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Thermodynamic Casimir effect in films: The exchange cluster algorithm
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We study the thermodynamic Casimir force for films with various types of boundary conditions and the
bulk universality class of the three-dimensional Ising model. To this end, we perform Monte Carlo simulations
of the improved Blume-Capel model on the simple cubic lattice. In particular, we employ the exchange or
geometric cluster cluster algorithm [Heringa and Blöte, Phys. Rev. E 57, 4976 (1998)]. In a previous work, we
demonstrated that this algorithm allows us to compute the thermodynamic Casimir force for the plate-sphere
geometry efficiently. It turns out that also for the film geometry a substantial reduction of the statistical error
can achieved. Concerning physics, we focus on (O,O) boundary conditions, where O denotes the ordinary
surface transition. These are implemented by free boundary conditions on both sides of the film. Films with such
boundary conditions undergo a phase transition in the universality class of the two-dimensional Ising model. We
determine the inverse transition temperature for a large range of thicknesses L0 of the film and study the scaling
of this temperature with L0. In the neighborhood of the transition, the thermodynamic Casimir force is affected
by finite size effects, where finite size refers to a finite transversal extension L of the film. We demonstrate that
these finite size effects can be computed by using the universal finite size scaling function of the free energy of
the two-dimensional Ising model.
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I. INTRODUCTION

In their seminal work, de Gennes and Fisher [1] pointed
out that the spatial restriction of thermal fluctuations should
lead to an effective force. Due to its analogy with the Casimir
effect [2], where the spatial restriction of quantum fluctuations
leads to a force, it is called thermal, thermodynamic, or
critical Casimir effect. Here “critical” refers to the fact that
thermal fluctuations become large in the neighbourhood of
a critical point. At a second order phase transition, in the
thermodynamic limit of the bulk system, the correlation length,
which characterizes the spatial extent of these fluctuations,
behaves as

ξ � ξ0,±|t |−ν, (1)

where ξ0,± are the amplitudes of the correlation length in the
high and the low temperature phases, respectively, and ν is
the critical exponent of the correlation length. The reduced
temperature is given by t = (T − Tc)/Tc, where Tc is the
critical temperature. Note that in the following we shall use
for simplicity t = βc − β, where β = 1/kBT . For reviews on
critical phenomena, see for example [3–6].

Owing to their simplicity, often films are studied. For films,
the thermodynamic Casimir force per area is given by

FCasimir = −∂f̃ex

∂L0
, (2)

where f̃ex = f̃film − L0f̃bulk is the excess free energy per area
of the film of thickness L0, where f̃film is the free energy per
area of the film and f̃bulk is the free energy density of the bulk
system. The thermodynamic Casimir force per area follows
the finite size scaling law

FCasimir � kBT L−3
0 θ (t[L0/ξ0,+]1/ν) (3)
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(see for example Ref. [7]). The function θ is expected to
be universal, which means that it should only depend on
the universality classes of the transitions of the bulk system
and the surfaces. For reviews on surface critical phenomena,
see [8–10].

The thermodynamic Casimir effect has been demonstrated
in experiments on films of 4He and 3He-4He mixtures near the
λ transition or the tricritical point of the bulk system [11–14].
The force obtained for different thicknesses is described quite
well by a unique scaling function θ (x). Also, experiments with
liquid binary mixtures near the mixing-demixing transition
were performed, where either films [15,16] or the sphere-plate
geometry [17–23] were studied. In other experiments, the
thermodynamic Casimir force is the driving force for colloidal
aggregation [24,25].

It is a theoretical challenge to compute the universal scaling
function θ (x) for different bulk universality classes and types
of boundary conditions to compare with experimental data.
Still, the mean-field approximation is used as a tool that can be
employed relatively easily for more complicated geometrical
setups. For recent work, see for example [26,27]. Obviously,
no accurate results can be expected this way. Unfortunately,
field theoretic methods do not allow us to compute θ (x) for
all types of boundary conditions of interest or do not allow
us to compute θ (x) in the full range of the scaling variable
x [28–38]. For a discussion of this point, see for example the
introduction of [39]. Exact results can be obtained in the large
N limit for periodic and free boundary conditions [39–46].
Also, for the two-dimensional (2D) Ising model with various
boundary conditions, exact results were obtained [47–52].
In the case of the three-dimensional (3D) Ising universality
class and strongly symmetry breaking boundary conditions,
quite accurate results had been obtained by using the ex-
tended de Gennes–Fisher local-functional method [53–55].
O(n)-symmetric systems with periodic boundary conditions
had been studied using a functional renormalization group
approach [56].
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In the last few years, there has been considerable progress
in the study of the thermodynamic Casimir force by using
Monte Carlo simulations of lattice spin models. At least, in
principle, the finite size scaling function can be determined
with a controllable statistical and systematical error. In
particular, in Refs. [57–61] the three-dimensional XY bulk
universality class and a vanishing field at the boundary have
been studied, which is relevant for the experiments on 4He. A
quite satisfactory agreement between the experimental results
and the theory was found. In Refs. [26,58,59,62–72], the
Ising bulk universality class and various types of boundary
conditions were studied. Note that a continuous mixing-
demixing transition of binary mixtures belongs to the Ising
bulk universality class. Notwithstanding this nice progress,
further algorithm improvements are certainly welcome to
study problems with a large parameter space such as structured
surfaces [26,72], disorder at the surface, the crossover from
the special to the ordinary surface universality class [33], the
presence of an external bulk field [69,70], or more complicated
geometrical setups [27].

