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Scaling behavior near jamming in random sequential adsorption
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For the random sequential adsorption model, we introduce the “availability” as a variable corresponding to the
number of available locations in which an adsorbate can be accommodated. We investigate the relation of the
availability to the coverage of the adsorbent surface over time. Power law scaling between the two is obtained both
through numerical simulations and analytical techniques for both one- and two-dimensional random sequential
adsorption, as well as in the case of competitive random sequential adsorption in one dimension.
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I. INTRODUCTION

The simplest case of random sequential adsorption (RSA)
in one dimension was developed by Rényi (1958) [1], and
is sometimes known as the “car parking problem.” In this
model, one-dimensional “cars” of unit length are “parked”
sequentially at a random position on a continuous “street”
of length L. The cars are not allowed to overlap, and this
parking process continues until there is no available space
left in which to park, the point of jamming. Variations of
Rényi’s car parking problem include the effects of using a street
of discrete units [2,3], the use of a binary mixture of “cars”
or blocks of different lengths [competitive random sequential
adsorption (CRSA)] [4–6], as well as extending the problem
into higher dimensional space [7–10]. RSA and its variations
have been used to model a wide range of physical phenomena,
from protein adsorption [11], DNA charge neutralization by
polymers [12,13], and polymer chain reactions [2], to catalysis
[14], the nesting patterns of birds [15], and even election results
[16].

In this paper, we report our finding of a power law scaling
between the availability, defined as available locations for
adsorption, and coverage. The paper is organized as follows.
Section II describes one-dimensional RSA using both discrete
and continuous substrates. Section III extends this to the case
of competitive RSA with two species of different lengths
being adsorbed onto a one-dimensional substrate. In both cases
we present numerical simulation results, showing power law
scalings relating the availability to the coverage. The rationale
for this power law scaling is derived from a theoretical analysis
of the model of RSA, and supported by numerical simulations.
Section IV examines the proposed power law relation in
two-dimensional systems, with our numerical simulations
yielding scaling behavior, albeit with different exponents.
Finally, Section V provides discussions and observations, with
suggestions for further research.
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II. ONE COMPONENT RSA IN ONE DIMENSION

A common measure for parametrizing RSA is the fraction
of occupied sites, usually known as the coverage, θ (t). Many
papers examine the coverage, and its evolution over time
[1,2,6,17]. Values of the final coverage θ (∞) have been
determined for various formulations of RSA, to varying
degrees of accuracy, both analytically [1,2] and through
numerical simulations [17,18]. In addition to the coverage,
we shall define here another parameter which describes the
total available space for adsorption. We call this parameter the
availability, A(t). For the discrete RSA model, we write this as

A(t) =
L∑

j=r

(j − r + 1)Gj (t), (1)

where Gj (t) is the gap distribution, that is, the number of
gaps of length j present at time t . Noting that for blocks of
length r , each gap of length j � r yields a total of j − r + 1
available spots for adsorption.

For the one-dimensional (1D) continuum adsorption case,
with blocks of unit length, the sum becomes an integral,
with the length of gaps now defined by x and noting that
in the continuum limit, each gap contains a space of x − r for
adsorption, we have

A(t) =
∫ L

x=r

(x − r)G(x,t) dx. (2)

The availability parameter represents the number of free sites
where adsorption can occur; this is distinct from the sum of
unoccupied sites. While the difference between an unoccupied
site and a site available for adsorption may be subtle, it is
important: if, in the discrete case blocks of size r > 1 are being
adsorbed, a single unoccupied site surrounded by occupied
sites is not available for binding, whereas a gap of length r

allows one binding site and a gap of length r + 1 gives rise to
two possible binding sites.

A. The discrete one component case in 1D

We now consider the discrete one-dimensional RSA pro-
cess, and in particular its jamming limit. We measure the
availability and coverage at each successful placement of
a block. Numerical simulations have been run using two
independently written programs, yielding excellent agreement
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FIG. 1. Scaled log10-log10 plot of availability against coverage
for a street of length 105. Landing blocks of length 2 on a discrete
street (solid line), and blocks of unit length on a continuous street
(dashed line). Each set of results is the average of 100 simulations.

in results. A logarithmic plot of scaled availability (1) against
rescaled coverage is presented in Fig. 1 as the dark solid line.
A faint line of gradient 1 is displayed for comparison. For ease
of comparison, instead of the coverage θ , given by

θ (t) = 1 − 1

L

L∑
j=1

jGj (t), (3)

we use the scaled difference between final and current
coverages, that is, X/θ (∞) where

X = θ (∞) − θ (t). (4)

We also scale availability with its initial value, that is
A(t)/A(0), where A(0) = L − r + 1 as given by (1), corre-
sponding to an empty street.

