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Exact results for a noise-induced bistable system
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A stochastic system where bistability is caused by noise has been recently investigated by Biancalani et al.
[Phys. Rev. Lett. 112, 038101 (2014)]. They have computed the mean switching time for such a system using
a continuous Fokker-Planck equation derived from the Taylor expansion of the master equation to estimate the
parameter of such a system from experiment. In this article, we provide the exact solution for the full discrete
system without resorting to continuous approximation and obtain the expression for the mean switching time.
We further extend this investigation by solving exactly the master equation and obtaining the expression of other
quantities of interests such as the dynamics of the moments and the equilibrium time.
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I. INTRODUCTION

In some stochastic systems, noise can have counterintuitive
effects and the behavior of the system can be markedly
different from its deterministic, mean-field approximations.
In some oscillatory gene networks, the regular oscillations
are caused by noise and cease in their absence [1]. In
population genetics, the noise term can explain the emergence
of less fit “altruistic” individuals [2]. In ecology, the spatial
aggregation of individuals can be caused by noise [3,4]; a
similar explanation lies behind neutron clustering in nuclear
reactors [5].

The general theory of noise-induced transition in nonequi-
librium systems has been extensively investigated by Hors-
themke and Lefeve [6]. In the context of chemical equations
and specifically genetic regulatory networks, there has been
an intense investigation of systems where bistability is caused
by noise and is absent from the deterministic formulation of
kinetic rate equations. Samoilov et al. [7] have considered
the enzymatic futile cycle reaction and have shown that
addition of noise can cause bistability and dynamic switching
in the concentration of the substrate. Artyomov et al. [8]
have considered a simple model of T cells response and
have shown again that in the presence of noise, the steady-
state distribution can become bimodal. Qian et al. [9] and
Thomas et al. [10], using different approaches, have derived a
general framework to elicit the role of fluctuation time scales
separation in the appearance of noise-induced bistability. In an
elegant experiment, To and Maheshri [11] have investigated a
synthetic transcriptional feedback loop and have demonstrated
the bimodality of the response without cooperative binding of
the transcription factor, a usual hypothesis to explain bistability
of genetic switches.

Recently, Biancalani et al. [12] investigated another
stochastic system where bistability is caused by noise: in this
system, individuals (or molecules) can be in one of the two
configurations A and B and can switch from one to the other
according to the following transition rates:

W−(n) = W (n → n − 1) = (r(N − n) + ε)n (1)

W+(n) = W (n → n + 1) = (rn + ε)(N − n), (2)

where n is the number of individuals in configuration A and N

is the total number of individuals. In the following, n is used to

characterize the state of the stochastic system at a given time.
The rate r characterizes the two-body interactions

Xi + Xj
r−→ 2Xi i = A,B; j = B,A

while the rate ε characterizes spontaneous switching of an
individual from one configuration to the other:

Xi
ε−→ Xj .

Without loss of generality, we will set r = 1 in the following.
This is achieved by scaling both time and ε by the factor r .

Such a system can model for example a colony of foraging
ants collecting food from two sources. In population genetics,
this is the Moran model for two competing alleles A and B with
bidirectional mutations [13]. Such systems were also proposed
in the context of autocatalytic chemical reactions with small
number of molecules [14–16], or the dynamic Ising model [17]
for a set of fully connected spins. The general properties of this
stochastic system, and its application to population genetics in
fluctuating environment were discussed by Horsthemke and
Lefeve [6].

The behavior of this system is markedly different from its
mean-field, deterministic approximation. Indeed, the equation
for 〈n〉, the mean number of individuals in one state, is

d〈n〉
dt

= 〈W+(n) − W−(n)〉 = ε(N − 2〈n〉) (3)

and has a stable stationary solution 〈n〉 = N/2. However, for
small values of ε, i.e., ε � 1/N , the system is observed most
of the time in one of the two boundary states n = 0 or n = N ,
and seldom in states close to n = N/2. The bistability of the
system is caused solely by the noise and cannot be captured
by the mean-field equation (3).

