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An initially empty (no edges) graph of order M evolves by randomly adding one edge at a time. This edge
connects either two linked components and forms a new component of larger order (coalescence of graphs) or
increases (by one) the number of edges in a given linked component (cycling). Assuming that the vertices of the
graph have a finite valence (the number of edges connected with a given vertex is limited) the kinetic equation
for the distribution of linked components of the graph over their orders and valences is formulated and solved
by applying the generating function method. The evolution process is shown to reveal a phase transition: the
emergence of a giant linked component whose order is comparable to the total order of the graph. The kinetics
of growth of this component is studied for arbitrary initial conditions. Found are the time dependences of the
average order and the valence of the giant component. The distribution over orders and valences of the linked
components of the graph is derived for an initially empty graph comprising M bare polyvalent vertices.

DOI: 10.1103/PhysRevE.91.022119 PACS number(s): 02.50.Ga, 02.50.Ey, 05.40.−a

I. INTRODUCTION

The systems wherein collisions and subsequent coalescence
of the system components lead to the changes in their number
and sizes are highly widespread in nature [1–3]. It is thus not
surprising that a huge effort was directed to the study of the
coagulation processes in diverse concrete coagulating systems,
such as clouds, aerosols, hydrosols, etc. An impressive list
of the coagulation processes can be found in the review
articles [3–6]. The main problem that faces the theory of
coagulation is how to find the particle mass spectrum, the
number of particles of given mass at time t .

In studying the coagulation processes one starts from the
kinetic equation, which governs the time evolution of the
concentrations c(g,t) of the particle with mass g at time t .
This equation is (the Smoluchowski equation),

dc(g,t)

dt
= 1

2

g−1∑
l=1

K(g − l,l)c(g − l,t)c(l,t)

−c(g,t)
∞∑
l=1

K(g,l)c(l,t). (1)

Here g and l are the particle masses in units of a monomeric
mass. This equation is derived from a simple balance principle:
the increase in the g-particle concentration cg(t) comes from
the coalescence of g-l and l particles [the first term on the right-
hand side (RHS) of this equation]. The second term describes
the consumption of g particles by all other participants of the
coagulation process and thus enters with the negative sign.
The coagulation kernel K(g,l) is the rate of coalescence of the
particles containing g and l monomers. This equation has been
used countless times to study very diverse phenomena ranging
from the coagulation of aerosols and suspensions and ending
with the formation of planets.

A random graph is a collection of points (vertices) ran-
domly connected by lines (edges). The random graph can
be considered as a collection of linked clusters. (The linked
cluster is a graph in which each vertex is connected by one
or several edges with any other vertex belonging to it). The

interest to the structure of the random graphs comes from
their close resemblance to many dynamical processes such
as polymerization [7–16], evolution of social networks [17],
percolation [18–20], and phase transitions [21].

Most studies of random graphs rely upon the combinatorial
analysis [22–25]. Another method applies the kinetic approach
where one edge is randomly added to the graph. In this case
the graph evolution is analogous to the coagulation process
in a system of particles that move, collide, and coalesce on
colliding, forming a larger daughter particle.

The efficiency of the Smoluchowski equation for studying
the evolution of random graphs had been clearly demonstrated
in Refs. [9,12–15,26,27], where the analogy between the
particle coalescence and the graph transformation by randomly
adding edges to the evolving graph is shown. Indeed, if
we consider a graph comprising N1,N2, . . . ,Ng, . . . linked
components then any additional edge either converts a couple
of components to one or produces an additional cycle if it
connects two vertices in one component.

The above consideration assumes the infinite valence of
the vertices, i.e., the number of outgoing edges is not limited.
It is clear that if the valence of each vertex in the evolving
graph is finite then the resulting structures will occur more
loosely. The attempts to consider such structures appeared
more than half a century ago [7,8], even earlier than the paper
of Erdös and Rényi [22], in connection with the theory of
polymerization. Indeed, the polymerization process has many
common features with the evolution of random graphs: newly
appearing chemical bonds connect the active functional centers
and form the polymer structure.