As Fig. 1 shows, the logarithmic plot of availability against
coverage for the discrete street matches well with the line of
unit gradient as coverage θ (t) approaches its maximum value
of θ (∞). Agreement within one standard deviation for three
decades on the logarithmic (base 10) axes, provides strong
evidence that as jamming is approached, there is a linear
relation between availability and rescaled coverage, that is,

A(t) ∝ θ (∞) − θ (t). (5)

This result can be interpreted as the rate of convergence to
steady state is determined by the binding of adsorbents of
length r into gaps of length r , that is, the smallest available
gaps are the last to be used as they are the hardest to find. That
is, as t → ∞, both A and X decrease to zero in proportion
to each other as, in the final stages of adsorption, the gaps of
r are the ones to be filled at the slowest rate, as longer gaps
having been filled earlier in the process. The filling of a gap
of size r causes A to reduce by 1/(L − r + 1) X to reduce
by r/L.

B. Analysis of discrete one-dimensional RSA

Turning to this same problem analytically we now show that
such a power law scaling should be expected in the jamming
limit.

As a preliminary to investigating this relation, we first
determine a relation for the distribution of gaps, Gj (t). We
use the kinetic equations

dGj

dt
= −Kf (j + 1 − r)Gj (L − r + 1 � j � L), (6)

dGj

dt
= −Kf (j + 1 − r)Gj +

L∑
p=j+r

2Kf Gp

(7)
(r � j � L − r),

dGj

dt
=

L∑
p=j+r

2Kf Gp (0 � j � r − 1), (8)

presented in Eq. (5) of Maltsev et al. [12]; here, Kf is the rate
at which the blocks land. The first of these equations describes
the destruction of extremely large gaps, which occurs at the
start of the binding process. The presence of the sink term in
(7) is due to gaps which are destroyed as blocks land, and the
source term describes the formation of new smaller gaps due
to landing blocks.

In the large time limit, we make the ansatz that Gj (t) has
the form

Gj (t) =
{

Ḡj − Bj (t) (j = 0,1, . . . ,r − 1),

αe(r−j−1)m(t) (j = r,r + 1, . . . ,L − r),
(9)

where Bj (t) → 0 as t → ∞.
We differentiate ansatz (9) and equate it to (7) to obtain

dm

dt
= Kf + 1

r − j − 1

L∑
p=j+r

2Kf e(j−p)m(t). (10)

We are interested in the state of the substrate close to jamming,
where t � 1, and consequently m � 1. In this limit, the
sum in (10) can be neglected as it is asymptotically small
in comparison to the other terms. This leaves dm/dt = Kf ,
which implies

m(t) = Kf t. (11)

We now use the ansatz solution (9) with (11) to approximate
the availability A, and coverage θ in the approach to jamming.
In the limit t → ∞, we have m � 1,

A(t) =
L∑

j=r

(j − r + 1)Gj (t) ∼ αe−m(t). (12)

Since

θ (t) = 1 − 1

L

r−1∑
j=1

jḠj + 1

L

r−1∑
j=1

jBj (t)

− 1

L

L∑
j=r

αje(r−1−j )m(t), (13)

022118-2



SCALING BEHAVIOR NEAR JAMMING IN RANDOM . . . PHYSICAL REVIEW E 91, 022118 (2015)

and θ (∞) = 1 − (1/L)
∑r−1

j=1 jḠj , the difference X, defined
by Eq. (4), is given by

X(t) = 1

L

L∑
j=r

αje(r−j−1)m(t) − 1

L

r−1∑
j=1

jBj (t), (14)

where, using the ansatz (9), the first sum corresponds to gaps
of length j � r , and the second sum is due to correction terms
in the distribution of gaps of length j < r . In the Appendix we
justify neglecting Bj (t) in the large-time limit.

Since the first sum in (14) dominates the second, we
approximate (14) by

X = αre−m

L
. (15)

Thus, combining (12) and (15), we have

A(t) ∝ θ (∞) − θ (t), (16)

near jamming, confirming the power law in Fig. 1.

