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Scaling of the spanning threshold in gradient percolation
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A simple and fast way to apply correlations in percolation simulations is to apply a uniform gradient to the
occupancy probabilities. For small networks, exact results are presented here for the spanning thresholds in site
percolation with a gradient for networks up to 4 × 4 in two dimensions and 2 × 2 × 2 in three dimensions.
Numerical results are provided for larger networks that extrapolate to a linear modification of the threshold
proportional to the gradient for moderate values of the gradient.
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I. INTRODUCTION

An important application of percolation theory is to
describe multiphase flow in porous media. In this context
percolation provides the basis of a theory of one fluid trapping
another fluid, particularly the trapping of oil by water. Most
of the extensive literature on percolation considers regular
networks that are statistically uniform and uncorrelated.
However, for the major application of trapping in natural
porous media, observations show that most sedimentary rocks
are not uniform and correlations exist at all scales down to the
pore scale.

To address correlations, significant progress has been made
studying percolation on networks constructed using fractional
Brownian motion (FBM) [1–7], where these studies are based
on observations of FBM-type correlations in field measure-
ments. Nevertheless, an alternative approach to studying
correlations in a simple system is the limiting case where the
correlations are introduced purely through applying a gradient.
As will be shown here, this allows for some exact results on
small networks and some straightforward formula for larger
networks to be derived. In this work correlations are used in
the sense of geostatistics [8], where uncorrelated properties
have a constant variogram and correlated properties have a
variogram that increases with distance. With a gradient in the
network properties, sites near one edge or surface are more
likely to be occupied than the opposite edge or surface.

The concept of gradient percolation was first introduced by
Sapoval et al. [9] and separately for invasion percolation by
Wilkinson [10]. Nearly all studies of gradient percolation have
been concerned with the fractal geometry of the diffusion front
or hull [11–15], although other work has considered conduc-
tivity properties [16]. A review of developments in gradient
percolation has been provided by Gouyet and Rosso [17]. This
paper is different in that the spanning threshold is considered,
which includes accounting for sites that are not connected
to the hull. The spanning threshold is studied here as it is
the quantity most relevant to residual saturation in porous
media.

Gradient percolation has particular meaning for flow in
porous media where it corresponds to the imposition of
buoyancy [10,18]. Furthermore, a gradient in properties has
physical meaning for anisotropic rocks that are deposited
with upward coarsening (coarsening-up) or upward fining
(fining-up) [19]. Upward coarsening and upward fining are
often observed by geologists in laboratory core samples where

a changing sediment load has created a gradient in grain sizes
during deposition. Thus a general understanding of percolation
on a gradient is potentially useful. While this study is only
concerned with ordinary site percolation, future similar studies
could involve more complete flow-network models.

To study percolation with a gradient it is necessary to revisit
some definitions. In the usual definition of the ordinary site
percolation problem, sites in a lattice have a probability p

of being occupied and a corresponding probability 1 − p of
being unoccupied [20]. The sites are assumed to be statistically
equivalent and independent. The percolation threshold pc is
the value of the probability when the lattice first becomes
connected. In the approach used by Ziff and Newman [21] to
calculate pc, sites are occupied one by one in random order
starting with an empty lattice. For an uncorrelated lattice, this
is equivalent to assigning each site a value from a random
number generator, then occupying the sites in order, starting
at the site with the largest number, and then proceeding
progressively toward the smallest number. Similarly to Ziff
and Newman [21], the study here is only concerned with the
existence or not of a system-spanning cluster, so the simulation
is stopped once a spanning cluster is detected, as spanning must
occur for all higher values of n. Each simulation then produces
a single number, the value of n, denoted by nc, at which
a spanning cluster first appears in a given direction. When
averaged over many realizations, the mean of the spanning
threshold is denoted by 〈nc〉. As the lattice size L → ∞, 〈nc〉
converges to pc. Although this convergence is not the most
efficient way to calculate pc, it is the method used here because
it is readily applied to percolation with a gradient.