This paper aims at the consideration of the evolution of a
random graph with the vertices of finite valence. The idea
of my approach is close to that of Refs. [9,12–14] where
the Smoluchowski equation applies for studying initially
monodisperse and monovalent random graphs. The evolution
process in this case produces only treelike linked components
whose total valence is fully determined by their order. In
the case of cycles or more complex initial conditions the
Smoluchowski equation is not applicable and should be
replaced by another one. This step is done in this paper.
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FIG. 1. Evolution of a random graph. Shown is a fragment of the
random graph comprising two linked component of orders 6 and 5.
Each vertex has the valence 3. Extra edge cd (dash line) appearing
in the the graph can thus connect the vertices b and c, but it cannot
connect the vertices a and d , because they have not free valences.
Neither extra edges bd or ac are possible.

The remainder of the paper is divided as follows. In the
next section the basic equation and the initial conditions are
formulated. Assuming that the coalescence rate is proportional
to the product of the valences of coalescing components the
equation for the bivariate generating function and the moments
of the order-valence distribution is derived in Sec. III. The exact
expression for the bivariate generating function for the order-
valence spectrum is derived in Sec. IV. In Sec. V it is shown
that after a critical time a giant cluster emerges and evolves
by attaching smaller linked components. The average order of
the giant component and its total valence as the functions of
times are analyzed in this section. The distribution of the linked
components of the evolving graph is found in Sec. VI for an
initially empty graph with polyvalent vertices. Sections VII
and VIII summarize and discuss the results of this paper.

II. BASIC EQUATIONS

The time evolution of a random graph can be considered as
a chain of coalescences of couples of linked components of the
graph by randomly appearing edges connecting their vertices
(see Fig. 1). In contrast to commonly known coagulation any
extra edge diminishes the valence of each component by one.
This process is represented by the scheme,

(g1,σ1 + 1) + (g2,σ2 + 1) → (g1 + g2,σ1 + σ2). (2)

The probability of coalescence is proportional to the product of
total valences of two coalescing graphs. The maximal valence
of a vertex is denoted as s. In the process of coalescence
the valence of each linked component changes. Our model
assumes that the probability to join an edge to a given vertex is
independent of its free valence, which permits us not to count
the numbers of vertices with given free valence. The respective
equation looks as follows:

dcg,σ (t)

dt
= 1

2

∑
l,η

(σ − η + 1)(η + 1)cg−l,σ−η+1(t)cl,η+1(t)

− σcg,σ (t)
∑
l,η

ηcl,η(t). (3)

Here cg,σ = Ng,σ /M are the concentrations of the linked
components, Ng,σ is the total number of the graph components
having the order g (g is the number of vertices in the

component and σ its valence), and M is the total number
of vertices in the graph.

Equation (3) should be supplemented with the initial
conditions,

cg,σ (0) = c0
g,σ . (4)

In what follows we consider initially monodisperse graphs
with

c0
g,σ = δg,1wσ . (5)

Here δi,k is the Kroneker δ and wσ is the probability to find
the vertex with given valence σ . Of course,

∑
σ wσ = 1.

The process of cycle formation diminishes the valence of
the component by two,

(g,σ ) → (g,σ − 2). (6)

The rate of this process is,

1

2M
[(σ + 2)(σ + 1)cg,σ+2(t) − σ (σ − 1)cg,σ (t)]. (7)

In the thermodynamic limit [M → ∞, N (g,σ ) →
∞,N (g,σ )/M = cg,σ (t) < ∞] the cycling does not contribute
unless the concentration of the graph components with the
valence of order M be finite.

III. GENERATING FUNCTION

In this section the method of generating functions applies
for the solution of the kinetic Eq. (3). The exact expressions for
the lower moments of the generating function are then derived
for arbitrary initial conditions.

