails. As far
as the mathematical fitting of empirical data to the PDF is
concerned, one can fit experimental or simulated PDF with
one of the probability distributions.

“On the theory of Tsallis statistics” [20], (i) there is an ad
hoc parameter q; (ii) the physical origin of the corresponding
nonlinear Fokker-Planck equation (NLFPE) is not clear.
Actually, Grassberger pointed out the deficiency of Tsallis’s
theory [21], although the features of anomalous diffusion can
be derived from the NLFPE.

To identify the physical origin of large deviations in statis-
tics, Beck and Cohen have developed the superstatistics [22]
where original state variables are decomposed of random
variables in local thermal equilibrium and slowly fluctuating
inverse temperatures. However, the ACF of the original state
variables cannot be predicted since the superstatistics is not
related explicitly to a specified Fokker-Planck equation or a
Langevin equation.

We utilized a class of generalized Cauchy processes
(GCPs) [23] to construct an alternate stochastic model in
describing both the PDF and the ACF of hole velocity
fluctuation in the defect turbulence of the 1D CGLE. The
feature of anomalous diffusion in the GCP depends on the
value of its parameters and dimensions [24].
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In this study, we investigate the hole dynamics in the
defect turbulence of the 1D CGLE, and present the unified
stochastic model for the hole velocity fluctuation involved in
the PDF, the ACF, and the MSD. Section II presents a brief
explanation of our numerical simulation for the 1D CGLE
and the identification method of holes in the defect turbulence.
Section III presents a hole tracking procedure and some sample
trajectories of the holes, which display particlelike motions.
In Sec. IV, without discriminating each hole, successive hole
velocities are investigated as a random time series, and their
unified stochastic model is presented. Section V is devoted to
conclusions and future perspectives.

II. NUMERICAL SIMULATION
AND HOLE IDENTIFICATION

The CGLE is derived from a nonlinear partial differential
equation having dissipation terms near a supercritical Hopf
bifurcation [5–7]. A rescaled form of the dimensionless CGLE
in terms of a complex order parameter A with two real
parameters c1 and c2 is given by

∂tA = A + (1 + ic1)∇2A − (1 + ic2)|A|2A. (1)

Depending on the values of c1 and c2, the CGLE shows rich
spatial or spatiotemporal patterns in any dimensions [25,26].

We implemented a numerical simulation of the 1D CGLE
in the regime of defect turbulence. The initial condition is
given by A0(x) = ξ1 + tanh(x)exp[i(x + ξ2)], where ξ1 and
ξ2 are Gaussian random numbers with null means whose
variances are 0.1 or 0.01, respectively. We confirmed that the
change of the initial condition does not alter the spatiotemporal
dynamics after transient dynamics. In order to trace the
motions of holes more accurately, it is preferable to guarantee
spectral accuracy for space with a finer grid. Therefore,
we employed a split-step Fourier method with fourth-order
accuracy for time in the system � = 80π , subject to a periodic
boundary condition [27]. Time and space resolutions were
fixed to �t = 10−3 and �x = 2−12×�, respectively. The
parameter values in Eq. (1) were chosen to produce the defect
turbulence with (c1,c2) = (1.5, − 1.2). Note that this change
of numerical scheme and system size does not affect the
qualitative statistical law of the defect turbulence previously
reported [13].

FIG. 1. (Color online) Spatiotemporal profiles of amplitude |A|
and phase arg (A) in the whole system. In the amplitude profile, black
lines indicate trajectories of locally depressed amplitude. In the phase
profile, slits correspond to phase discontinuities.

FIG. 2. Snapshots of (a) a defect and (b) a hole. Black lines and
white circles are amplitude and phase, respectively. The defect has a
phase singularity at its core, whereas the hole does not have the same
feature.