To apply a gradient in the study described here, the
simulations commence with each site being given a random
value r generated uniformly over the interval [0,1]. The
distance from a chosen edge of the network is then multiplied
by a gradient g and added to r , giving values

v = r + gi/(L − 1), (1)

where i is the row, with i going from 0 to L − 1. This means
that overall the site values v fall in the interval [0,1 + g]. As
described above, the sites are then occupied in order, starting
at the site with the largest value of v. To illustrate the concept
of percolation with a gradient, examples in two dimensions
with L = 50 and g = 0.75 are shown in Fig. 1 compared to an
example with no gradient.
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FIG. 1. Examples illustrating percolation on gradient networks:
(a) spanning on an uncorrelated network, with g = 0; (b) spanning
perpendicular to the gradient, with g = 0.75; and (c) spanning parallel
to the gradient, with g = 0.75.

II. EXACT RESULTS IN TWO DIMENSIONS

A. Zero gradient

With g = 0 on small L × L lattices, exact results for the
mean spanning fraction in a given direction 〈nc〉 can be

TABLE I. Exact results for the site spanning threshold in two
dimensions on an uncorrelated lattice with zero gradient (g = 0).

〈nc〉 decimal
L 〈nc〉 exact fraction fraction

2 2/3 0.666667
3 116/189 0.613757
4 78527/131040 0.599260
5 1529022307/2574148500 0.593991
6 192290619955183/324907994010600 0.591831
7 23308013067546485675/39442384599494503536 0.590938

calculated by considering all possible combinations of ways
that sites can be occupied as n goes from 0 to N = L × L

and determining which of these combinations span the lattice.
The spanning combinations can be easily extracted using the
coefficients in Table III of Ziff and Newman [21]. To illustrate,
starting with a 2 × 2 network in a given direction, there is
precisely one way that zero sites can be occupied, four ways
that one site can be occupied (with spanning not possible), six
ways that two sites can be occupied (with two combinations
spanning), four ways that three sites can be occupied (all four
spanning), and one way that four sites can be occupied (which
must span). Thus the combinations of spanning sites for n = 0,
1, 2, 3, and 4 sites occupied can be written (0,0,2,4,1) out of the
possible combinations of the ways the sites can be occupied
(1,4,6,4,1). Thus the fractions that span for n = (0,1,2,3,4)
are given by

(0,0,2,4,1)/(1,4,6,4,1) = (0,0,1/3,1,1). (2)

This gives the cumulative spanning fraction, so the next step
is to take differences to get the spanning frequency for each
value of n, with n going from 1 to N (in this case N = 4):

(0,1/3,1,1) − (0,0,1/3,1) = (0,1/3,2/3,0). (3)

The mean spanning fraction 〈nc〉 is then given by

(0,1/3,2/3,0) × (1,2,3,4)/4 = 2/3. (4)

This calculation can be progressively applied to successive
values of L. With L = 3 and N = 9, the coefficients are

(0,0,0,3,22,59,67,36,9,1) (5)

and the corresponding binomial sequence is

(1,9,36,84,126,126,84,36,9,1), (6)

giving

〈nc〉 = 116/189. (7)

Working through the values of L in Table III of Ziff and
Newman [21], this gives the results shown in Table I up to
L = 7.

B. With a gradient

With a gradient g the combinations with a given number of
occupied sites are no longer equiprobable. For instance, when
n = 2 on a 2 × 2 lattice, the two combinations that span do not
have the same probability. To calculate the probabilities with a
gradient, successive site occupancy has to be calculated using
the rules of selection without replacement, meaning that all
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TABLE II. Exact results for the mean spanning threshold in D dimensions with gradient g, 0 � g � 1.