C. Continuous RSA in one dimension

We use a continuous street akin to that used in Rényi’s
original parking problem [1]. In place of (3), the coverage is
now defined by

θ (t) = 1 − 1

L

∫ L

x=0
xG(x,t) dx. (17)

As should be expected, the total coverage, θ (∞), is greater
than in the discrete case, and our simulations matched the
established value [19] of Rényi’s parking constant to four
decimal places. For the continuous case, we define the
availability by assigning each gap of size x > r an availability
density proportional to x − r and summing over all possible
gaps x > r , hence

A(t) =
∫ L

x=r

(x − r)G(x,t) dx. (18)

Running our simulation 100 times for a street of length
L = 105 we were able to calculate a mean value line for the
availability as a function of coverage, which is plotted in a
log10-log10 plot as the dashed line in Fig. 1. As Fig. 1 shows,
this gradient has the value 2, across three horizontal decades,
in the approach to jamming, suggesting a power law relation of

A(t) ∝ [θ (∞) − θ (t)]2. (19)

D. Analysis of continuous RSA in one dimension

Using a similar approach to that used in the discrete case,
we show that this power law scaling of exponent 2 close to
jamming is expected. Examining first the gap distribution in the
case of continuous gap lengths described by x, the governing
kinetic equations are given by

∂G

∂t
= −Kf (x − r)G(x,t) (L − r < x < L), (20)

∂G

∂t
= −Kf (x − r)G(x,t) +

∫ L

y=x+r

2Kf G(y,t) dy

(21)
(r < x < L − r),

∂G

∂t
=

∫ L

y=x+r

2Kf G(y,t) dy (0 < x < r). (22)

Solving (21) using the ansatz

G(x,t) =
{

αe(r−x)m(t) (r < x < L − r)

G(x) − B(x,t) (x < r)
(23)

yields

dm

dt
= Kf − 2Kf [e−rm(t) − e−(L−x)m(t)]

(x − r)m(t)
. (24)

Since m � 1 in the limit t → ∞, the second term on the
right hand side is negligible, giving m(t) = Kf t , which is the
same solution as in the discrete case, namely (11).

Using the solution ansatz (23) for G(x,t) together with (4)
and (17), we find

X = 1

L

∫ L

x=r

xG(x,t) dx − 1

L

∫ r

x=0
xB(x,t) dx. (25)

It can been shown that the contribution of the term involving
B(x,t) is negligible (see the Appendix for more details), thus
(25) can be approximated by

X(t) = αr

Lm(t)
+ O[m(t)−2]. (26)

More simply, the availability (18) is given by

A(t) =
∫ L

x=r

(x − r)G(x,t) dx ∼ α

m(t)2
. (27)

Taking the leading order term of (26), as m � 1, we arrive
at the relation A ∝ X2 consistent with the straight line with
gradient 2 observed in Fig. 1.

III. TWO COMPONENT RSA IN ONE DIMENSION

Competitive random sequential adsorption involves the
random sequential adsorption of two components of differing
lengths, which we label r and s respectively, where r < s.
Various studies of competitive RSA exist in the literature,
with analytical results for both gap distribution and coverage
[5,6,13,20–22]. In our investigations of CRSA, we continue
to focus on the relationship between coverage and availability
and the effect that adding a second component has on this
relationship. A more detailed analysis of this problem is
presented in [23]. We start with the discrete formulation and
later consider the continuous version. We then present the
results from our simulations, discussing the similarities and
differences in behavior.

A. Discrete two component RSA in one dimension

For the two component case, the equations governing the
evolution of the distribution of gap sizes have to be revised.
For intermediate sizes we have

dGj

dt
= −Kr (j + 1 − r)Gj − Ks(j + 1 − s)Gj

+2Kr

L∑
p=j+r

Gp + 2Ks

L∑
p=j+s

Gp (s � j < L−s),

(28)
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dGj

dt
= −Kr (j + 1 − r)Gj +

L∑
p=j+r

2KrGp +
L∑

p=j+s

2KsGp

(29)
(r � j < s),

where Kr and Ks are the rates of adsorption of the r and s

blocks respectively. The first sink term describes the loss of
gaps of size j due to r blocks landing, and the first source
term describes the gain of gaps of size j due to an r block
landing. The latter sink and source terms follow from an s-
block landing. Since the latter kinetic equation is for smaller
gaps, there is no loss term for the binding of the s species. Other
equations govern the destruction of gaps of sizes L − s � x �
L, however, in the large time limit that we are concerned with
here, it is reasonable to assume that no gaps of such large sizes
are present.