Figure 1 shows the pseudocolor plots for spatiotemporal
profiles of amplitude |A| and phase arg(A). In the amplitude
profile, black lines indicate trajectories of locally depressed
amplitude. In the phase profile, slits correspond to phase
discontinuities. These two characteristics are an expression
of a well-known phase singularity of the 1D CGLE, i.e., the
Bekki-Nozaki (BN) hole [28]. On the other hand, another hole
without phase singularity has been presented as a specific form
of traveling waves, defined as the homoclinic hole [29]. Thus
these two distinct holes have to be discriminated clearly to
understand the true nature of the defect turbulence.

In our previous work [13], we proposed appropriate
identification methods of the two distinct holes, carried out
discrimination between them, and tagged the BN hole and
the homoclininc hole as a defect and a hole, respectively, in
the defect turbulence. Based on the identification methods,
stochastic dynamics of birth-death processes of both holes
and modulated amplitude waves in defect turbulence have
been unveiled to show Poisson processes with long memory,
which is described successfully by a nonstationary master
equation. However, a naive identification method of holes with
only amplitude gives sub-Poisson statistics in hole number
fluctuations [30], which is an illusion or an artifact.

A defect is identified as a local minimum of amplitude with
a phase singularity in x − t plane, and a hole is captured as
one not having the same feature. Figure 2 shows snapshots of
a defect and a hole, with solid lines denoting amplitude, and
white circles denoting phase. It is recognized that the defect
has phase discontinuity at its amplitude minimum, whereas the
hole does not have the same feature. Reflecting the fact that
the BN hole is structurally unstable, namely, it collapses under
a perturbation [31], the lifetime of a defect is shorter than the
time step of the numerical simulation �t , and thus does not
show any motion. Hence we can only track trajectories of the
holes in the defect turbulence.

III. HOLE TRAJECTORIES

After identifying the holes, we tracked their trajectories
during their lifetimes. The trajectories are restricted by
the temporal and the spatial resolutions of the numerical
simulation, which is to say that the holes can only move to the
nearest-neighbor pixels at each time step. In order to reduce the
influence of the spatiotemporal resolutions on the trajectories,
we replaced the hole positions with their weighted average.
The weighting function for a hole position xi at time ti affected
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FIG. 3. Sample hole trajectories with their velocity diagrams. The
hole trajectories in (a1) and (b1) were obtained by the smoothing
with the weighting function. The hole velocities in (a2) and (b2)
were evaluated by the local regression at each point in (a1) and (b2),
respectively.

by other sets of position and time (xj ,tj ) is given by the Gaus-
sian function as wij = (2πσxσt )−1exp[−2−1{σ−2

x (xi − xj )2 +
σ−2

t (ti − tj )2}] with σ 2
x = 2�x and σ 2

t = 2�t [32]. From
the smoothed trajectory with coordinates x̂i = ∑

j wij xj , we
obtained the hole velocity at each time step at every position
using the local linear regression.

Figure 3 shows two sample hole trajectories with their
velocity diagrams. The holes do not change their traveling
directions in Figs. 3(a1) and 3(b1), which is a common feature
of all the holes in the defect turbulence. On the other hand, the
velocity diagrams are different, with a monotone decline of
the hole velocity in Fig. 3(a2), but a local minimum of the hole
velocity appearing in Fig. 3(b2). According to the conventional
concept of the coherent structures [29], the hole velocities
are expected to have constant velocities. It is plausible that
such behaviors of the hole velocities, as shown in Fig. 3, are
caused by energy and/or momentum exchanges of the holes
with their surroundings in the birth-death process of the local
structures [13].

IV. HOLE VELOCITY FLUCTUATION

Without discriminating each hole, the successive hole
velocities in the whole system at each time step are recorded as
a time series, as shown in Fig. 4. This hole velocity fluctuation
displays the feature of intermittency with large deviations.
Indeed, one can recognize two-sided fat tails in the probability
distribution. These are denoted as black circles in Fig. 5 and
are evaluated with the help of the Rosenblatt-Parzen density
estimator to guarantee accuracy of PDF estimation [33].