In Ref. [73], we determined the thermodynamic Casimir
force for the plate-sphere geometry. We studied the three-
dimensional Ising universality class and strongly symmetry
breaking boundary conditions. A preliminary study showed
that with a conventional approach and a reasonable amount
of CPU time it is impossible to get meaningful results for
this problem. Employing the exchange cluster algorithm, it
is possible to define a variance reduced estimator for the
difference of the internal energy. This allowed us to obtain the
scaling functions of the thermodynamic Casimir force with
high accuracy. The exchange cluster algorithm is a variant
of the geometric cluster algorithm of [74]. In the geometric
cluster algorithm, the sites of a single lattice are organized in
pairs. This is achieved, for example, by a reflection at a plane
of the lattice. The elementary operation of the update is the
exchange of the spin value within such pairs of sites. Instead,
we consider two independent systems. We consider pairs of
sites, where one is in one lattice, while the other site belongs
to the other lattice.

In this work, we apply the exchange cluster algorithm
to the film geometry. The relative simplicity of the film
geometry allows us to study the properties of the exchange
cluster algorithm and its associated improved estimators
more systematically. In this work, we first study strongly
symmetry breaking boundary conditions (+,+) and (+,−),
then (+,O), and finally (O,O) boundary conditions. Here,
the sign indicates the value of the spins at the boundary and
O the ordinary surface transition. These problems have been
studied before, and the scaling functions of the thermodynamic
Casimir force are known fairly well. Here, we are mainly
aiming at a better understanding of the exchange cluster
algorithm before attacking more complicated problems. It
turns out that, depending on the type of the surfaces of the
film, large reductions of the variance can be achieved.

In the case of (O,O) boundary conditions, the problem
arises that the film undergoes a second order phase transition in
the universality class of the two-dimensional Ising model. This
leads to sizable finite size effects, where the finite extension
in the transversal directions is meant. To understand these
finite size effects and the interplay of the transition with the

thermodynamic Casimir force on a quantitative level, we first
accurately determined the critical temperature for a large range
of thicknesses L0 by using the method discussed in Ref. [75].
We match the reduced temperature of the two-dimensional
Ising model and the films. We analyze how the temperature of
the effectively two-dimensional transition approaches the bulk
transition temperature as the thickness of the film increases.

Based on these results, we demonstrate that finite size
effects of the thermodynamic Casimir force due to the finite
extension of the lattice in the transversal directions are
governed by the universal finite size scaling function of
the free energy density that is obtained by analyzing the
two-dimensional Ising model.

The paper is organized as follows. In Sec. II, we define the
model and discuss the boundary conditions that we study in this
work. In Sec. IV, we discuss the exchange cluster algorithm
and the variance reduced estimator for differences of the
internal energy and other quantities. At the example of (+,−)
boundary conditions at the critical point of the bulk system,
we carefully study how the performance of the algorithm
depends on its parameters. In Secs. V and VI, we present our
numerical results for strongly symmetry breaking and (O,+)
boundary conditions, respectively. In Sec. VII A, we determine
the finite size scaling function of the free energy density of
the two-dimensional Ising model. In Sec. VII B, we study
the phase transition of films with (O,O) boundary conditions
for a large range of thicknesses L0. Then, in Sec. VII C we
determine the scaling function of the thermodynamic Casimir
force for films with (O,O) boundary conditions. Finally, we
summarize our results and give an outlook.

II. MODEL

As in previous work, we study the Blume-Capel model on
the simple cubic lattice. The bulk system, in absence of an
external field, is defined by the reduced Hamiltonian

H = −β
∑
〈xy〉

sxsy + D
∑

x

s2
x , (4)

where the spin might assume the values sx ∈ {−1,0,1}. x =
(x0,x1,x2) denotes a site on the simple cubic lattice, where xi ∈
{1,2, . . . ,Li} and 〈xy〉 denotes a pair of nearest neighbors on
the lattice. The inverse temperature is denoted by β = 1/kBT .
The partition function is given by Z = ∑

{s} exp(−H ), where
the sum runs over all spin configurations. The parameter D

controls the density of vacancies sx = 0. In the limit D →
−∞, vacancies are completely suppressed and hence the spin-
1
2 Ising model is recovered.

In d � 2 dimensions, the model undergoes a continuous
phase transition for −∞ � D < Dtri at a βc that depends on
D, while for D > Dtri the model undergoes a first order phase
transition, where Dtri = 2.0313(4) for d = 3 (see Ref. [76]).

Numerically, using Monte Carlo simulations it has been
shown that there is a point (D∗,βc(D∗)) on the line of
second order phase transitions, where the amplitude of leading
corrections to scaling vanishes. In Ref. [77], we simulated the
model at D = 0.655 close to βc on lattices of a linear size
up to L = 360. We obtained βc(0.655) = 0.387 721 735(25)
and D∗ = 0.656(20). The amplitude of leading corrections to
scaling at D = 0.655 is at least by a factor of 30 smaller than
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for the spin- 1
2 Ising model. Following Eq. (12) of Ref. [68],

the amplitude of the second moment correlation length in the
high temperature phase at D = 0.655 is

ξ2nd,0,+ = 0.2283(1) − 1.8(ν − 0.63002)

+ 275(βc − 0.387 721 735)

using t = βc − β as definition of the reduced temperature.

(5)

In the high temperature phase, there is little difference between
ξ2nd and the exponential correlation length ξexp which is defined
by the asymptotic decay of the two-point correlation function.
Following [78],

lim
t↘0

ξexp

ξ2nd
= 1.000 200(3) (6)

for the thermodynamic limit of the three-dimensional system.
Note that in the following, ξ0 always refers to ξ2nd,0,+.