As the governing equations for the distribution of gaps
differs in the ranges 0 � j < r , r � j < s, and s � j < L

so does the solution for Gj (t). However, the solutions can be
obtained in the manner described in Sec. II B, yielding

Gj (t) =

⎧⎪⎨
⎪⎩

αe−t[Kr (j+1−r)+Ks (j+1−s)] (j � s),

βe−tKr (j+1−r) (r � j < s),

Ḡj − Bj (t) (1 � j < r).

(30)

We now turn to investigate the relationship between
X(t) = θ (∞) − θ (t) and the availability in the discrete CRSA.
Following a similar method to the one component RSA, we
write X(t) = X0(t) + X1(t) + X2(t) where

X1(t) = 1

L

s−1∑
j=r

jGj (t) ∼ β̃r

L
e−Kr t , (31)

this simplification relying on t � 1. The first term is given by

X0(t) =
r−1∑
j=1

[jGj (t) − jGj (∞)] = −
r−1∑
j=1

jBj (t), (32)

which is smaller than X1 in the large time limit (that is, X0 �
X1). The third term is given by

X2 = 1

L

L∑
j=s

jGj ∼ e−t[Ks+(s−r+1)Kr ], (33)

with the simplification again relying on L � 1 and t � 1.
Since X2 � X1 we have X ∼ X1 given by (31).

We now consider the availability A(t), noting that the
availability for the longer block is different from that for
the shorter, hence we require two availability parameters. We
denote these as Ar for the availability of the short r block and
As for the availability of the longer s block. For the shorter
block, we have

Ar = 1

L

s−1∑
j=r

(j − r + 1)Gj + 1

L

L∑
j=s

(j − r + 1)Gj . (34)

Inserting our previously defined relations for the gap distribu-
tion (30) into (34) and retaining only the leading order terms,
we obtain

Ar ∼ βe−Kr t

L
. (35)

The availability for the longer block is given by

As = 1

L

L∑
j=s

Gj (j − s + 1) ∼ 1

L
αe−t[Ks+Kr (s+1−r)].

(36)

Combining (31), (35), and (36) we find

Ar ∝ X, As ∝ X1+s−r+Ks/Kr . (37)

B. Continuous two component RSA in one dimension

In the continuous case, the distribution of gaps G(x,t)
changes considerably from (21); the evolution of the distri-
bution is now determined by

∂G

∂t
= −(x − r)KrG(x,t) − (x − s)KsG(x,t)

+ 2Kr

∫ L

x+r

G(y,t) dy + 2Ks

∫ L

x+s

G(y,t) dy

(s < x < L − s), (38)

∂G

∂t
= −(x − r)KrG(x,t) + 2Kr

∫ L

y=x+r

G(y,t) dy

+ 2Ks

∫ L

x+s

G(y,t) dy (r < x < s), (39)

∂G

∂t
= 2Kr

∫ L

x+r

G(y,t) dy + 2Ks

∫ L

x+s

G(y,t) dy (x < r),

(40)

together with other equations governing the evolution of gaps
of sizes L − s < x � L; however, since we are concerned
with the transition to jamming, and extremely long gaps such
as these are rapidly destroyed at the start of the adsorption,
we will assume such large gaps can be neglected. Due to the
evolution equations (38)–(40), being more complicated than
(28) and (29), it is necessary to modify the solution ansatz (30)
also, to

G(x,t) =

⎧⎪⎨
⎪⎩

αe(γ−x)m(t) (x > s),

βe(η−x)n(t) (r < x < s),

Ḡ(x) − B(x,t) (x < r).