D L 〈nc⊥〉 〈nc‖〉
2 2 (2g3 − 3g2 + 4)/6 (−2g3 + 3g2 + 8)/12
2 3 (93g7 − 350g6 − 882g5 + 3990g4 − 5908g2 (−2g9 + 102g7 − 840g6 + 3591g5 − 6468g4

+9280)/15120 +7128g2 + 18560)/30240
2 4 (−114048g15 + 32561352g13 − 207567360g12 (16686g15 + 2032020g13 − 9567558g12

+445376516g11 − 859053195g10 + 1526382000g9 +47936018g11 − 120918798g10 − 813648264g9

+7124483223g8 − 19335455568g7 − 34562814858g6 +7591034880g8 − 26689455936g7 + 46584219825g6

+80807270544g5 + 39511072458g4 − 184430694150g2 −33946993080g5 − 1769573871g4 + 19990153215g2

+306038094318)/510693543360 +51006349053)/85115590560
3 2 (g7 − 28g5 + 35g4 + 35g3 − 56g2 + 48)/105 (−2g7 − 28g5 + 35g4 − 70g3 + 112g2 + 128)/280

occupied sites need to be considered simultaneously for each
spanning combination. The possible permutations of spanning
combinations rapidly becomes extremely large as L increases,
but with some effort, exact solutions for small networks are still
possible without enumerating every combination by exploiting
exchangeability and symmetry. Here exact solutions up to
L = 4 are provided in Table II. These formulas for 〈nc〉,
both perpendicular 〈nc⊥〉 and parallel 〈nc‖〉 to the gradient,
are plotted in Fig. 2. When g = 0 these results reduce to the
values in Table I. Variances from the mean values Var(nc)
can also be determined; these are included in Table III with
standard deviations plotted in Fig. 3. Again these are different
parallel and perpendicular to the gradient.

For finite L when the gradient is extremely large,

〈nc‖〉 = 1

L
, g � L. (8)

Thus it is possible for sites only along one edge to become
occupied. In this study, however, only values g < 1 are
considered.

III. NUMERICAL RESULTS IN TWO DIMENSIONS

Newman and Ziff [22,23] have developed a very efficient
algorithm for studying site or bond percolation on any lattice.
Their algorithm uses an amount of time that scales linearly with

L = 2

L = 3

L = 4
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FIG. 2. Exact results for the mean spanning threshold on small
two-dimensional networks. Solid lines are for spanning in the
direction perpendicular to the gradient 〈nc⊥〉 and dashed lines are
for spanning in the direction of the gradient 〈nc‖〉.

the size of the system O(N ). Their published code was adopted
for this study, but with some changes shown in Ref. [24].
Unfortunately, with a gradient, the simulation time is reduced
to O(N log N ) rather than O(N ) through the need to sort sites.

For the calculations in this paper, the approach of Ziff
and Newman [21] is followed using the method where two
complete rows of sites at the top and bottom of an open
(L + 2) × (L + 2) lattice are fixed permanently empty and
two columns of L sites on the left and the right sides of the
lattice are fixed occupied. The two columns of occupied sites
at the ends form two initial clusters on the lattice. The interior
of lattice is initially empty and as each site is added, a test
is performed that reveals when the end clusters first become
connected. The test is based on assigning a root site to each
cluster and then labeling sites connected to the root sites. A
connection between the root sites reveals that spanning has
occurred.

A. Zero gradient

To compare to known percolation results, simulations were
run up to L = 8192, so N = L × L has a maximum of
67 108 864 sites. Results for 〈nc〉 as a function of L are
shown in Fig. 4. In the limit L → ∞ this gives an estimate
of 〈nc〉 = 0.592 746(2), consistent with, but no better than,
the best published estimates of the percolation threshold,
such as 0.592 745 98(4), from Lee’s [25] examination of

L = 3

L = 4
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FIG. 3. Exact results for the standard deviation of the spanning
threshold s.d.(nc) on small two dimensional networks. Solid lines are
for spanning in the direction perpendicular to the gradient and dashed
lines are for spanning in the direction of the gradient.
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TABLE III. Exact results for the variance of the spanning threshold in D dimensions with gradient g, 0 � g � 1.