A. Film geometry and boundary conditions

In this work, we study the thermodynamic Casimir effect
for systems with film geometry. In the ideal case, this means
that the system has a finite thickness L0, while in the other
two directions the limit L1,L2 → ∞ is taken. In our Monte
Carlo simulations we shall study lattices with L0 
 L1,L2

and periodic boundary conditions in the 1 and 2 directions.
Throughout, we simulate lattices with L1 = L2 = L.

The types of boundary conditions discussed here can be
characterized by the reduced Hamiltonian

H = −β
∑
〈xy〉

sxsy + D
∑

x

s2
x − h1

∑
x,x0=1

sx − h2

∑
x,x0=L0

sx,

(7)
where h1,h2 �= 0 break the symmetry at the surfaces. In our
convention, 〈xy〉 runs over all pairs of nearest neighbor sites.
Note that here the sites (1,x1,x2) and (L0,x1,x2) are not nearest
neighbors as it would be the case for periodic boundary
conditions. In general there is ambiguity, where exactly the
boundaries are located and how the thickness of the film is
precisely defined. Here, we follow the convention that L0 gives
the number of layers with fluctuating spins.

First, we study strongly symmetry breaking boundary
conditions that are given by |h1|, |h2| → ∞. There are, up to
symmetry transformations, two choices. Either h1 and h2 have
the same or a different sign, which we shall denote by (+,+)
and (+,−), respectively. Taking the limit |h1|, |h2| → ∞ fixes
the spins at the surface to the sign of the surface field.

In order to keep L0 layers of fluctuating spins, which is done
to be consistent with our previous work [63,68], we actually put
the surface fields |h1| = |h2| → ∞ at x0 = 0 and x0 = L0 + 1.
Note that this is equivalent to |h1| = |h2| = β at x0 = 1 and
L0. In a semi-infinite system, following the classification of
Refs. [8–10], this choice of boundary conditions corresponds
to the normal or extraordinary surface universality class.

Next, we simulated the case h1 = 0 at x0 = 1 and h2 →
∞ at x0 = L0 + 1. In a semi-infinite system, a vanishing
external surface field corresponds to the ordinary surface
universality class. Hence, we denote this combination of
boundary conditions by (O,+). Finally we simulated systems

with h1 = 0 and h2 = 0 at x0 = 1 and L0. This set of boundary
conditions is denoted by (O,O). In our program code we have
implemented these boundary conditions by spin variables that
reside at x0 = 0 and L0 + 1 that are fixed to either −1, 0, or 1,
depending on the type of the boundary condition.

In the case of (O,+) and (O,O) boundary conditions, we
studied small h1 and h2 by computing the coefficients of the
Taylor expansion of the quantities of interest up to second
order around vanishing surface fields.

Given that leading bulk corrections are eliminated, the
leading remaining corrections are due to the surfaces. There
are theoretical arguments that these can be expressed by an
effective thickness L0,eff = L0 + Ls of the film [79]. The
value of Ls depends on the precise definition of the thickness
L0. Concerning the physics, it depends on the model that
is considered and the type of boundary conditions that are
imposed. However, it should be independent of the scaling
variable x and the physical quantity that is considered. It can be
decomposed as Ls = lex,1 + lex,2, where lex,i are extrapolation
lengths that depend on the type of boundary conditions at the
boundary i and not on the boundary conditions at the other
boundary. For a discussion, see for example Sec. IV of [63]
or Sec. III of [26]. In Ref. [39], the concept of an effective
thickness has been verified with high numerical precision for
the large N limit of the three-dimensional O(N )-symmetric
φ4 model with free boundary conditions. In the following, we
shall use the numerical values Ls = 1.91(5) [68] for strongly
symmetry breaking boundary conditions, Ls = 1.43(2) for
(O,+) boundary conditions [65]. In the case of (O,O) we
take Ls = 2lex,O where lex,O = 0.48(1) [see Eq. (63) of [65]].
The estimates of Ls were obtained by analyzing the finite size
scaling behavior of various quantities directly at the critical
point. Analyzing the numerical results for the thermodynamic
Casimir force below, we shall use these values as input.

III. COMPUTING THE THERMODYNAMIC
CASIMIR FORCE

The reduced excess free energy per area of the film is
defined by

fex = − 1

L1L2
ln Z − L0fbulk, (8)

where fbulk is the reduced bulk free energy density and Z =∑
{s} exp[−H ({s})] is the partition function of the film. We

compute the thermodynamic Casimir force by using Eq. (2).
On the lattice, the partial derivative of the reduced excess free
energy per area with respect to the thickness of the film is
approximated by

∂fex

∂L0
� 	fex = fex(L0 + d/2) − fex(L0 − d/2)

d
, (9)

where d is a small positive integer. Except for a few preliminary
algorithmic studies, we shall use the minimal value d = 1.
Following Hucht [57], we compute the difference of free
energies as integral over the inverse temperature of the
difference of the corresponding internal energies

	fex(β) = 	fex(β0) −
∫ β

β0

dβ̃ 	Eex(β̃), (10)
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where 	Eex = 〈	E〉 − Ebulk and

	E = E(L0 + d/2) − E(L0 − d/2)

d
, (11)

where in our convention the energy per area is given by

E = 1

L1L2

∑
〈xy〉

sxsy (12)

and Ebulk is the bulk energy density. The integration is done
numerically, using the trapezoidal rule:

−	fex(βn) ≈ −	fex(β0)