A. Basic equations and initial conditions

Let us introduce the bivariate generating function

F(z,ξ ; t) =
∑
g,σ

cg,σ (t)zgξσ . (8)

It is not difficult to derive the equation for F . On multiplying
both sides of Eq. (3) by zgξσ and summing over all g and σ

give the equation for F ,

∂F
∂t

= 1

2

(
∂F
∂ξ

)2

− ξ
∂F
∂ξ

S. (9)

Here

S = S(t) =
∑
g,σ

σcg,σ (t) = ξ
∂F
∂ξ

∣∣∣∣
ξ=1

(10)

is the average valence of the whole system.
The concentration cg,σ (t) is expressed through the generat-

ing function as follows:

cg,σ (t) = 1

2πi

∮
dξ

ξσ+1
Rg(ξ ; t), (11)

where

Rg(ξ ; t) = 1

2πi

∮ F(z,ξ ; t)dz

zg+1
. (12)
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Equation (10) should be supplemented with the initial
condition

F(z,ξ ; 0) = F0(z,ξ ), (13)

where the function F0(z,ξ ) is assumed to be known. In what
follows we consider only monodisperse polyvalent initial
conditions,

F0(z,ξ ) = zw(ξ ), (14)

i.e., the initial graph is a collection of bare vertices with
distributed valences, described by the function w(ξ ) normal-
ized by the condition w(1) = 1. Then w(ξ ) generates the
probabilities wσ for a given vertex to have the valence σ :
w(ξ ) = ∑

σ wσ ξσ . For example, for monovalent graphs

w(ξ ) = ξ s, (15)

where s is the vertex valence. If the initial graph consists of
the vertices of two valence s1 and s2 then

w(ξ ) = aξ s1 + bξ s2 , (16)

with a + b = 1. The coefficients a and b can be expressed
through the average initial valence s̄ = as1 + bs2. Assuming
s2 > s1 we find,

a = s̄ − s1

s2 − s1
, b = s2 − s̄

s2 − s1
. (17)

For the modified Poisson distribution of the initial valences
we have

w(ξ ) = ξ re−�̄(1−ξ ), (18)

where � = s2 − s̄2 and s̄ = �. At r = 0 this distribution
contains neutral vertices that do not participate in the coa-
lescence process. The vertices with s = 1 inhibit the graph
growth.

B. Moments

We begin by formulating the closed equation for S̄(t) =
∂ξF(1,1; t). On differentiating Eq. (9) over ξ and putting then
ξ = 1 one gets Ṡ = −S2. From here we immediately find,

S(t) = s̄

s̄t + 1
. (19)

It is also possible to write down the equations for other mo-
ments. For the number concentration N (t) = ∑

g,σ cg,σ (t) =
F(1,1; t) one has

Ṅ = − 1
2S2. (20)

The solution to this equation is

N (t) = N0 − s̄2t

2(s̄t + 1)
. (21)

The initial concentration N0 includes the total number of
neutral components.

The total mass concentration M = ∑
g,σ gcg,σ (t) =

∂zF(1,1; t) is conserved,

Ṁ = 0. (22)

It is not difficult to derive the equation for Q = F ′′
ξ,ξ (1,1; t) −

S. The result is

dQ

dt
= Q2. (23)

The solution to this equation is well known

Q(t) = 1

tc − t
, (24)

where

tc = 1

Q(0)
= 1

s2 − 2s̄
. (25)

In this equation s2 = ∑
σ σ 2wσ . This result evidences on the

emergence of a giant linked component at t = tc whose order
is comparable to the total mass of the graph.

This remarkable effect (referred to as gelation in colloid
and polymer chemistry) had been discovered in the salient
paper of Erdös and Rényi [22] and then widely discussed in
the coagulation community (see review article [3]).

Of interest is to find the second moment of the mass distribu-
tion φ2 = ∑

g,σ g2cg,σ (t) = ∂zz∂zF(1,1; t). On differentiating
twice Eq. (9) over z and using Eqs. (19), (20), and (23) leads
to a simple result,

φ̇2 = U 2, (26)

where the mixed moment

U =
∑
g,σ

gσcg,σ (t) = F ′′
z,ξ (1,1; t) (27)

meets the following equation,

U̇ = UQ. (28)

From here we find,

U = s̄
tc

tc − t
. (29)

Hence,

φ2(t) = φ2(0) + (s̄)2 t

tc − t
. (30)

It is important to emphasize that all above equations are valid
below the gelation time. The postgel period demands a special
consideration (see below).