D L Var(nc⊥) Var(nc‖)

2 2 (−8g6 + 24g5 − 18g4 − 2g3 + 3g2 + 1)/72 (−4g6 + 12g5 − 9g4 + 2g3 − 3g2 + 2)/144
2 3 (−8649g14 + 65100g13 + 41552g12 − 1359540g11 (−4g18 + 408g16 − 3360g15 + 3960g14 + 145488g13

+2015076g10 + 8132768g9 − 20055700g8 −1438164g12 + 7380864g11 − 23761521g10

−10741632g7 + 50466640g6 − 12971280g5 +45021784g9 − 29859984g8 − 50201616g7

−24075184g4 + 6749120g2 + 3235200)/228614400 +81993408g6 + 15701280g5 − 55418304g4

+1816320g2 + 12940800)/914457600
2 4 (−13006946304g30 + 7427114145792g28 (−278422596g30 − 67812571440g28

−47345284546560g27 − 958653042274368g26 +319288545576g27 − 5728826073096g26

+13321401147774720g25 − 71740170328716864g24 +42918240541176g25 − 259198990809876g24

+242460188327708208g23 − 658795511825895184g22 +1155352080816648g23 − 414277433684140g22

+927009150376331880g21 + 2137627526436890631g20 −36381400537620996g21 + 318239988491833980g20

−9490651018845807096g19 + 7523281384084876410g18 −1624505623278567588g19 + 4761902997215458380g18

+6747964313727860784g17 − 106691174820096005997g16 +789171699111023664g17 − 86568947452859507064g16

+496658927106401991120g15 − 136740337795656645336g14 +472886946938688112980g15 − 1474859192823414910512g14

−2441503565216840167344g13 + 1005530971225783288572g12 +2997208642016269114452g13 − 3950286148422491159997g12

+7831534946780441198016g11 − 738583696122174204588g10 +3098883336668556568560g11 − 1278449032286020159422g10

−15945673161802296616704g9 − 16201871059001326802532g8 +842454944413231756464g9 − 1342672558336483166871g8

+51125869460765522225088g7 − 15145574017593654083592g6 +40511083832003749536g7 + 1738558449072833493690g6

−1615239277572820483584g5 − 15885965428554417577668g4 −1011443704688040624000g5 − 176185795979806152849g4

+6357223139742823550400g2 + 3214891495022023266516)/ +77777838248122370160g2 + 89302541528389535181)/
260807895229592200089600 7244663756377561113600

3 2 (−32g14 + 1792g12 − 2240g11 − 27328g10 −(g − 1)2(4g12 + 8g11 + 124g10 + 100g9

+66304g9 + 23520g8 − 176364g7 + 86240g6 +1140g8 − 228g7 + 3549g6 − 3448g5

+105616g5 − 60872g4 − 34020g3 + 13272g2 +2295g4 − 5990g3 − 1346g2 − 2372g

+5337)/352800 −1186)/78400

pseudo-random-number generators in Monte Carlo studies of
site percolation. While the method used here does not give the
same accuracy for modest computer resources, this method
gives results consistent with other methods of calculating
the percolation threshold for uncorrelated networks, with the
advantage that this method is easily adopted to provide results
for lattices with a gradient.

It has been found that finite-size scaling of the standard
error � goes as � ∝ L−1/ν , where ν is the correlation length

10 50 100 500 1000 5000
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0.5920

0.5925

100 1000 5000

–5 10- 6
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FIG. 4. Mean spanning threshold 〈nc〉 as a function of network
size L, on an uncorrelated square network. The dashed curve is the fit
of 〈nc〉 = a + bL−c to the simulation points for L � 128 giving a =
0.592 746, b = −0.126, and c = 1.47. The inset shows the difference
between the points and the fitting curve, with the standard error shown
by the bars.

exponent [26]. In two-dimensional uncorrelated percolation
ν = 4/3 ≈ 1.33 [20], so � ∝ L−0.75 is expected from the
simulations. For the simulations reported here �2 = 〈n2

c〉 −
〈nc〉2, so � = 0.492L−0.740 was measured for L � 256 (see
Fig. 5) and � = 0.514L−0.746 for L � 1024. These values are
consistent with the expected number.