+
n−1∑
i=0

1

2
(βi+1 − βi)[	Eex(βi+1) + 	Eex(βi)],

(13)

where βi are the values of β we simulated at. They are ordered
such that βi+1 > βi for all i. Typically, O(100) nodes βi

are needed to compute the thermodynamic Casimir force in
the whole range of temperatures that is of interest to us.
Obviously, 	fex(β0) should be known with good accuracy.
Usually, one chooses β0 such that ξbulk(β0) 
 L0 and hence
	fex(β0) ≈ 0. In the case of strongly symmetry breaking
boundary conditions, we shall use a different choice of β0

that is discussed in Refs. [63,68].
One important aspect of this work is to demonstrate that

the exchange cluster algorithm allows us to compute 〈	E〉
by using a variance reduced estimator. The reduction of the
variance depends on the type of the boundary conditions and
the parameters L0, d, and β as we shall see in the following.
The variance of 	E, computed in the standard way, is

var(	E) = var[E(L0 + d/2)] + var[E(L0 − d/2)]

d2

≈ 2 var[E(L0)]

d2
. (14)

At the critical point, taking L1 and L2 proportional to L0, the
variance of the energy per area behaves as

var[E(L0)] ∝ C(L0)L−1
0 ∝ L

−1+α/ν

0 = L
−4+2/ν

0 , (15)

where C(L0) is the specific heat of the finite system. On the
other hand, the quantity we are interested in scales as

	Eex ∝ L
−3+1/ν

0 (16)

at the critical point. Hence, the ratio

var(	E)

(	Eex)2
∝ L2

0

d2
(17)

which is, for a given number of statistically independent
measurements, proportional to the square of the statistical
error, increases with increasing thickness L0. In order to keep
the statistical error small, we used in Ref. [68] d = 2 and
4 for L0 = 33 and 66, respectively. This in turn makes it
more difficult to control the discretization error of Eq. (9). As
we shall see in the following, the exchange cluster improved
estimator of 〈	E〉 eliminates this problem and for strongly
symmetry breaking boundary conditions, we get statistically
accurate results for L0 = 64.5 and d = 1. Note that, with

comparable numerical effort, Ebulk can be computed more
accurately than 〈	E〉, even when using the exchange cluster
improved estimator. Here, we shall mainly use numerical
results for Ebulk obtained in previous work [63,68]. For a
discussion, see Sec. VII of [63]. Note that one could also
simulate the geometry discussed in Ref. [80] by using the
exchange cluster algorithm exactly in the same fashion as we
simulated the sphere-plate geometry in Ref. [73]. The layer of
fixed spins, called “wall” by the authors, which separates two
subsystems, would take over the role of the sphere. This way
the simulation allows us to measure 	Eex directly. Effectively,
Ebulk is provided by the larger of the two subsystems. We
performed a preliminary study that demonstrated that this
indeed works. However, we did not follow this line since,
as discussed above, accurate results for Ebulk are already
available from simulations of systems with periodic boundary
conditions in all directions.

IV. EXCHANGE CLUSTER ALGORITHM

With the exchange cluster algorithm, we simulate two
systems that are defined on identical lattices. Let us denote
the sites of this pair of lattices by sx,i , where x labels a site in a
given lattice and i ∈ {1,2} denotes the lattice. The sites of these
two lattices are mapped by T (x) one to one on each other such
that the neighborhood relation of the sites is preserved. In the
simplest case, T (x) is the identity. Here, we shall use random
translations along the transversal directions of the film. One
also could employ reflections.

The basic operation of the exchange cluster algorithm is
to exchange the values of the spins between corresponding
sites. This operation can be described by an auxiliary variable
σx ∈ {−1,1}:

s̃x,1 = 1 + σx

2
sx,1 + 1 − σx

2
sx,2, (18)

s̃x,2 = 1 + σx

2
sx,2 + 1 − σx

2
sx,1. (19)

In order to keep the notation simple, we assume T (x) = x.
For σx = −1, the exchange is performed, while for σx = 1 the
old values are kept. The contribution of a pair 〈xy〉 of nearest
neighbors to the reduced Hamiltonian is given by

H〈xy〉 = −β(s̃x,1s̃y,1 + s̃x,2s̃y,2)

= −β

2
(sx,1 − sx,2)(sy,1 − sy,2)σxσy

− β

2
(sx,1 + sx,2)(sy,1 + sy,2). (20)

Note that terms linear in σ cancel. The exchange of spins is
performed by using a cluster update. The construction of the
clusters is characterized by the probability to delete the link
between the nearest neighbors x and y [74]:

pd = min[1, exp(−2βembed)], (21)

where

βembed = β

2
(sx,1 − sx,2)(sy,1 − sy,2), (22)
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which is the prefactor of σxσy in Eq. (20). This is sufficient
for the problems studied in this work. Let us briefly sketch
how the exchange cluster algorithm can be applied to a
more general class of problems. For an enhanced coupling
at the boundary, as it is required for the study of the special
surface universality class, Eq. (20) has to be generalized
to

H〈xy〉 = −β〈xy,1〉s̃x,1s̃y,1 − β〈xy,2〉s̃x,2s̃y,2. (23)

This leads to the embedded coupling

β〈xy〉,embed = β〈xy,1〉 + β〈xy,2〉
4

(sx,1 − sx,2)(sy,1 − sy,2) (24)

and in addition to an external field that acts on σ :

hx,〈xy〉,embed = β〈xy,1〉 − β〈xy,2〉
4

(sx,1 − sx,2)(sy,1 + sy,2),

(25)
where the indices of h indicate that it is the contribution to the
field at the site x stemming from the pair 〈xy〉 of sites. In case
there is also an external field in the original problem we get
the contribution

hx,x,embed = hx,1 − hx,2

2
(sx,1 − sx,2). (26)

In total,

hx,embed = hx,x,embed +
∑

y.nn.x

hx,〈xy〉,embed. (27)

This generalized problem can be simulated, for example, by
constructing the clusters only based on the pair interaction and
then taking into account the external field in the probability
to flip the cluster, where here flipping a cluster means
that for all sites in the cluster the spins are exchanged.
For example, the cluster is flipped with the Metropolis-type
probability

pexc,C = min

[
1, exp

(
−2

∑
x∈C

hx,embed

)]
, (28)

where the sum runs over all sites x that belong to the given
cluster C.