The reason behind the bistability is the following: in the
absence of spontaneous switching (ε = 0), the states n = 0
(all individuals in configuration B) and n = N (all individuals
in configuration A) are absorbing: W+(0) = W−(N ) = 0.
Eventually, the system will end up in one of these two
states and remain there. When ε > 0, these states cease to be
absorbing. However, the mean residence time τ in these states
is [W+(α) + W−(α)]−1 = 1/εN (where α = 0,N ) while the
residence time in other states is O(1). Therefore, in the regime
εN � 1, the system is observed mostly in the boundary states.
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In their article, Biancalani et al. computed T (0), the
mean switching time (the mean first passage time) from
state n = 0 to state n = N , and show that the observation
of this quantity can lead to the measure of the parameter ε of
this stochastic system. For this computation, they expanded
the master equation of the stochastic system in powers of
1/N and neglected terms of O(1/N3) to obtain the forward
and backward Fokker-Plank equation, from which the mean
switching time can be obtained [Ref. [12], Eq. (4) and
Supplemental Material, Eqs. (4) and (11)]. This approximation
is fragile, especially for small N where the noise is strong.
In particular, to compute T (0), they have used two different
approximations, one of which is valid for 0.2 � Nε and the
other for Nε → 0, and there is no clear criterion for their
overlap. In this article, we compute the exact expression for
T (0) without any approximation, which is valid for all values
of ε. We further extend this investigation by giving the exact
solution of the discrete master equation through the use of the
probability generating function associated to the probabilities.
Other quantities that we compute, such as the dynamics of the
moments or the dynamics of the boundary states probabilities,
provide other useful tools to measure and investigate this
system.

This article is organized as follows: in the next section,
we give the exact expression for the mean first passage time
T (n). The following section is devoted to the solution of the
master equation. The final section is devoted to discussion and
conclusion.

II. SWITCHING TIME

Preparing the system at time t = 0 in the initial state n = m,
the system evolves and will reach the state n = N for the first
time at some time T (m). The mean first passage times T̄ (m) are
obtained from the backward Kolmogorov equation and form
the linear system [18]

W+(0)[T̄ (1) − T̄ (0)] = −1 (4)

W+(m)[T̄ (m + 1) − T̄ (m)]

+W−(m)[T̄ (m − 1) − T̄ (m)] = −1, (5)

where 0 < m < N . Note that as W−(0) = 0, we don’t need to
write a separate equation (4) for the boundary term T̄ (0); the
above notation however is clearer and highlights the boundary
condition. Note also that by definition, T̄ (N ) = 0, so the above
square system of linear equations is well posed.

Using the continuous approximation n → x = n/N ,
T̄ (m) → t̄(x), and developing Eq. (5) to the second order
in (1/N ), one obtains the second-order differential equation
for t̄(x), which can be solved in terms of the hypergeo-
metric function, as was done by Biancalani et al. [12] (see
Appendix A 2). The continuous limit is however fragile when
ε → 0, and the first solution obtained by Biancalani et al. does
not converge to the right value in this limit. This is due to the
absorbing boundary condition t ′(0) = 0 used in the continuous
approximation, which fails in the limit ε → 0 as it can be
observed directly from Eq. (4) (see also Supplemental Material
in Ref. [12]). In order to resolve this problem, they have
resorted to a limit process for the case ε → 0 by approximating

[Ref. [12], Eq. (28)]

2F1
(

1
2 ,u; 3

2 ; 1
1+2ε

) ≈ 2F1
(

1
2 ,u; 3

2 ; 1
)
,

where u = Nε or 1 − Nε, i.e., setting ε = 0 in the fourth
argument of the hypergeometric function, but not in the second.
This ad hoc approximation gives the correct solution for ε →
0; no criterion however can be obtained for the overlap between
the two solutions (Fig. 2).

These complications are due to the continuous approx-
imation and can be avoided if the solution is computed
directly for the discrete Eqs. (4), (5). The discrete solution is
computationally much simpler, is valid for the whole range of
ε and N , and does not involve any approximation; specifically,
the boundary conditions are set naturally and don’t need to
be adjusted as a function of ε. The solution is obtained by
setting yk = T̄ (k) − T̄ (k − 1), which transforms Eqs. (4), (5)
into a simple one-term recurrence equation. The exact solution
is then

yk+1 = −
k∑

i=0

(N − k + ε)(k−i)

(N − k)(k−i+1)

(i + 1)(k−i)

(i + ε)(k−i+1)
0 � k < N,

where (α)(m) = α(α + 1) . . . (α + m − 1) = �(α + m)/�(α)
is the Pochhammer symbol.

As T̄ (N ) = 0, the first passage times T̄ (m) are easily
recovered from the yk:

T̄ (m) = −
N−1∑
k=m

yk+1.