IV. SOLVING THE KINETIC EQUATION

Let us denote

P (t) = exp

[
−

∫ t

0
S(t ′)dt ′

]
. (31)

On substituting

cg,σ (t) = P σ (t)bg,σ (t) (32)

into Eq. (3) and replacing the time variable

τ =
∫ t

0
P 2(u)du (33)
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removing the loss term from the kinetic equation Eq. (3) and
converting it to the recurrences for b(g,σ ; t),

dbg,σ (τ )

dτ
= 1

2

∑
l,η

(σ − η + 1)(η + 1)bg−l,σ−η+1(τ )bl,η+1(τ ).

(34)
The dependence of τ and P on t is readily found from Eqs. (19)
and (33)

τ (t) = t

s̄t + 1
and P (t) = 1 − s̄τ = 1

s̄t + 1
. (35)

Let us now introduce the bivariate generating function,

F (z,ξ ; τ ) =
∑
g,σ

bg,σ (τ )zgξσ (36)

From Eq. (34) one finds,

∂F

∂τ
= 1

2

(
∂F

∂ξ

)2

. (37)

The initial condition to this equation is

F (z,ξ ; 0) = F0(z,ξ ), (38)

where F0 is a known function.
It is more convenient to deal with the function Y (z,ξ ; τ ) =

F ′
ξ (z,ξ,τ ). We differentiate Eq. (37) over ξ and obtain,

∂Y

∂τ
= Y

∂Y

∂ξ
. (39)

Two characteristics of this equation τY + ξ = C and Y = D

(C and D are the integration constants) allow one to write
down the solution to this equation in the form:

Y (z,ξ ; τ ) = Y0(z,θ ), (40)

where Y0(z,ξ ) = ∂ξF0(z,ξ ) and θ = θ (z,ξ ; τ ) is the solution
to the transcendent equation,

θ = ξ + τY0(z,θ ). (41)

At s = 3 and initially empty graph this equation is readily
solved. The result is

θ = 2ξ

1 + √
1 − 12τzξ

. (42)

The generating function Y (z,ξ ; t) is thus,

Y (z,ξ ; τ ) = θ − ξ

τ
= ξ (1 − √

1 − 12τzξ )

τ (1 + √
1 − 12τzξ )

. (43)

V. POSTCRITICAL BEHAVIOR

This section focuses on the postcritical behavior of the
moments S(t), M(t), and Q(t).

A. General analysis

All these moments are expressed in terms of θ̂ = θ (1), where
θ (ξ ) = θ (1,ξP,t) meets the equation,

θ (ξ ) = Pξ + τY0(1,θ (ξ )). (44)

Indeed,

S̄(t) = ∂F(z,ξ ; t)

∂ξ

∣∣∣∣
z=ξ=1

= ∂F (z,P ξ ; t)

∂ξ

∣∣∣∣
z=ξ=1

= PY (1,P ; t) = P
(θ̂ − P )

τ
. (45)

Similarly, we find

F ′′
ξξ (1,ξ ; t) = P∂ξY (1,ξP ; t) = P

τ
∂ξ (θ (ξ ) − Pξ ). (46)

The derivative ∂ξ θ
(ξ ) is readily found from Eq. (44)

∂ξ θ
(ξ ) = P

1 − τY ′
0(1,θ (ξ ))

. (47)

Then we find,

F ′′
ξξ (1,ξ ; t)|ξ=1 = P 2 Y ′

0(θ̂)

1 − τY ′
0(θ̂)

. (48)

The combination Q = F ′′
ξξ − S(t) as the function of θ̂ is [see

Eqs. (45) and (48)],

Q = P 2 Y ′
0(θ̂ )

1 − τY ′
0(θ̂)

− P
(θ̂ − P )

τ
. (49)

At θ̂ = 1 (the precritical period) Eqs. (45) and (48) reproduce
the results of Eqs. (19) and (24)

Now we find the expression for the total mass of the graph
in the postcritical period. We note that