Here, we study two films of the thicknesses L0,1 = L0 +
d/2 and L0,2 = L0 − d/2, where d = 1, 2, . . . . In the case of
system 1, the spins at x0 = 0 and L0,1 + 1 are fixed in order
to implement the boundary conditions, while for system 2, the
spins at x0 = 0 and L0,2 + 1 are fixed. In order to have the same
number of sites for both systems 1 and 2, we add in the case of
system 2 auxiliary spins at x0 = L0,2 + 2, . . . ,L0,1 + 1, which
assume the same value as those at x0 = L0,2 + 1.

Clusters are constructed according to the delete probability
given by Eq. (21). This means that a link between a pair of
neighbor sites is frozen with the probability pf = 1 − pd . Two
sites belong to the same cluster, if there exists a chain of frozen
links that connects the two sites. In order to keep the boundary
conditions in place, only clusters are flipped that do not contain
sites with fixed spins.

The purpose of the exchange cluster algorithm is to obtain a
variance reduced estimator of 〈	E〉. To this end, it is optimal to

exchange as many spins as possible. Hence, only those spins
are not exchanged that belong to clusters that contain fixed
spins. To this end, we have to construct only those clusters that
contain fixed spins. Starting the cluster at x0 = 0, the cluster
can not grow to x0 = 1 since s(0,x1,x2),1 = s(0,x1,x2),2 and hence
βembed = 0, which implies that pd = 1. Only starting from
x0 = L0,2 + 1, a cluster containing fixed spins of system 2
only, might grow to x0 = L0,2. Hence, we start the construction
of the frozen clusters by running through all sites x = (L0,2 +
1,x1,x2) and add the site y = (L0,2,x1,x2) to the frozen clusters
with the probability pf = 1 − pd [Eq. (21)]. Note that in this
initial step, we have to check only this single neighbor since
the other ones are frozen anyway. Then, the construction of
the frozen clusters is completed using a standard algorithm for
the cluster search.

In our C-program, the spins are stored in an array
char spins[I_D][L_Z][L][L]; where I_D equals two
and L_Z equals L0 + d/2 + 2. Similar to the case of the
plate-sphere geometry, it turns out that the frozen clusters
usually take only a small fraction of the lattice. Therefore, in
order to save CPU time we do not copy all spins outside the
frozen clusters from spins[0][][][] to spins[1][][][]
and vice versa. Instead, we do that for the spins that belong to
frozen clusters. This way, the systems 1 and 2 interchange
their position in the array spins. In order to keep track
of where the systems are stored in the array spins, we
introduce the array int posi[I_D], where the index i_d
equals 1 or 2 and posi[i_d] indicates whether system 1 is
stored in spins[0][][][] or spins[1][][][] and system 2
correspondingly. Implemented this way, the CPU time required
by the cluster exchange update is essentially proportional to
the size of the frozen clusters.

A. Construction of improved differences

The main purpose of the exchange cluster is to allow us to
define improved estimators for the difference of observables
defined in systems 1 and 2. Here, this is mainly 	E, however,
also other quantities can be computed efficiently as we shall
see below. The basic idea behind these improved differences
is that large parts of the configurations are swapped between
the two systems. This way we get exact cancellations for most
of the lattice volume. Let us consider an observable A that is
defined for both systems 1 and 2. We are aiming at a variance
reduced estimator for the difference

	A = A1 − A2. (29)

To this end, we make use of the correlation of the configuration
of system 1 at Markov time t + 1 with that of system 2 at
Markov time t , and vice versa:

	Aimp = 1
2 ([A1,t − A2,t+1] + [A1,t+1 − A2,t ]), (30)

where the second index of A now gives the position of the
configuration in the Markov chain and t and t + 1 are separated
by a single exchange cluster update.
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Let us work out Eq. (30) explicitly for 	E:

d	Eimp = 1

2

∑
<xy>

(
[s(t)

x,1s
(t)
y,1 − s

(t)
x,2s

(t)
y,2] + [s(t+1)

x,1 s
(t+1)
y,1 − s

(t+1)
x,2 s

(t+1)
y,2 ]

)

= 1

2

∑
<xy>

(
[s(t)

x,1s
(t)
y,1 − s

(t+1)
x,2 s

(t+1)
y,2 ] + [s(t+1)

x,1 s
(t+1)
y,1 − s

(t)
x,2s

(t)
y,2]

)

= 1

2

∑
<xy>∈Cf

(
[s(t)

x,1s
(t)
y,1 − s

(t+1)
x,2 s

(t+1)
y,2 ] + [s(t+1)

x,1 s
(t+1)
y,1 − s

(t)
x,2s

(t)
y,2]

)
, (31)

where 〈xy〉 ∈ Cf means that at least one of the sites x or y

belongs to a frozen cluster. Hence, also the numerical effort to
compute 	Eimp is approximately proportional to the size of
the frozen clusters. Note that for our choice of the update

s
(t+1)
x,1 s

(t+1)
y,1 = s

(t)
x,2s

(t)
y,2 and s

(t+1)
x,2 s

(t+1)
y,2 = s

(t)
x,1s

(t)
y,1 (32)

for all nearest neighbor pairs 〈x,y〉 where neither x nor y

belongs to a frozen cluster.