The hole velocity distribution is fitted by a generalized
Cauchy distribution,

Ps(v) = a2b−1

B(b − 1/2,1/2)

1

(v2 + a2)b
, (2)

where a and b are real parameters, and B(x,y) is the beta
function [23], as depicted with the solid line in Fig. 5. The
parameters in Eq. (2) are estimated by the maximum likelihood
method as (a,b) = (0.709,2.179).
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FIG. 4. Hole velocity fluctuation obtained from the successive
hole velocities without discriminating each hole in the whole space
at each time.

Figure 6 shows the autocorrelation coefficients for the
hole velocity fluctuation. It is clear that the autocorrelation
coefficients show a nonexponential decay, which implies the
existence of long memory. In other words, the conventional
GCPs with exponentially decaying ACF cannot give a consis-
tent description on the nature of the hole velocity fluctuation
in our simulation.

The mean-square displacement (MSD) is also useful to
investigate the characteristics of fluctuating quantity as well as
the velocity fluctuation. A relative displacement of the holes
is estimated as X(t) = ∫ t

0 V (τ )dτ , and then the MSD of X(t)
is obtained by the time average on the overall duration T as

〈X2(t)〉T = 1

T − t

∫ T −t

0
[X(τ + t) − X(τ )]2dτ. (3)

Figure 7 shows the estimated time-averaged MSD in Eq. (3). In
general, the power-law exponent α in 〈X2(t)〉T ∝ tα classifies
diffusive behaviors of fluctuating quantities. In Fig. 7, the
exponents α indicate the existences of different scales of the
motion in range of superdiffusion (α > 1), of which values
have been estimated by the least square method (LSM). First
the superdiffusive motion appears (α = 1.53), then leads to

FIG. 5. Probability distribution for the hole velocity fluctuation.
The black circles are estimated from the hole velocity fluctuation
with the help of the Rosenblatt-Parzen density estimator. The solid
line denotes the generalized Cauchy distribution with the parameters
(a,b) = (0.709,2.179) estimated by the LSM, of which mean-square
error (MSE) is 5.12×10−3. The dashed line denotes the Gaussian
distribution with the mean and the variance estimated from the hole
velocity fluctuation.
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FIG. 6. Autocorrelation coefficients and function for the hole
velocity fluctuation. The black circles denote the autocorrelation
coefficients for the hole velocity fluctuation estimated from the
simulated time series. The solid line denotes the ACF of the NSGCP
in Eq. (14) with the estimated parameters γ = 0.429, Da = 0.064,
Dm = 0.128, K = 0.112, and η = 8.4×104. The MSE is 4.64×10−5.

nearly ballistic motion (α = 1.96) at the midpoint, and even-
tually displays nearly normal diffusion (α = 1.05). A similar
picture for random particle systems has been experimentally
observed in collective magnetic holes, where superdiffuison
with α = 1.74 has appeared. Here two other scales can be
roughly estimated from Fig. 16 in Ref. [34]—(i) α = 1.40 for
shorter time scale and (ii) α = 0.60 for longer ones.

To describe the above statistical properties, the GCP needs
to be generalized with the effect of long memory. There
are two candidates for modeling stochastic processes with
long memory: stochastic differential equations (SDEs) with
subordinator [35] and those with memory functions [15]. Both
stochastic processes show non-Markov properties. The former
stochastic processes provide long time durations subjected
to waiting time distributions between random events, and
thus evolution of their PDFs are described by time fractional
Fokker-Planck equations. The latter stochastic processes have
convolution type or convolutionless type memory functions
in SDEs, which are connected by a memory function rela-
tion [36]. The corresponding Fokker-Planck equations have
time-dependent coefficients.