F(z,1; t) = F (z,P ; t) = P

∫ 1

0
Y (z,Pη; τ )dη

= P

∫ 1

0
Y0(z,θ (η)))dη, (50)

and replace the variables η → θ (η). On substituting dη =
P −1(1 − τ∂θ (η)Y0)dθ (η) into Eq. (50) gives,

F(z,1; t) =
∫ θ̃

0
Y0(z,ζ )dζ − τ

2
Y 2

0 (z,θ̃), (51)

where

θ̃ (z,τ ) = θ (z,P ; τ ). (52)

From this equation we have,

∂zF(z,1,t) = Y0∂zθ̃ +
∫ θ̃

0
∂zY0(z,ζ )dζ

− τY0∂zY0 − τ∂θ̃Y0∂zθ̃ . (53)

Taking θ̃ from Eq. (52), gives,

∂zθ̃ = τ∂zY0

1 − τ∂θ̃Y0
. (54)

We thus have,

∂zF(z,1,t) =
∫ θ̃(z,τ )

0
∂zY0(z,θ )dθ. (55)

022119-4



EXACTLY SOLVABLE MODEL OF A COALESCING RANDOM . . . PHYSICAL REVIEW E 91, 022119 (2015)

This is the generating function for the mass distribution. The
average mass is then

M =
∫ θ̂

0
∂zY0(1,θ )dθ. (56)

For an initially polyvalent empty graph

∂zF(z,1,t) = w[θ̃(z,τ )] (57)

and

M(t) = w(θ̂). (58)

For an initially monovalent empty graph the result of Ref. [14]
is readily reproduced,

M(t) = θ̂ s . (59)

Similar consideration gives the expression for the second
moment of the order spectrum cg(t) = ∑

σ cg,σ (t),

φ2(t) = d

dz
zw(θ̃)

∣∣∣∣
z=1

= w(θ̂ ) + s̄f (θ̂ )
s̄tf (θ̂ )

1 + s̄t[1 − f ′(θ̂)]
. (60)

At the precritical period this equation reproduces the general
result Eq. (30).

B. Emergence of giant component

From Eq. (44) we obtain,

θ̂ = P + τw′(θ̂ ). (61)

Noting that P + s̄τ = 1 [Eq. (35)] we find that θ̂ = 1 is the
solution to Eq. (61). However, at t > tc = s̄2 − 2s̄ there is
another solution θ̂ < 1 that corresponds to the emergence of
the giant component. Indeed, the sol mass given by Eq. (56)
diminishes as the upper limit of integration θ̂ drops down.

In order to demonstrate what is going on, let us consider
the monovalent initial condition w(ξ ) = ξ s and solve Eq. (61)
with respect to st . The result looks as follows:

st = 1

θ̂ (1 + θ̂ . . . + θ̂ s−3)
. (62)

The limit θ̂ → 1 in this equation reproduces the expression
Eq. (15) for the critical time.

Equation (62) is analytically solvable at s = 3 and s = 4.
At s = 3 and t > 1/3 we have,

θ̂ = 1

3t
. (63)

It is easy to check that Eq. (42) gives θ̂ = 1 at t < tc = 1/3
and θ̂ = 1/3t at t > tc = 1/3.

At s = 4 the result is a bit more complex. At t � 1/8

θ̂ = 1

2(t + √
t2 + t)

. (64)

VI. SPECTRUM

The spectrum of the linked components is expressed in
terms of the generating function F as follows:

cg,σ (t) = 1

2πi

∮
dz

zg+1

1

2πi

∮ F(z,ξ ; t)dξ

ξσ+1

= P σ

2πi

∮
dz

zg+1

1

2πi

∮
F (z,ξ ; t)dξ

ξσ+1
. (65)

Let us integrate by parts in the last integral,

1

2πi

∮
F (z,ξ ; t)dξ

ξσ+1
= 1

2πiσ

∮
∂ξF (z,ξ ; t)dξ

ξσ

= 1

2πiσ

∮
Y (z,ξ ; t)dξ

ξσ
. (66)

The last integral is expressed through the initial generating
function Y0

1

2πiσ

∮
Y (z,ξ ; t)dξ

ξσ
= 1

2πiσ

∮
Y0[z,θ (z,ξ ; t)]dξ

ξσ
. (67)