B. The simulation algorithm, benchmarks,
and tuning of parameters

The exchange cluster algorithm on its own is not ergodic
since it keeps the total number of spins of a given value fixed.
Therefore, we performed in addition updates of the individual
systems, using standard cluster and local updates [81]. In all
our simulations, we used the SIMD-oriented fast Mersenne
twister algorithm [82] as pseudorandom number generator.

1. Cluster algorithm for the individual system

We used the standard delete probability pd =
min[1, exp(−2βsxsy)] in the construction of the clusters. One
has to take into account that clusters that contain sites with
fixed spins can not be flipped. Flipped means that all spins
that belong to the cluster are multiplied by −1. We have
used two types of cluster updates. In the first one, denoted
by SW-cluster algorithm in the following, we flip the clusters
that do not contain fixed sites, following Ref. [83], with
the probability 1

2 . In the second one, denoted by B-cluster
algorithm in the following, clusters that do not contain fixed
sites are always flipped. This has the technical advantage
that actually only clusters that contain sites with fixed spins
have to be constructed. All other spins are flipped. For (O,O)
boundary conditions, only the SW-cluster algorithm is used
since for sx = 0 or sy = 0 we get pd = 1 and hence there
are no clusters that contain both sites of the interior and the
boundary.

2. Todo-Suwa algorithm

The authors of [84] have pointed out that autocorrelation
times of local updating algorithms can be reduced by a
significant factor, when one abstains from detailed balance
and only demands the sufficient condition of balance. This
idea still leaves considerable freedom for the design of the
algorithm. Todo and Suwa suggest to order the possible values
of the local spin on a cycle. Then, one preferentially updates
in one of the two directions on the cycle. For the precise

description, see Ref. [84]. Todo and Suwa have tested their
algorithm for example at the four- and eight-state Potts models
in two dimensions in the neighborhood of the critical point.
They find a reduction of the autocorrelation time compared
with the heat-bath algorithm by a factor of 2.7 and 2.6 for the
four- and eight-state Potts model, respectively. In the case of
the improved Blume-Capel model on the simple cubic lattice
at the critical point one finds a reduction by a factor of about
1.7 compared with the heat-bath algorithm [85]. Since we
failed to find a prove of ergodicity for the Todo-Suwa local
update, sweeping through the lattice in typewriter fashion, we
performed heat-bath sweeps in addition. Note that for the heat
bath the proof of ergodicity is trivial.

3. Update cycle

We initialized the spins that are not fixed by choosing one
of the three possible values with equal probability. Then, we
equilibrated the systems by performing 1000 update cycles
consisting of one heat-bath sweep, one SW-cluster update,
one Todo-Suwa sweep, and one B-cluster update. In the case
of (O,O) boundary conditions, the B-cluster update is omitted.

After this initial phase of the simulation we added nexc

exchange cluster updates to each update cycle. Furthermore,
since the frozen exchange clusters are very much localized at
the boundary, we performed for each exchange cluster update
a local update with the Todo-Suwa algorithm of the ir layers
of the lattices that are closest to the upper boundary. Only in
a few preliminary tests we shall use a different sequence of
updates, which will be stated in the following.

4. Tuning the parameters of the update cycle
and benchmarking the algorithm

First, we tested the performance of the exchange cluster
algorithm for (+,−) boundary conditions at the critical point
βc = 0.387 721 735. To keep things simple, we first used the
following update sequence: A global sweep with the heat-bath
algorithm over both systems followed by one exchange cluster
update, combined with a random translation of one system with
respect to the other in the transversal directions. Our results
are summarized in Table I. In all cases, 105 update cycles
and measurements were performed. In the third column, we
give the size of the frozen exchange clusters per area Sc. The
d = L0,1 − L0,2 layers, where the spins of system 2 are fixed
and those of system 1 are not, are taken into account in Sc.
This means that Sc at least equals to d. We find that Sc is
small compared with the thickness of the films in all cases. For
given d it depends very little on the thickness L0. As one might
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TABLE I. We study the properties of the exchange cluster algorithm for (+,−) boundary conditions at βc. The transversal extension of the
lattices is L = 32, 64, and 128 for L0,2 = 8, 16, and 32, respectively. For the definition of the quantities and a discussion, see the text.

L0,1 L0,2 Sc var(d	Eimp)/L2 τint,imp [var(E1) + var(E2)]/L2 τint,E1 τint,E2

9 8 1.4462(11) 35.5(2) 1.21(2) 144.2(6) 1.67(3) 1.37(3)
17 16 1.4538(12) 58.4(3) 1.40(4) 378.(2.) 2.97(10) 2.62(9)
18 16 2.7966(21) 96.3(6) 2.28(7) 399.(2.) 3.61(13) 2.85(10)
33 32 1.4547(11) 89.8(5) 1.52(6) 995.(6.) 9.6(7) 9.2(6)
34 32 2.8001(22) 152.4(10) 2.67(11) 982.(6.) 9.6(7) 7.5(5)
36 32 5.3388(41) 252.(2.) 5.70(33) 1046.(7.) 9.6(7) 8.3(6)

expect, it increases with increasing d. We give the variance of
d	Eimp and of the energies E1 and E2 normalized by the area
L2 since this normalized number should have a finite L → ∞
limit. We find that the variance of d	Eimp is reduced compared
with the sum of the variances of the energies E1 and E2 of the
individual systems. For fixed d, the ratio of the two variances
increases with increasing lattice size. On the other hand, the
advantage of the improved estimator becomes smaller with
increasing d. Often, variance reduced estimators have a larger
integrated autocorrelation time than the basic quantity. Here,
in contrast we observe that the integrated autocorrelation time
of 	Eimp is considerably smaller than those of the energies E1

and E2 of the individual systems.
Next, we studied an update cycle that includes cluster

updates of the individual films. In particular, we used the
update cycle stated in Sec. IV B 3 above: one sweep with the
heat-bath algorithm, a SW-cluster update, one sweep with the
Todo-Suwa algorithm, and a B-cluster update.