B. With a gradient

Numerous simulations were run at a variety of values for g

and L. Fitting the results for 〈nc〉 with the function a + bL−c in
the range L � 1024 gives the values for a, b, and c in Table IV.

10 100 1000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

. .

FIG. 5. Standard deviation in the spanning threshold nc as a
function of network size L, on an uncorrelated square network. The
dashed curve is the fit to the points L � 256 giving 0.52L−0.75.
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TABLE IV. Simulation results for 〈nc〉 in two dimensions fitted
to a + bL−c with L � 1024.

Gradient g a b c

Perpendicular ⊥
0.125 0.527 0.20 0.29
0.250 0.463 0.32 0.31
0.375 0.402 0.43 0.32
0.500 0.340 0.54 0.34
0.625 0.277 0.61 0.34
0.750 0.233 0.65 0.37
0.875 0.200 0.62 0.37
1.000 0.175 0.61 0.38

Parallel ‖
0.125 0.659 −0.20 0.29
0.250 0.721 −0.34 0.32
0.375 0.784 −0.45 0.33
0.500 0.836 −0.55 0.36
0.625 0.869 −0.53 0.37
0.750 0.890 −0.52 0.38
0.875 0.906 −0.51 0.39
1.000 0.917 −0.50 0.40

Some examples of the results as a function of g are shown for
L = 512 and L = 4096 in Fig. 6 and as a function of L for a
gradient g = 0.5 in Fig. 7.

The extrapolated limits as L → ∞ of the fitting curves for
various values of g, both parallel and perpendicular, are shown
as the dots in Fig. 8. These extrapolated limits are the values
for a in Table IV. In Fig. 8 these numerical limits are compared
to the following equations that would be expected from simple
linear weighting of the site densities given by Eq. (1):

〈nc‖〉 = pc − g

2
, g � pc (9)

〈nc‖〉 = p2
c

2g
, g � pc (10)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

L = 4096

L = 512

FIG. 6. Numerical estimates of the mean spanning threshold 〈nc〉
as a function of the gradient g for L = 512 and 4096. Solid lines are
for spanning in the direction perpendicular to the gradient, dashed
lines are for spanning in the direction of the gradient, and small
circles are points obtained from simulations.
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– 0.0002

– 0.0001

0

FIG. 7. Example of spanning thresholds perpendicular to the
gradient 〈nc⊥〉 as a function of L, for gradient g = 0.5. The fitting
curves are used to extrapolate to L → ∞. The inset shows the
difference between the points and the fitting curve.

〈nc⊥〉 = pc + g

2
, g � 1 − pc (11)

〈nc⊥〉 = 1 − (1 − pc)2

2g
, g � 1 − pc. (12)

The change from a linear relationship occurs when the gradient
is sufficiently steep that one edge has sites that cannot be
occupied (for spanning perpendicular to the gradient) or are
fully occupied (for spanning parallel to the gradient). Here,
in two dimensions pc = 〈nc〉 ∼ 0.592 746. With a gradient
in the range 0.2 < g < 0.5 the correlation length exponent
appears to be around ν = 1.9–2.0, significantly greater than
two-dimensional uncorrelated percolation with ν = 4/3.

Standard deviations of the spanning threshold as a function
of g for L = 512 on a square network are shown in Fig. 9. The
standard deviation of the spanning threshold perpendicular to
the gradient reaches a maximum around g = 0.66. Similarly,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p
c
 = 0.5927

1 – p
c
 = 0.4073

FIG. 8. Extrapolated limit as L → ∞ of the spanning threshold
in two dimensions. Dots are derived from the numerical simulations
and the lines represent Eqs. (9)–(12). Solid lines are for spanning in
the direction perpendicular to the gradient 〈nc⊥〉 and dashed lines are
for spanning parallel to the gradient 〈nc‖〉.
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FIG. 9. Numerical result for the standard deviation of the span-
ning threshold s.d.(nc) as a function of the gradient g on a square
network with L = 512. Solid lines are for spanning in the direction
perpendicular to the gradient and dashed lines are for spanning in the
direction of the gradient.

the standard deviation for spanning perpendicular to the
gradient has a maximum around g = 0.47.