FIG. 7. MSD for the hole velocity fluctuation. White circles
denote the MSD obtained by the time averaging in Eq. (3). Solid
lines approximate the obtained MSD with power-law exponent as
tα: α = 1.53 for t∈[10−3,10−2], α = 1.96 for t∈[10−2,101], and
α = 1.05 for t∈[101,103]. The MSE for the time scales are as follows:
1.69 × 10−4 for t∈[10−3,10−2], 6.71 × 10−5 for t∈[10−2,101], and
2.00 × 10−2 for t∈[101,103].

As was shown in Fig. 4, the hole velocity fluctuation has
no time durations between random events. Thus it has to be
modeled by a SDE with memory functions. As a generalization
of the GCPs with non-Markov property, we introduce a
nonstationary It̂o − type SDE, with convolutionless memory
functions, as

dV (t) = −(γ − Dm)V (t)ν(t)dt + V (t)
√

2Dmν(t)dWm(t)

+
√

2Daν(t)dWa(t), (4)

where γ is a real parameter, Wa(t) and Wm(t) are independent
standard Brownian motions with their respective intensities
2Da and 2Dm, and ν(t) is a time-scaling (memory) function.
From here on out, we refer to this stochastic process as a
nonstationary generalized Cauchy process (NSGCP). The SDE
for the NSGCP in Eq. (4) readily leads to the corresponding
nonstationary Fokker-Planck equation as

∂

∂t
P (v,t) = ν(t)LFP P (v,t), (5)

where the operator LFP is defined by

LFP = ∂

∂v
(γ − Dm)v + ∂2

∂v2
(Dmv2 + Da). (6)

By introducing a rescaled time as

τ =
∫ t

0
ν(t ′)dt ′, (7)

Eq. (5) leads to a conventional Fokker-Planck equation with
respect to the rescaled time τ as

∂

∂τ
P (v,τ ) = LFP P (v,τ ). (8)

Thus the solution of Eq. (5) with its statistical quantities can
be obtained from Eq. (8). Also, sample paths of Eq. (4) can be
obtained from the corresponding conventional It̂o − type SDE,
by setting ν(t) = 1 in Eq. (4), as V (t) = V (τ (t)). Indeed, the
sample path of the NSGCP with respect to the rescaled time τ

is expressed by

V (τ ) = V (0)e−γ τ+√
2DmWm(τ )

+
√

2Da

∫ τ

0
eγ (τ ′−τ )−√

2Dm[Wm(τ ′)−Wm(τ )]dWa(τ ′). (9)

The ACF of the NSGCP, which is defined as C(t) =
〈V (t)V (0)〉ens/〈V (0)V (0)〉ens with 〈· · ·〉ens being the ensemble
average, is readily obtained from Eq. (9) as

C(t) = exp[−(γ − Dm)τ (t)]. (10)

Thus the specific form of C(t) is determined by τ (t) in Eq. (7).
The time-scaling function ν(t) reflects the physical property

of time in the system considered. Indeed, as was presented in
our previous paper [13], the birth-death process of the local
structures including holes has multiple time scales composed
of long memory and periodic processes. As a result, one part
of the time-scaling function associated with long memory is
naturally assumed to have the same form for the case of the
birth-death process as

νlm(t) = η

1 + ηt
, (11)
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FIG. 8. Sample path of the NSGCP generated from the recurrence
formula in Eq. (15) with estimated parameters γ = 0.429, Da =
0.064, Dm = 0.128, K = 0.112, and η = 8.4×104.

with η being a real parameter. In addition, another time scale is
expected to exist since each hole displayed particlelike motion
with a faster time scale. To express the fast motions, let us
introduce

νbm(t) = 2Kt, (12)

with K being a real parameter, which leads to the rescaled
time τ = Kt2. Employing this rescaled time to the Brownian
motion which exhibits the MSD proportional to time after
transient motion [37], one can obtain the MSD proportional
to the rescaled time, that is, a ballistic motion for a long
time. Hence the time-scaling function in Eq. (12) express the
particlelike (ballistic) motions of the holes.