Motivated by the fact that Sc is small and hence the CPU
time required by the exchange cluster update is little and that
the integrated autocorrelation time τint,imp is relatively small,
we performed nexc exchange cluster updates for each update
cycle. Furthermore, since the frozen exchange clusters are very
much localized at the upper boundary, a sweep with the local
Todo-Suwa algorithm of the ir layers that are closest to the
upper boundary is performed. In the following, we try to find
the optimal choice for the parameters nexc and ir . Again, we
perform this study at the critical point for (+,−) boundary
conditions.

As an example, let us consider the pair of lattices character-
ized by d = 1, L0 = 32.5, and L = 128. On our CPU, the time
required by a single exchange cluster update is about 0.014
times the one needed for the total of the SW-cluster, B-cluster
updates, and the heat-bath and Todo-Suwa sweeps. Updating
one layer in both lattices using the Todo-Suwa algorithm takes
about 0.0049 times the CPU time of these updates. Hence, the
CPU time required by the complete cycle is proportional to

tmix = 1 + nexc(0.014 + 0.0049ir ). (33)

We define a performance index as

Iperf = var[E1 − E2] τint,E1−E2

tmix var[d	Eimp] τint,imp
, (34)

where var[E1 − E2] and τint,E1−E2 are taken from a simulation
with nexc = 0, i.e., without any exchange cluster update.
We simulated for a large number of values of nexc and ir .
The number of update cycles ranges from 2 × 105 to 106.

Our results are plotted in Fig. 1. Among our choices, the
optimal performance is reached for ir = 4 and nexc = 32.
For these parameters, the improvement is Iperf = 152.0(1.3),
which means that the improved cluster exchange estimator
allows us to reduce the statistical error by more than a factor
of 12 at a given CPU time. We also see that this maximum is
rather shallow, which means that no accurate fine tuning of the
algorithm is needed to reach a fair fraction of the optimum.

We performed an analogous study for L0 = 16.5 and 64.5,
simulating a smaller number of values of ir and nexc, focusing
on finding the optimal values. For L0 = 16.5, the maximum
is also reached for ir = 4 and nexc = 32 with Iperf = 45.5(3).
Also, here the maximum of Iperf is very shallow. For example,
for ir = 4 and nexc = 16 we get Iperf = 40.3(3) or for ir = 2
and nexc = 32 we get Iperf = 43.0(3). For L0 = 64.5, the
optimum is located at ir = 8 and nexc = 64 with Iperf =
553.(13.). For ir = 4 and nexc = 32 we get Iperf = 505.(10.).
For d = 1 fixed, Iperf increases almost like L2

0 with increasing
thickness. This means that the problem of the increasing
variance [Eq. (17)] of the standard estimator is cured by the
improved estimator.

Here, we performed a random translation of the systems
with respect to each other in the lateral directions performing
the cluster exchange update. Studying, for example, random

1 2 4 8 16 32 64 128
nexc

0

50

100

150

I p
er

f

i   = 0r
i   = 1r
i   = 2r
i   = 4r
i   = 8r

FIG. 1. (Color online) We study (+,−) boundary conditions at
the critical point. We simulated a pair of lattices characterized by
L0 = 32.5, d = 1, and L = 128. We plot the performance index Iperf

defined in Eq. (34) as a function of the number nexc of exchange
cluster updates per update cycle. Results are given for ir = 0, 1, 2, 4,
and 8. For a discussion, see the text.
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disorder at the boundary, this symmetry is not available.
Therefore, we checked how much the performance gain Iperf

depends on these translations. To this end, we repeated the
simulations for L0 = 32.5, ir = 4, and nexc = 32 without these
translations. It turns out that Iperf is smaller by a factor of about
1.6. This means that one certainly should use the translation
when the symmetry is present. However, the effectiveness of
the cluster exchange update does not crucially depend on it.

Likely further improvements can be achieved by exploiting,
for example, reflection symmetries. Also, a more elaborate
update cycle might improve the performance. We did not
further explore these ideas. Actually, we did not systematically
tune the parameters ir and nexc for the whole range of
temperatures and different boundary conditions discussed
below. Throughout, we used nexc = 20. In fact, we had started
our simulations before performing the systematic tuning
discussed above.