IV. EXACT RESULTS IN THREE DIMENSIONS

A. Zero gradient

The same approach that was used in two dimensions can
be applied to small L × L × L networks in three dimensions.
For L = 2 with N = 8, 〈nc〉 is given by

(0,1/7,2/7,12/35,8/35,0,0,0) × (1,2,3,4,5,6,7,8)/8, (13)

so

〈nc〉 = 16/35. (14)

This result for L = 2 and the result for L = 3 are shown
in Table V. The explosive growth in calculation effort with
increasing L rapidly presents a barrier for determining the
result for L = 4 (N = 64).

B. With a gradient

Exact solutions for L = 2 are in Table II and are plotted in
Fig. 10 with standard deviations in Fig. 11.

V. NUMERICAL RESULTS IN THREE DIMENSIONS

A. Zero gradient

In three dimensions simulations were run up to L = 384,
so N = L × L × L = 56 623 104 sites. Results for an uncor-
related network are shown in Fig. 12. In the limit L → ∞ this
gives an estimate of 〈nc〉 = 0.311 61(1), consistent with, but
no better than, the best published estimates of the percolation

TABLE V. Exact results in three dimensions, with no gradient.

L 〈nc〉 exact fraction 〈nc〉 decimal fraction

2 16/35 0.45714286
3 385753183/992885850 0.38851715

L = 2

L = 128
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FIG. 10. Exact result for L = 2 and numerical result for L = 128
for the mean spanning threshold 〈nc〉 as a function of the gradient g

on a cubic network. Solid lines are for spanning in the direction
perpendicular to the gradient and dashed lines are for spanning in the
direction of the gradient.
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FIG. 11. Exact results for the standard deviation of the spanning
threshold on a three-dimensional network with L = 2. Solid lines are
for spanning in the direction perpendicular to the gradient and dashed
lines are for spanning in the direction of the gradient.
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FIG. 12. Mean spanning threshold 〈nc〉 as a function of network
size L, on an uncorrelated cubic network, with g = 0. The dashed
curve is the fit of 〈nc〉 = a + bL−c to the points L � 96 giving a =
0.311 61, b = 0.28, and c = 1.13. The inset shows the difference
between the points and the fitting curve, with the standard error
shown by the bars.
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TABLE VI. Simulation results for 〈nc〉 in three dimensions fitted
to a + bL−c with L � 128.

Gradient g a b c

Perpendicular ⊥
0.125 0.248 0.25 0.49
0.250 0.185 0.35 0.48
0.375 0.130 0.46 0.53
0.500 0.098 0.44 0.55
0.625 0.078 0.40 0.55
0.750 0.066 0.39 0.56
0.875 0.056 0.37 0.56
1.000 0.049 0.35 0.56

Parallel ‖
0.125 0.384 −0.14 0.26
0.250 0.444 −0.26 0.32
0.375 0.507 −0.35 0.34
0.500 0.567 −0.44 0.36
0.625 0.637 −0.48 0.34
0.750 0.704 −0.52 0.33
0.875 0.744 −0.54 0.35
1.000 0.778 −0.52 0.35

threshold on a cubic network of pc = 0.311 607 7(3) [27]
and pc = 0.311 600 4(35) [28]. Established values of the
correlation length exponent for the three-dimensional site
lattice are ν = 0.89 [20] and ν = 0.88 [26]; here the value
ν = 1/1.13 = 0.89 is obtained.

B. With a gradient

In three dimensions spanning can be considered in three
directions. However, two of these directions are perpendicular
to the gradient and so give identical results.