In particular, the mean time to move from one boundary state
to the other is

T̄ (0) =
N−1∑
k=0

k∑
i=0

(N − k + ε)(k−i)

(N − k)(k−i+1)

(i + 1)(k−i)

(i + ε)k−i+1
. (6)

The above expression is computationally simpler than the
product of two hypergeometric functions and involves only
simple, finite arithmetics. Its expansion in the first two powers
of ε gives (see Appendix):

T̄ (0) = 1

ε
+ 2

N − 1

N
+ O(ε). (7)

Figure 1 shows the remarkable accuracy of this formula
for Nε ∈ [0,1] and N � 100, i.e., the relevant range where
bistability can be observed. The analysis can be extended to
compute the linear term in ε in Eq. (7) (see Appendix A 1)

Equations (6), (7) have been obtained by setting r = 1, i.e.,
by scaling time and ε by the factor r . Restoring the nonscaled
time (t → t/r , ε → ε/r), we have

T̄ (ns)
ε,r (0) = 1

r
T̄ε/r (0)

and in particular, the leading terms of the development are

T̄ (ns)
ε,r (0) = 1

ε
+ 2

r

N − 1

N
+ 1

r
O

(
ε

r

)
.

Therefore, it is possible in principle, by measuring the switch-
ing time for different system size N , to measure independently
the parameters ε and r .
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FIG. 1. (Color online) Switching time as a function of ε for three
different values of N . Empty symbols: Numerical simulation by a
Gillespie algorithm over 107 paths; filled symbols: numerical solution
of the linear system (5)–(4); Solid lines: theoretical expression (7).

Note that the rate coefficients used by Biancalani et al. are
given in terms of proportions, i.e., rB = N2r and εB = Nε.
Figure 2 shows the comparison between our exact result and
the Biancalani et al. approximate solutions when this scaling is
taken into account, for the full range of Nε. It can be observed
that the two solutions obtained by Biancalani et al. and their
overlap can be recovered from the exact solution we provide
here.

Saito and Kaneko [19] have also computed the switching
time for this stochastic system. Their method consists in
obtaining an approximation for the residence time t0,j in each
state j beginning from state 0 and then summing up these
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FIG. 2. (Color online) Exact result for the first passage time
(solid line, black) as a function of N for εB = 1/500, r = 1 and
its comparison to the two solutions provided by Biancalani et al.
(Ref. [12], Fig. 5) : dotted curve, blue for ε → 0; dotted curve, red
for NεB � 0.5.

residence times to obtain the switching time. Their analytical
result for the switching time has a very different form that the
relation (6) and doesn’t seem amenable to easy computation of
the interesting limiting case Nε � 1. However, their formula
produces the same numerical results as the relation (6) of this
article.

III. SOLVING THE MASTER EQUATION

The mean first passage is one tool to study the stochastic
system described by the transition rates (1), (2). A complete
description can be obtained by solving directly the master
equation governing the probabilities P (n,t) to observe n

individuals in state A at time t :

∂P (n,t)

∂t
= W+(n − 1)P (n − 1,t) − W+(n)P (n,t)

+W−(n + 1)P (n + 1,t) − W−(n)P (n,t). (8)

We note that the above stochastic system does not need
a moment closure approximation, i.e., the equation for the
kth moment involves only moments of order lower than
k. Therefore, a hierarchical system of equations can be
established to derive all the moments of this system. The
probability generating function is a powerful tool to investigate
such master equations [18,20]. The PGF is defined as

φ(z,t) = 〈zn〉 =
N∑

n=0

P (n,t)zn

and contains the most complete information we can have on
the given stochastic process: all the moments and probabilities
can be obtained from its derivatives at either z = 1 or z = 0.
The equation governing the PGF can be extracted from the
master equation (8) (see Appendix A 3) and reads:

∂φ

∂t
= −z(z − 1)2 ∂2φ

∂z2

+ (z − 1) [(N − 1 − ε) z − (N − 1 + ε)]
∂φ

∂z

+ εN (z − 1)φ. (9)

The solution of Eq. (9) can be exactly computed (see
Appendix A 3) as the superposition of polynomial eigenfunc-
tions

φ(z,t) =
N∑

n=0

Cnφn(z)eλnt , (10)

where the eigenvalues are

λn = −n(n − 1 + 2ε),

the eigenfunctions are polynomials in z

φn(z) =
N∑

k=n

an
k (1 − z)k

and the coefficients Cn depend on the initial condition. The
initial condition we use here is the same as in the previous
section, i.e., P (n,0) = δn,0, which implies that φ(z,0) = 1.
The exact expression for the coefficients an

k , Cn and their
product are given in Appendix A 3. The agreement between the
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FIG. 3. (Color online) The PGF function φ(z,t) as a function of z

at times t ∈ {0,1,2,4,8,16,32,64,128,256}/(128ε) for N = 100 and
ε = 0.01. Solid lines: theoretical expression (10). Circles: solution
obtained by the numerical resolution of the master equation (8) and
computation of its PGF.

solution (10) and the direct numerical solution of the master
equation is displayed in Fig. 3.