(41)

Considering first the larger gaps, of size x > s, from (38)
and (41) we obtain

(γ − x)
dm

dt
= rKr − xKr + sKs − xKs, (42)

hence γ = (rKr + sKs)/(Kr + Ks), m(t) = (Kr + Ks)t , and

G(x,t) = αe−t[Kr (x−r)+Ks (x−s)] (x > s). (43)

For gaps of length r � x < s, we obtain (η − x)dn/dt =
Kr (r − x), so η = r , n(t) = Krt , and

G(x,t) = βe−Kr t(x−r) (r � x < s). (44)

To investigate the self-similarity in the continuous case, we
recall the definition X = θ (∞) − θ (t), which can be calculated

022118-4



SCALING BEHAVIOR NEAR JAMMING IN RANDOM . . . PHYSICAL REVIEW E 91, 022118 (2015)

from

X(t) = 1

L

∫ s

r

xG(x,t) dx + 1

L

∫ L

s

xG(x,t) dx. (45)

In the large time limit, the dominant terms arise from the first
integral, and lead to

X ∼ βr

tKr

+ β

t2K2
r

, (46)

with the latter integral being exponentially small in t .
As in the discrete case, there are two availabilities, Ar and

As defined respectively by

Ar (t) = 1

L

∫ L

r

(x − r)G(x,t) dx, (47)

As(t) = 1

L

∫ L

s

(x − s)G(x,t) dx. (48)

Substituting solution (41) into (48) and expanding for the
limit t � 1 leads to

Ar (t) ∼ β

t2K2
r

+ O(t−1e−tKr (s−r)), (49)

As(t) ∼ αe−tKr (s−r)

(Kr + Ks)2t2
. (50)

Comparing (49) and (50) with (46) we note that Ar ∼ X2,
the same power law scaling as in the single component case
of RSA; however, the availability for the longer block decays
exponentially, being given by As ∼ X2e−κ/X for some κ , a
quite different form than As given by (37).

C. Numerical simulations of two component RSA in one
dimension

Summarizing briefly our results from mathematical analy-
sis, we have, for the discrete and continuous cases respectively,

Ar,disc = γr,dX and As,disc = γs,dX
1+s−r+Ks/Kr , (51)

Ar,cts = γr,cX
2 and As,cts = γs,cX

2e−γ (s−r)/X. (52)

Thus, on a log10-log10 plot, we expect straight lines with
gradient 1 and 2 for the availability of the shorter species,
Ar,disc, Ar,cts, in the discrete and continuous cases respectively,
a result equal to the one component case. For the availability
of the larger block As , the relationship is more complicated.
For the discrete case, we expect a linear relation with gradient
1 + s − r + Ks/Kr , which becomes increasingly steep as the
ratio of s to r becomes more extreme, and as the relative rate
of adsorption Kr/Ks increases. However, for the continuous
case, our theory does not produce such a simple expression;
rather a much more rapid decay of A to zero as X → 0.

Figure 2 shows the results of numerical simulations of both
discrete and continuous CRSA. The simulation provides strong
evidence for the power law relation for the availability of the
shorter species r in both the continuous and discrete cases.
The small differences between our simulations and the theory
at the lower extremes of the graph presented above are due to
infrequent sampling of this limit. The relationship governing

FIG. 2. Log10-log10 plot of availability against coverage showing
the average of 100 simulations for both discrete and continuous
CRSA, with blocks of sizes r = 2 and s = 10 binding with equal
probabilities on a substrate of length L = 105.

the availability of the longer species s is more difficult to
determine from the plot. The simulation results for As in the
discrete case match well to a straight line of gradient 10,
as predicted by our theoretical calculations. We observe in
Fig. 2 that the curves corresponding to As in the discrete and
continuous cases are fairly similar. Even though formulas (51)
and (52) for As differ between the discrete and continuous
cases, both formulas predict extremely rapid decay in As as X

decreases to zero.
In order to verify (52), we plot log10(As,cts/X2) against

1/X in Fig. 3. This shows an approximately linear relationship
between the rescaled availability and 1/X as 1/X increases
from 2.5 to 7, which corresponds to the remaining coverage X

decreasing from 0.4 to 0.14. At lower values of X (X < 0.18,
corresponding to 1/X > 5.5), there is rarely any availability
for the longer blocks, and we observe significant fluctuations,

1/X
1 2 3 4 5 6 7

lo
g 

(A
/X

2
)

10 -2

10 -1

10 0

FIG. 3. Plot of log10(As,cts/X2) against 1/X for the average of
100 simulations for the case of CRSA on a continuous substrate, with
blocks of sizes r = 2 and s = 10 binding with equal probabilities to
a substrate of length L = 105.
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which would only be removed by averaging over a much higher
number of simulations.