Based on the above considerations, the hole velocity
fluctuation consists of multitime scale dynamics which can
be described by superposition of the time-scaling functions in
Eqs. (11) and (12) as

ν(t) = νlm(t) + νbm(t). (13)

The ACF of the NSGCP is given by

C(t) = e−(γ−Dm)Kt2

(1 + ηt)γ−Dm
, (14)

and is compared with the autocorrelation coefficients for the
hole velocity fluctuation in Fig. 6. The parameters in Eqs. (4)
and (14) were estimated using the LSM with γ = 0.429,
Da = 0.064, Dm = 0.128, K = 0.112, and η = 8.4×104. It
is observed that the ACF in Eq. (14) agrees quite well with the
autocorrelation coefficients for the hole velocity fluctuation.

The sample paths of the NSGCP can be numerically
simulated from the exact form in Eq. (9). Indeed, the sample
paths of the NSGCP in successive discrete times {tn}n�0 is
generated from the recurrence formula

V (τn+1) = V (τn)e−γ�τ+√
2Dm�τξm

+
√

2Da�τξae
γ�τ−√

2Dm�τξm, (15)

where τn = ν(tn), �τ = τn+1 − τn, ξa , and ξm are independent
random variables being subjected to the standard Gaussian
distribution, as is shown in Fig. 8. It is noted that the feature
of intermittency as well as the hole velocity fluctuation shown
in Fig. 4 is reproduced satisfactorily.

FIG. 9. Theoretical MSD calculated with the representation
in Eq. (16). The diffusive behavior changes from superdiffusion
with α = 1.74 to nearly normal diffusion α = 1.01. The MSE are
estimated as 9.32×10−4 (t < 101) and 1.81×10−4 (t < 101).

The ensemble-averaged MSD for the successive relative
displacements of the holes is given by

〈X2(t)〉ens =
〈∫ t

0
V (u)du

∫ t

0
V (u′)du′

〉
ens

= 2
∫ t

0
(t − s)C(s)ds, (16)

with the velocity ACF C(t) in Eq. (14). It can be evaluated by
numerical computations as shown in Fig. 9, and is comparable
with the time-averaged MSD in Fig. 7 under the assumption of
ergodicity. It is observed that the superdiffusive motion with
α = 1.74 switches to nearly normal diffusion with α = 1.01
as with that in Fig. 7. Although the value of α until t = 101 is
different from those in Fig. 7, the value obtained is the same
as the average values of α for fast and middle times, namely,
α = 1.53 and α = 1.96. Hence the NSGCP can capture the
overall features of the diffusive motions of the holes in the
defect turbulence.

V. CONCLUSIONS

The main results of this paper can be summarized as
follows. The holes in the defect turbulence displayed parti-
clelike motions with nonconstant velocities, which is caused
by energy and/or momentum exchange of the holes with their
surroundings in the birth-death process of the local structures.
The successive hole velocities without discriminating each
hole was recorded as a time series, and was investigated as the
hole velocity fluctuation characterized by intermittency, long
memory, and superdiffusion. In order to unify all the statistical
properties, we proposed the NSGCP with two different time
scales of motions. The NSGCP can successfully identify the
probability distribution and the autocorrelation coefficients
for the hole velocity fluctuation. In addition, it can basically
capture the diffusive behavior in the MSD of the holes.

The proposed stochastic model here is expected to describe
fluctuations in other nonequilibrium systems. Wave turbulence
under annihilation and creation of incoherent structures have
been investigated from the equilibrium statistical point of view
based on the Boltzmann-Gibbs distribution [38–40]. However,
their descriptions with only stationary probability distributions
are not enough to characterize dynamical properties of the
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wave turbulence. Thus our approach based on SDEs with
multiple time-scaling functions like the NSGCP will shed light
on both dynamical and statistical properties of spatiotemporal
disorders in other nonequilibrium systems.
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