The PGF contains the most complete information on the
stochastic process under investigation. Some quantities of
interest extracted from it are given below.

A. Stationary probabilities

The stationary probabilities attained at large times are

P (n,∞) =
(

N

n

)
(ε)(n)(ε)(N−n)

(2ε)(N)
, (11)

(see Appendix A 3) and their comparison to numerical solution
of the master equation is displayed in Fig. 4. Note the
qualitative change of behavior at ε = 1. Expression (11) is
equivalent to the expression found by Biancalani et al. [12]
in the continuous approximation, with the advantage of being
well defined for all n, including n = 0,N . In particular, for
εN � 1,

P (n,∞)

{
(1 − HN−1ε)/2 + O(ε2) n = 0,N

Nε
2n(N−n) + O(ε2) n 
= 0,N,

where Hm is the harmonic number
∑m

i=1 i−1.

B. Factorial moments

For the purposes of experimental measurements of the
parameters, other dynamical quantities can be of interest. The
most robust of these quantities are the factorial moments

〈(n,q)〉 = 〈n(n − 1) . . . (n − q + 1)〉
where (n,q) is used to denote the decreasing Pochhammer
symbol. The factorial moments are obtained by successive
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FIG. 4. (Color online) The stationary probabilities P (n,∞) as a
function of n for N = 100 and various ε. Solid lines: exact expression
(11), symbols: numerical resolution of the master equation. ε = 0.01
(blue circles), 0.1 (green squares), 1 (red diamonds), 2 (diamonds,
cyan), and 4 (×, purple).

derivation of the PGF

〈(n,q)〉 = q!
∂qφ

∂zq

∣∣∣∣
z=1

= (−1)qq!
q∑

i=0

Cia
i
qe

λi t . (12)

Note that the qth factorial moment involves only q + 1
eigenfunctions. The two first factorial moments are

〈n〉 = N

2
(1 − e−2εt )

〈n(n − 1)〉 = N (N − 1)

2

×
(

1 + ε

1 + 2ε
− e−2εt + ε

1 + 2ε
e−2(1+2ε)t

)
.

For Nε � 1, only the two first terms in the sum (12) contribute
significantly to the factorial moments for t � 1. In particular,
for large times,

〈(n,q)〉 → (N,q)
1 − Hq−1ε

2
.

C. Equilibrium time

Finally, we can define an equilibrium time Teq by studying
the dynamics of the decrease in P (0,t) or increase in P (N,t).
The measure we choose to use here is

Teq =
∫ ∞

0
{P (N,∞) − P (N,t)} dt, (13)

which is a generalization of the mean first passage time
(see Appendix A 3). The expressions for the two boundary
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FIG. 5. (Color online) Teq as a function of ε for different values
of N . Solid lines: theoretical expression (14); symbols: numerical
resolution of the master equation (blue circles N = 100; green
squares N = 50; red triangles N = 25). Inset: comparison between
the exact expression (14) (solid lines) and its approximation (15)
(dashed lines) for Nε � 1 and N = 100, 50, and 25.

probabilities are found to be

P (0,t) =
N∑

n=0

(−)N−nCna
n
Neλnt

P (N,t) = (−)N
N∑

n=0

Cna
n
Neλnt

and therefore

Teq = (−)N
N∑

n=1

Cna
n
N/λn. (14)

For Nε � 1, Eq. (14) is approximated by

Teq = 1

4ε
− 1

4

(
HN−1 − 2 + 2

N

)
. (15)

Figure 5 displays Teq as a function of ε and its comparison to
numerical solution of the master equation.