IV. SIMULATIONS OF RSA IN TWO DIMENSIONS

Adding a second spatial dimension introduces additional
levels of complexity, and much of the analytical techniques
become nontrivial [24,25]. Due to this, the study of RSA
in two dimensions has been largely confined to the use of
computer simulations [17,18,26]. Various approaches have
modelled the two-dimensional blocks as rectangles [27], disks
[17,26], squares [25], and more complex asymmetric shapes,
or “lattice animals” [8].

In our approach we generalize the two-dimensional blocks
to squares with side of length n, and modelled their adsorption
onto a discrete square lattice with sides of length N . We tested
both solid (impenetrable) and periodic boundary conditions,
and determined that for a sufficiently large lattice, no notice-
able difference in the coverage or availability was observed;
we therefore decided to use solid boundary conditions as these
codes required less processing power.

It should be noted that in our two-dimensional simulations,
the coverage θ (t) is again defined as the fraction of filled sites
to empty sites; thus if Z blocks have bound to the substrate,
the coverage θ is given by θ = Zn2/N2. The two-dimensional
availability, A(t), is defined as the number of sites where there
is an r × r unoccupied space, i.e., where there is available
place for a block to bind. Clearly this is more difficult to
simulate than the one-dimensional case, and the theoretical
analysis of this case is also significantly more complicated, so
it will not be attempted here.

In our initial simulation we landed 2 × 2 square blocks (n =
2) on lattices of various size, before settling on an N = 5000
which we deemed to be adequately large. This configuration
resulted in a final coverage θ (∞) of approximately 0.748.

Creating an algorithm to simulate RSA onto a continuous
two-dimensional surface has been explored in the last few
decades [17,18,26]. The main challenge lies in locating those
sites which remain available for adsorption; as the jamming
limit is approached, the size of such sites reduces, and they
form a vanishingly small proportion of the total substrate.
Various approaches initially simulate a continuous substrate
and later switch to a discrete lattice when close to jamming,
increasing the resolution after each successful placement
[18,26]. Due to processing constraints, and the fact that
calculating the availability for a continuous surface presents
additional difficulties, we have modelled the continuum limit
by increasing the size of the adsorbing square blocks n. The
results of this approach to the continuum limit are shown in
Fig. 4, culminating in the adsorption of square blocks with
side length n = 100 on a square substrate of side length N =
10 000. This configuration yields an average final coverage
of θ (∞) = 0.5621 agreeing within error of Cadilhe et al.’s
value of 0.5620 for placement of squares on a continuous
two-dimensional square surface [9]. However, we note that this
value differs from the approximation of Pálaste [28] cited by
Feder [17] of θ2D = θ2

1D , which gives 0.5589 in the continuous
case, a difference of 0.57%.

As can be seen in Fig. 4, there is strong evidence that the
two-dimensional RSA obeys the same power law scaling for

log[ (θ(∞)−θ(t))
θ(∞) ]

lo
g[

A
(t

)
A

(0
)
]

n=2 N=5000

n=5 N=5000

n=10 N=5000

n=50 N=5000

n=100 N=10000

Line of gradient 2

Line of gradient 1

FIG. 4. Log10-log10 plot of availability against coverage for a two-
dimensional square lattice with sides up to length N = 5000; to show
an approach to the continuum limit, each simulation was performed
five times and a mean taken. The adhering blocks were also taken
to be square, with sides of lengths n = 2, 5, 10, 50, and n = 100,
and N = 5000 in all cases except the last, where N = 10 000. Larger
values of n illustrate results closer to the continuum limit.

the relation between coverage and availability as for the case
of a one-dimensional substrate. The curve corresponding to
n = 2, namely the discrete case, has a gradient of unity close to
jamming, suggesting that the relation of A(t) ∝ θ (∞) − θ (t)
holds, as in Eq. (16). As we consider larger values of n, the
approach to a continuum limit is made, where the gradient
is approximately 2, as in the continuous one-dimensional
case (19).

V. DISCUSSION

We have introduced a measure of the distance from the
total jamming transition point, namely the “availability” of
a partially filled substrate. This has a valid definition in
both discrete and continuous formulations of RSA, and in
whatever dimension of substrate one chooses to consider.
In systems with mixed species being adsorbed, there is an
availability measure for each species, which we have illustrated
using a two-component competitive RSA model in one
dimension.