Finally we have,

cg,σ (t) = P σ

2πiσ

∮
dξ

ξσ

1

2πi

∮
Y0[z,θ (z,ξ ; t)]dz

zg+1
. (68)

A. Evolution of empty graph

For the initially empty polyvalent graph

Y (z,ξ ; 0) = Y0(z,ξ ) = s̄zf (ξ ). (69)

Here f (ξ ) = s̄−1w′(ξ ). Hence (in what follows we omit hat
over θ ),

θ = ξ + s̄zτf (θ ). (70)

Now we calculate the integral

Rg(ξ,τ ) = 1

2πi

∮
Y (z,ξ ; τ )dz

zg+1
. (71)

Let us replace the integration variable z → θ . To this end we
solve Eq. (70) with respect to z

z = θ − ξ

s̄zτf (θ )
, (72)

and differentiate it. The result is,

dz = dθ

τ s̄f (θ )
− (θ − ξ )df

s̄τf 2
. (73)

The first term thus contributes,

1

2πi

∮
Y (z,ξ ; τ )dz

zg+1

= s̄(τ s̄)g−1 1

2πi

∮ [
f g(θ )

(θ − ξ )g
− f g−1f ′

(θ − ξ )g−1

]
dθ. (74)

The second term in dz [Eq. (74)] allows for the integration by
parts. After some algebra we obtain,

Rg(ξ,τ ) = 1

2πig
s̄(s̄τ )g−1

∮
f g(θ )

(θ − ξ )g
dθ. (75)
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On replacing ζ = θ − ξ we come to the result,

Rg(ξ,τ ) = 1

2πig
s̄(s̄τ )g−1

∮
f g(ζ + ξ )

ζ g
dζ. (76)

Thus the spectrum is,

cg,σ (t) = P σ s̄(s̄τ )g−1

2πiσ

∮
dξ

ξσ

1

2πig

∮
dζ

ζ g
f g(ζ + ξ ). (77)

It is important to note that the spectrum is expressed as a
product of two multipliers, the first of which depends on time
while the second does not.

cg,σ (t) = (s̄t)g−1

(s̄t + 1)g+σ−1
Gg,σ , (78)

where

Gg,σ = s̄
1

2πiσ

∮
dξ

ξσ

1

2πig

∮
dζ

ζ g
f g(ζ + ξ ). (79)

In the case of monovalent vertices f (ξ ) = ξ s−1 and

Gg,σ = s
1

gσ

(
g − 1

g(s − 1)

)
δσ,g(s−2)+2

= s̄
[g(s − 1)]!

g![g(s − 2) + 2]!
δσ,g(s−2)+2. (80)

This result is known and cited elsewhere, e.g., in Ref. [14].
For the distributed valences with f (ξ ) = es̄(ξ−1) Eq. (79)

gives,

Gg,σ = s̄
1

2πiσ

∮
dξ

ξσ

1

2πig

∮
dζ

ζ g
egs̄(ζ+ξ−1)

= s̄

g!σ !
e−gs̄(gs̄)g+σ−1. (81)

In this case the order of the graph g no longer fixes the number
of edges in linked components.

B. Spectrum of orders

Equation (57) can be used for deriving the spectrum of
orders of the graph. Indeed, for an initially polyvalent empty
graph [see Eq. (57)],

∂zF(z,1,t) = w[θ̂(z,τ )] =
∑

g

gcg(t)zg−1 (82)

or

cg(t) = 1

2πig

∮
w[θ̂(z,θ ; t)]

zg
dz. (83)

Let us replace the variables z → θ . To this end we use the
equation for θ̂

z = θ̂ − P

s̄τf
. (84)

Differentiating this equation yields,

dz = dθ̂

s̄τf
− (θ̂ − P )f ′dθ̂

s̄τf 2
. (85)

The first term in this equality contributes to cg(t) [Eq. (82)],
∮

(s̄τf )gw

(θ̂ − P )g
dθ̂

s̄τf
= (s̄τ )g−1

∮
f g−1wdθ̂

(θ̂ − P )g
. (86)

On integrating by parts in the second term gives,
∮

(s̄τf )gw

(θ̂ − P )g
(θ̂ − P )f ′dθ̂

s̄τf 2

= (s̄τ )g−1
∮

f g−1wdθ̂

(θ̂ − P )g
− s̄

(s̄τ )g−1

g − 1

∮
f gdθ

(θ − P )g−1
.