IV. CONCLUSION

As discussed in the introduction, noise induced bistability
has been intensely investigated, specially in genetic networks.
In general, the chemical master equations are too complex to
be solved exactly and various approximation techniques have
been developed to tackle this problem. In some cases, exact
analytical solutions have been obtained using the probability
generating function. Shahrezaei and Swain [21] have studied
a three-stage model of simple gene expression (DNA state,
RNA, protein) and obtained the protein number distribution.
Grima et al. [22] have investigated the steady-state distribution
of a two-component (DNA state, protein) genetic feedback
loop and have been able to obtain exact analytical results

using the PGF technique. In the first case, the PGF equation is
a first-order partial differential equation and can be solved by
the method of characteristics. In the second case, the model
can be reduced to two coupled one-component systems and
the PGF equation reduced to two ordinary coupled first-order
differential equations. Chemical master equations analogous
to these cases could in principle be investigated with the same
technique.

In this work, we have extended the investigation by
Biancalani et al. [12] of another noise induced bistable
system, which belongs to the second class of models discussed
above. First, we have obtained the exact solution for the
mean first passage time, which is the main result of the
above cited article. Second, we have solved the full master
equation associated with this system and obtained other useful
quantities for parameter estimations of such systems. We have
obtained these results for the original, discrete system without
resorting to the Taylor expansion of the master equation in
powers of 1/N . Discrete solutions have the advantage of
being clearly defined and avoid spurious effect happening at
the boundaries, specially for the interesting case of small ε.
Moreover, these solutions involve only simple arithmetic and
are easily computed.

APPENDIX: MATHEMATICAL DETAILS

1. Series expansion of the exact solution of the switching time

The exact solution (6) contains a double sum, where only
the terms i = 0 contain ε−1 factors. Separating these two
contributions, the solution becomes:

T̄ (0) = 1

Nε

N−1∑
k=0

(1)k
(1 + ε)k

(N − k + ε)k
(N − k)k

+
N−1∑
k=1

k∑
i=1

(N − k + ε)(k−i)

(N − k)(k−i+1)

(i + 1)(k−i)

(i + ε)k−i+1
.

Expanding the first sum to the first order in ε necessitates
only simple expansion in factors of the form m/(m + ε) =
1 − ε/m + O(ε2) and leads to

1

ε
− HN−1 + 2

N − 1

N
,

where the harmonic number Hm = ∑m
i=1(1/i). Evaluating the

second sum for ε = 0 results in
N−1∑
k=1

k∑
i=1

1

i(N − i)
= HN−1.

Adding the two contributions results in Eq. (7):

T̄ (0) = 1

ε
+ 2

N − 1

N
.

The next term in the series expansion of T̄ (0) is found to be

−2ε

N

[
HN−1 + NH

(2)
N−1 − 2(N − 1)

]
.

Note that algorithmically, the computation of T̄ (0) [expression
(6)] necessitates only the calculation of N ratios of the form
(m + 1)/(m + ε) and (m + ε)/m, which can be stored in an
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array. The T̄ (0) involves then only multiplications and sums
of these elements. The hypergeometric function on the other
hand is defined as

2F1(a,b; c; z) =
∞∑

n=0

(a)(n)(b)(n)

(c)(n)

zn

n!

and its efficient implementation requires specific algorithms.

2. Solution of Biancalani et al. for the switching time

In nonscaled time, the Biancalani et al. solution is

T̄ ns(0) = 1

r ′
2N2

1 + 2ε′/r ′ 2F1

(
1

2
,1 − N

ε′

r ′ ;
3

2
;

1

1 + 2ε′/r ′

)

× 2F1

(
1

2
,N

ε′

r ′ ;
3

2
;

1

1 + 2ε′/r ′

)
,

where the rates ε′ and r ′ are related to the rates ε, r used in
this article through:

ε′ = Nε ; r ′ = N2r.

3. Deriving and solving the PGF equation

PGF. The equation for the evolution of the PGF is obtained
by multiplying the master Eq. (8) by zn and summing over n

[23]. This operation leads to

∂φ

∂t
= 〈(zn+1 − zn)W+(n)〉 + 〈(zn−1 − zn)W−(n)〉. (A1)

The rates W±(n) are polynomials of second degree in n and
by the definition of the PGF,

〈nrzn〉 =
(

z
∂

∂z

)r

φ.

Application of the above rule to Eq. (A1) leads to Eq. (9).
Eigenfunctions. Equation (9) can be transformed into a hy-

pergeometric equation by a change of variable x = (z − 1)−1.
It is however much simpler to use the fact that by definition,
the function φ(z,t) is a polynomial of degree N in z and search
for the eigenfunctions of Eq. (9) in term of polynomials of the
following form:

φn(z) =
N∑

k=0

an
k (1 − z)k,

i.e.,

φ(z,t) =
N∑

n=0

Cnφn(z)eλnt .