Numerous simulations were run at a variety of values for g

and L. Fitting the results for 〈nc〉 with the function a + bL−c in
the range L � 128 gives the values for a, b, and c in Table VI.
Some examples of the results as a function of L for gradients
g = 0.5 for nc⊥(L) are shown in Fig. 13 and nc‖(L) in Fig. 14.
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0

FIG. 13. Mean spanning threshold nc⊥(L) as a function of
network size L, with gradient g = 0.5 on a cubic network. Also
plotted is the relevant fitting curve from Table VI. The inset shows
the difference between the points and the fitting curve.
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FIG. 14. Mean spanning threshold nc‖(L) as a function of
network size L, with gradient g = 0.5 on a cubic network. Also
plotted is the relevant fitting curve from Table VI. The inset shows
the difference between the points and the fitting curve.

Standard deviations of the spanning threshold as a function
of g for L = 128 on a cubic network are shown in Fig. 15. The
standard deviation of the spanning threshold perpendicular to
the gradient reaches a maximum around g = 0.34. Similarly,
the standard deviation for spanning perpendicular to the
gradient has a maximum at g = 0.78.

The extrapolated limits as L → ∞ of the fitting curves
for various values of g, both parallel and perpendicular, are
shown as the dots in Fig. 16. These limits are compared to
Eqs. (9)–(12). This is similar to the two-dimensional results,
except that here in three dimensions pc ∼ 0.311 608.

For finite L with an extremely large gradient

〈nc‖3D〉 = 〈nc2D〉
L

, g � L, (15)

where〈nc‖3D〉 is the mean spanning threshold parallel to the
gradient in three dimensions and 〈nc2D〉 is the mean spanning
threshold for no gradient (g = 0) in two dimensions. This
situation is when only sites on one face are becoming occupied,
so it essentially reduces to two-dimensional percolation.
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0.000

0.002

0.004

0.006

0.008

0.010

0.012

. .

FIG. 15. Standard deviation of the spanning threshold as a
function of g for L = 128 on a cubic network. Solid lines are for
spanning in the direction perpendicular to the gradient and dashed
lines are for spanning in the direction of the gradient.
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FIG. 16. Extrapolated limit of the spanning threshold in three
dimensions. Dots are derived from the numerical simulations and
the lines represent Eqs. (9)–(12). Solid lines are for spanning in the
direction perpendicular to the gradient 〈nc⊥〉 and dashed lines are for
spanning parallel to the gradient 〈nc‖〉.

VI. DISCUSSION

There is the opportunity to reflect here on potential future
studies. While the current study has been limited to ordinary
site percolation, further similar studies more relevant to the
physics of fluid trapping could be undertaken using models
such as percolation with trapping [29,30], although this
requires additional computational effort. Indeed, ordinary
percolation and percolation with trapping can give similar
results. Ultimately, predictive modeling of real porous media
requires a more complex models of the pore space [31].

Recent years have seen rapid development in x-ray mi-
crotomography as a technique to measure the pore space
of rocks and characterize fluid residual trapping [32–35].
The rock types that have received the most attention are
relatively homogeneous and isotropic as these are most easily
interpreted, but it should be possible to measure the effective
gradient in pore properties for cores that display upward
coarsening or upward fining. This would provide g values
for relevant rocks that could be deployed in network models.

Furthermore, it would be possible to extend this study to
consider functions other than the linear equation (1) for the site
occupancy. With another function, such as through replacing
g by g2, a set of equations different from but related to
Eqs. (9)–(12) could be derived.

VII. CONCLUSION

The extrapolated limits of the mean spanning threshold
〈nc〉 as L → ∞ for site percolation with a gradient have been
verified to be given by Eqs. (9)–(12) in both two and three
dimensions. Although not surprising, this straightforward
linear dependence on gradient for moderate gradients is
a useful result. It means that results for other forms of
heterogeneity can easily be obtained if the site occupancy can
be expressed as a combination of piecewise linear gradient
combinations.

This study has also addressed finite-size scaling. Exact
small network solutions have been provided for L � 4 in two
dimensions and L = 2 in three dimensions. Exact solutions
with L > 4 in two dimensions and L > 2 in three dimensions
may be possible with more complete use of symmetry and
larger computational resources, but the explosive growth in
calculation time with increasing L presents a barrier.
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