(87)

The order spectrum of linked components in the graph is thus,,

cg(t) = s̄
(s̄τ )g−1

g(g − 1)

1

2πi

∮
f gdθ

(θ − P )g−1

= s̄
(s̄τ )g−1

g(g − 1)

1

2πi

∮
f g(ζ + P )dζ

ζ g−1
. (88)

C. Saddle-point estimations

Equation (88) is well adapted for the saddle-point estima-
tions of the spectrum at large g. The condition

f ′(ζ0 + P )

f (ζ0 + P )
= 1

ζ0
(89)

determines the position ζ0 = ζ0(τ ) of the saddle point. The
order spectrum in the limit of large g is thus,

cg(t) = s̄
(s̄τ )g−1

√
2πgf ′′(ζ0 + P )g(g − 1)

f g(ζ0 + P )

ζ
g−1
0

∝ Ag−5/2eg[ln s̄τ+ln f (ζ0+P )−ln ζ0]. (90)

The critical time is found from the condition

ln s̄τc + ln f (ζ0,c + Pc) − ln ζ0,c = 0. (91)

This condition removes the exponential factor from the
critical spectrum [Eq. (90)]. The identities s̄τc + P (τc) = 1
and f (1) = 1 allow one to find the solution to Eq. (91). It is

ζ0,c = ζ0(τc) = s̄τc − s̄

s2 − s̄
. (92)

The critical spectrum is thus,

cg(tc) ≈ s̄√
2πf ′′(ζ0 + P )g5

= s̄3/2√
2πs(s − 1)(s − 2)g5

∝ g−5/2. (93)

The identity f ′′(1) = (s̄)−1(w′)′′ζ=1 = s(s − 1)(s − 2)/s̄ is
used in deriving the above equation.

In order to find the time dependence of the spectrum near
the critical point we note that

d

dτ
[ln s̄τ + ln f (ζ0 + P ) − ln ζ0]|τ=τc

= 1

τ c
+ f ′

c

fc

(ζ ′
0,c + P ′

c) − ζ ′
0.c

ζ0,c

= 0. (94)
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Indeed, Eq. (89) provides the cancellation of the terms
containing ζ ′

0.c. Next, applying the equalities P ′
c = −s̄ and

f ′
c = (s2 − s)/s̄ leads to Eq. (93).

Near the critical point Eq. (91) for the spectrum can be
rewritten as

cg(t) = cg(tc)e−Bg(t−tc)2
. (95)

In principle, we can calculate the second derivative of the LHS
of Eq. (94) and put τ = τc. However, it is much easier to use
the expression for φ2 [Eq. (30)]. At t close to tc we have,

φ2(t) = φ2(0) + (s̄)2 t

tc − t
≈ (s̄)2 tc

tc − t
. (96)

On the other hand,

φ2(t) =
∑

g

g2cg(t) ≈
∫ ∞

0
cg(tc)e−Bg(t−tc)2 = A

√
π

B

1

tc − t
.

(97)
Hence,

A

√
π

B
= s̄2tc = s̄

s̄ − 2
. (98)

Finally we have

cg(t) = Ag−5/2e−gB(t−tc)2
(99)

with

A = s̄3/2√
2πs(s − 1)(s − 2)

B = s̄(s̄ − 2)2

2[s(s − 1)(s − 2)]
. (100)

VII. RESULTS AND DISCUSSION

The main results of this paper can be summarized as
follows:

(i) The kinetic equation [Eq. (3)] describing the time
evolution of the order-valence spectrum of linked components
of a random graph with polyvalent vertices is formulated.

(ii) This equation is then reformulated in terms of the
bivariate generating function for the spectrum and solved
exactly for arbitrary initial conditions.