Defining the coverage deficit by X(t) = θ (∞) − θ (t), we
have that both the availability A(t) → 0 and the deficit
X(t) → 0 in the jamming limit, that is, as t → ∞. The power
law scaling relating availability A and X appear universal,
with the power depending on the specific case of the RSA.
For the simplest case of one block size binding to a substrate,
we have, in the discrete case, A(t) ∼ X(t), whereas in the
continuous case, A(t) ∼ [X(t)]2. For the more complex case of
competitive binding of two block lengths on a one-dimensional
substrate, we have two availabilities: one for the short and
the other for the long blocks. We again have Ar (t) ∼ X(t)
and Ar (t) ∼ X(t)2 for the short blocks, in the discrete and
continuous cases respectively, and different types of much
more rapid decay for the longer species, specifically, As(t) ∼
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X(t)1+s−r+Ks/Kr and As(t) ∼ X(t)2e−κ/X(t) in the discrete
and continuous cases respectively. For the one-dimensional
cases, we have provided theoretical justification of these
results via an analysis of the evolution of the gap distribution
profile. In the case of two-dimensional species adsorbing onto
a two-dimensional substrate, we find the same exponents,
namely 1 for the discrete case (A = X) and 2 for the
continuous (A ∼ X2). While Feder’s assumption that the
limiting coverage should be the square of the one-dimensional
case is a reasonable approximation, it should be noted that it
is only an approximation, and simulations show a different
result. The theory for the two-dimensional substrates remains
an open problem, due to the difficulty in defining a quantity
analogous to the gap distribution in the one-dimensional
systems.

The universal power law scaling between availability and
coverage could be significant. The availability clearly has
implications for the rate of adsorption, and may be of particular
relevance to cases such as catalysis. It would be interesting to
investigate further cases of ellipsoidal or needlelike species
adsorbing onto a two-dimensional substrate, or RSA in higher
dimensions, to see if the power law scaling holds for more
complex cases of RSA.
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APPENDIX: MAGNITUDES OF NEGLECTED TERMS

Here we present the detailed calculations supporting some
of the more technical assertions made in the main body of
the paper. These calculations show that terms neglected in the
main calculations are indeed smaller than the retained terms,
so justifying the approximations made.

1. Discrete 1D RSA

We show why the second term in (14) can be neglected.
Using (8) and (9), together with L � 1 and the solution

m(t) = Kf t , we obtain

dBj

dt
= −2Kf α

L∑
p=j+r

em(r−p−1) (A1)

∼ −2Kf αe−m(j+1)

1 − e−m
= −2Kf αe−(j+1)Kf t . (A2)

Hence, for j < r , Bj (t) = 2αe−(j+1)Kf t/(j + 1) and so

r−1∑
j=1

jBj (t) =
r−1∑
j=1

2αje−(j+1)Kf t

(j + 1)
, (A3)

which decays faster than X ∼ e−m(t) ∼ e−Kf t as t → ∞.

2. Continuous 1D RSA

Turning to the continuous case, we now show why the
second term in (25) can be ignored in the large-time limit.
Using (22) and (23) we obtain

∂B

∂t
= −2Kf α

∫ L

y=x+r

em(r−y) dy

∼ −2αKf e−mx

∫ ∞

u=0
e−mudu

= −2αKf e−mx

m
= −2αe−Kf xt

t
. (A4)

While it is possible to integrate this expression, leading to
B(x,t) = 2αEi(Kf xt) where Ei is the exponential integral
function, with details given in Olver et al. [29], it is simpler to
leave B(x,t) as an integral over t , then evaluate

∫ r

0 xBdx by
changing the order of integration. Hence∫ r

x=0
xB(x,t)dx =

∫
2αre−Kf rt

Kf t2
+ 2αe−Kf rt

K2
f t3

− 2α

K2
f t3

dt

= α

K2
f t2

− 2αre−Kf rt

Kf t
+ 2αr2Ei(Kf rt)

+αre−Kf rt

Kf t
− αe−Kf rt

K2
f t2

− αr2Ei(Kf rt)

= α

K2
f t2

+ O(t−1e−Kf rt ); (A5)

and thus
∫ r

0 xBdx is smaller than X given by (26) by one
power of t .
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