Insertion of these polynomials into Eq. (9) shows that nontriv-
ial solutions (i.e., 
= 0) are possible only for the eigenvalues

λn = −n(n − 1 + 2ε) n = 0,1, . . . ,N,

which leads to a one term recurrence relation on the coefficients
an

k :

an
k = 0 (k < n)

an
n = 1

an
k+1 = − (N − k)(k + ε)

(k + 1)(k + 2ε) − n(n − 1 + 2ε)
an

k (n � k < N ).

As it can be noticed, φn is written as polynomial in powers
of (1 − z) and not z. This choice is not arbitrary: it is
this change of variable that allows us to obtain a one-term
recurrence relation between the coefficients an

k . Writing φn

as a polynomial in z leads to a two-term recurrence relation,
which is much more intricate to solve exactly.

The coefficients an
k can be computed in explicit forms:

an
k = (−)k−n

(
N − n

k − n

)
(ε + n)(k−n)

(2ε + 2n)(k−n)
(n � k < N ). (A2)

Alternatively, the eigenfunctions can also be given in terms of
the hypergeometric function:

φn(z) = (1 − z)n 2F1(n − N,n + ε; 2n + 2ε; 1 − z). (A3)

The amplitudes Cn depend on the initial condition. For
P (n,0) = δn,0 and therefore φ(z,0) = 1, the amplitudes obey
the triangular linear system

C0 = 1
k∑

n=0

Cna
n
k = 0 (k > 0),

which can be explicitly solved

Cn =
(

N

n

)
(ε)(n)

(2ε + n − 1)(n)
(A4)

and therefore,

Cna
n
k = (−)k−n

(
N

k

)(
k

n

)
(ε)(k)

(2ε + n)(k)

2ε + 2n − 1

2ε + n − 1
.

Stationary probabilities. As all eigenvalues except λ0 are
negative, for large times the PGF is simply

φ(z) = 2F1(−N,ε; 2ε; 1 − z),

where we have used the hypergeometric representation
[Eq. (A3)] of the eigenfunctions. Using the relations

2F1(−m,b; c; 1) = (c − b)(m)

(c)(m)

dn

dzn 2F1(a,b; c; z) = (a)(n)(b)(n)

(c)(n)
2F1(a + n,b + n; c + n; z)

we obtain

P (n) = 1

n!

dnφ

dzn

∣∣∣∣
z=0

= (−1)n
(−N )(n)

n!

(ε)(n)

(2ε)(n)

(ε)(N−n)

(2ε + n)(N−n)
. (A5)
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As

(2ε)(n)(2ε + n)(N−n) = (2ε)N

we recover the relation (11) on the stationary probabilities.

Factorial moments. Using the above expression, the facto-
rial moments are

〈(n,q)〉 = (N,q)
q∑

i=0

(−)i
(

q

i

)
(ε)(q)

(2ε + i)(q)

2ε + 2i − 1

2ε + i − 1
eλi t .

Equilibrium times. Many different measures can be used
for the equilibrium time of the system. The expression we
use

Teq =
∫ ∞

0
[P (N,∞) − P (N,t)] dt (A6)

is the extension of the mean time to absorption to the case
when the boundary state is not absorbing. The reason is
the following: If the state N were the only absorbing state,
whatever the initial condition m, P (N,t) → 1 as t → ∞. The
probability of survival until time T , beginning in the state m is

Q(m,T ) = 1 − P (N,T )

and the probability density of not being absorbed during
[T ,T + dt] is therefore −∂T Q(m,T ). Therefore, the mean
time to absorption is

T̄ (m) = −
∫ ∞

0
T ∂T Q(m,T )dT

=
∫ ∞

0
[1 − P (N,T )] dT

=
∫ ∞

0
[P (N,∞) − P (N,T )] dT .

We see that in the case of an absorbing state N , our definition of
Teq and the mean time to absorption are the same. We continue
to use Teq as a measure of the equilibrium time when N is not
absorbing.

Probabilities. The probabilities are extracted from the PGF
by collecting the coefficients of powers of z:

P (n,t) =
N∑

k=0

bn
k exp(λkt),

where

bn
k = (−)nCk

N∑
j=k

(
j

n

)
ak

j .
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