(iii) The time dependence of the lowest moments of
the spectrum is found for arbitrary initial conditions. It is
demonstrated that the present model successfully describes
the emergence of the giant component after a critical time.

(iv) The spectrum of orders and valences is expressed
through the contour integrals of initial distribution of the vertex
valences [Eqs. (78) and (88)]. The asymptotic behavior of these
integrals is studied by the saddle-point method. The asymptotic
spectrum is shown to comprise two parts: the algebraic
multiplier (standard g−5/2 dependence) and an exponential
factor [see Eq. (99)]. The coefficients in this expression contain
the third moment of the valence distribution.

(v) An alternative derivation of all previously known
results [7–14] for the initially empty monovalent graphs is
given.

The structural properties of an evolving random graph
change in adding extra edges one at a time. In particular, the
distribution of the linked components in such graphs becomes
broader with time. The distribution evolves to an algebraic one
and a giant component emerges after a finite period of time

FIG. 2. The time dependence of total order (solid line) and total
valence (dash line) of the giant component for s = 3.

(at t > tc). This pattern is common for many types of random
graphs.

The random graph with finite valence of the vertices is not
an exclusion. In contrast to widely studied random graphs the
time evolution of such graphs is described in terms of bivariate
concentrations of linked components over their order g and
valence σ . The coalescence rate depends on the total valences
of the coalescing components. Each extra edge kills randomly
a couple of free valences in the graph. Respectively, the graph
jumps from the state with k free valences to the state with
k − 2 valences. The analogy with the reaction of annihilation
is clearly seen (see also Ref. [14]). The kinetic equation for
the total valence has thus the form:

˙̄S = −S̄2.

The same result comes from the differentiation of the generat-
ing function [Eq. (6)]. At the postcritical period the part of the
valent vertices belongs to the giant component. The valence
and order of the gel have been found in Sec. V for the giant and
small components. The results are displayed in Figs 2 and 3.

FIG. 3. Same as in Fig. 2 for s = 4.
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As expected the critical time is shorter for the graphs with
larger vertex valence s.

In the case of an initially empty graph the present model
recalls the Flory model of polymerization. The point is that
at large M when we can ignore cycling, the linking of
bare vertices leads to the formation of trees, in which the
valence and the mass of each component are connected.
Indeed, the number of edges in the tree of mass g is g − 1.
Each edge reduces the valence of the component by 2.
Hence, the valence of the component containing g vertices is
gs − 2(g − 1) = g(s − 2) + 2. Of course, Eq. (80) reproduces
this result. The ring formation was investigated numerically in
Ref. [9]. Some analytical results on this issue had been reported
in Refs. [10,11].

In principle, the present approach allows for consideration
of cycling [see Eqs. (6) and (7)] but, in my opinion, it is better
to do by applying the approach of Ref. [27].

VIII. CONCLUSIONS

In this paper the model describing the dynamics of the
coalescing random graph has been proposed. In contrast to
commonly accepted approaches relying upon the analogy
between graph coalescence and the coagulating system with
the product kernel [3] the present model considers the
coalescence rate proportional to the product of the total
valences of coalescing components. The dependence of the

coalescence rate on the masses does not enter explicitly into
the kinetic equation. This equation has been then formulated
in terms of the bivariate generating function that has been
found exactly for arbitrary initial conditions. In turn, this result
allowed for finding the time dependences of the valence of the
giant component and its mass.

The formal chemical kinetic approach Eq. (2) allows for
consideration of thermodynamically large systems, where
the total numbers of each linked component is of the total
order of the graph M . This means that the giant component
is indistinguishable in the thermodynamic limit, i.e., its
concentration goes to zero as M → ∞. Still we can distinguish
this giant component from indirect evidences: its total order
and valence contribute to the respective balances after the
critical time.

There exists a more straightforward (but much more
complex) approach to the time evolution of random graphs.
I mean the approach of Ref. [27] that operates with the
probability to find the graph in a given definite state. This
probability obeys a master equation that had been solved by
me for normal random graphs in Ref. [27]. It is likely that this
approach can also be applied to the problem considered above.
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