V. THERMODYNAMIC CASIMIR FORCE FOR STRONGLY
SYMMETRY BREAKING BOUNDARY CONDITIONS

These boundary conditions have been studied by using
Monte Carlo simulations of the Ising model [58,59,66,68]
and the improved Blume-Capel model [63,68] before. Here,
we simulated films of the thicknesses L0 = 16.5, 32.5, and
64.5. Throughout, we use d = 1. In the case of (+,+)
boundary conditions the correlation length of the film stays
small, it reaches a maximum at x = t[L0,eff/ξ0]1/ν ≈ 7, where
ξ2nd,film ≈ 0.145L0,eff (see Sec. VII B of Ref. [63]). We
simulated lattices of the transversal linear size L = 64 and 128
for L0 = 16.5, L = 128, and 256 for L0 = 32.5 and L = 256
for L0 = 64.5. Given the relatively small correlation length
of the film, these transversal extensions should clearly be
sufficient to keep finite L effects at a negligible level. This
is explicitly verified by the comparison of results obtained
for the two different values of L simulated for L0 = 16.5 and
32.5. In the case of (+,−) boundary conditions, the correlation
length of the film is monotonically increasing with increasing
inverse temperature β. The physical origin of this behavior
are fluctuations of the interface between the two phases that
arises in the low temperature phase. At the critical point,
ξ2nd,film ≈ 0.212L0,eff [63]. Results for the full range of x

that we have studied are given in Fig. 7 of [63]. Here, in
order to keep finite L effects negligible, we have chosen
L � 10ξ2nd,film. The largest values of L that we simulated
are L = 512, 1024, and 1024 for L0 = 16.5, 32.5, and 64.5,
respectively.

For both (+,+) and (+,−) boundary conditions, we took
ir = 2, 4, and 8 for L0 = 16.5, 32.5, and 64.5, respectively. As
already mentioned above, we have chosen nexc = 20 for all our
simulations. As discussed above in Sec. IV B 4, in particular
for L0 = 64.5 a larger value of nexc would have been a better
choice.

In most of the simulations, we performed 105 update
cycles. Only for (+,−) for (L0,L) = (32.5,1024), (64.5,512),
and (64.5,1024) we performed less update cycles, where the
minimal number was 29 300. In total, we used about 1.5
and 3.5 years of CPU time on a single core of an AMD

0.34 0.36 0.38 0.4
β

1.1

1.2

1.3

1.4

1.5

1.6

S c

(+, -)  L   = 16.50
(+, -)  L   = 32.50
(+, -)  L   = 64.50
(+,+)  L   = 16.50
(+,+)  L   = 32.50
(+,+)  L   = 64.50

FIG. 2. (Color online) The average size Sc of the frozen exchange
clusters per area is plotted as a function of β. We give results for the
thicknesses L0 = 16.5, 32.5, and 64.5 for (+,+) and (+,−) boundary
conditions.

Opteron 2378 for (+,+) and (+,−) boundary conditions,
respectively.

Before going to the physics results, let us discuss the
properties of the exchange cluster algorithm. In Fig. 2, we plot
the average size Sc per area of the frozen exchange clusters as
a function of β. For small values of β, the curves for both types
of boundary conditions as well as all three thicknesses of the
film fall on top of each other. For small β, Sc slowly increases
with increasing β. In the case of (+,−) boundary conditions Sc

increases, up to statistical fluctuations, in the whole range of β

that we have studied. In the neighborhood of βc, no particular
change of the behavior can be observed. In Fig. 2, we give
no error bars, in order to keep the figure readable. We have
convinced ourself that the fluctuations that can be seen for
(+,−) boundary conditions for L0 = 32.5 and 64.5 at large
values of β can be explained by large statistical errors due to
large autocorrelation times. These are likely caused by slow
fluctuations of the interface between the phases of opposite
magnetization. The analog problem for antiperiodic boundary
conditions is discussed in Ref. [86]. Here, we made no attempt
to adapt the special cluster algorithm of Ref. [86] to (+,−)
boundary conditions.

In the case of (+,+) boundary conditions, starting from
a certain value of β that depends on the thickness L0, Sc

departs from the curve for (+,−) boundary conditions. At the
resolution of our plot, this happens when the bulk correlation
length becomes ξ ≈ L0/7. At some β(L0) < βc, Sc reaches a
maximum. In the low temperature phase, as β increases, again
the curves for different L0 fall on top of each other.

With respect to the performance of the exchange cluster
algorithm, it is important to note that in all cases Sc remains
small compared with the thickness L0 in the whole range of β

that we have studied.
Next, we discuss how much the statistical error is reduced

by employing the improved estimator of the energy difference.
Here, we can not use Iperf defined in Eq. (34) since we did not
perform simulations with nexc = 0 for the whole range of β.
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FIG. 3. (Color online) We plot the quantity “gain” defined in
Eq. (35) as a function of the inverse temperature β for (+,+) boundary
conditions and the thicknesses L0 = 16.5, 32.5, and 64.5.

Hence, we study the ratio

gain = ε(	E)

ε(	Eimp)
, (35)

where ε(	E) and ε(	Eimp) are the statistical errors of
the energy difference computed in the standard and the
improved way, respectively. In the case of the standard

estimator we have computed ε2[	E(L0)] = ε2[E(L0 +
1/2)] + ε2[E(L0 − 1/2)] naively, not taking into account
the statistical correlation of the two quantities due
to the exchange cluster updates. Note that Eq. (35)
gives a ratio of statistical errors. Hence, this gain has
to be squared to be compared with Iperf defined in
Eq. (34).

In Fig. 3, this gain is plotted for (+,+) boundary conditions.
At small values of β, the gain depends very little on β. At
β slightly smaller than βc the gain starts to increase with
β. At larger values of β the gain increases approximately
linearly with β. It is interesting to note that the gain increases
with increasing thickness of the lattice size. At βc we get
gain ≈10.2, 17.3, and 28.5 for L0 = 16.5, 32.5, and 64.5,
respectively.

For (+,−) boundary conditions we find that the gain
depends only weakly on the inverse temperature β. At βc

we get gain ≈8.2, 12.5, and 15.2 for L0 = 16.5, 32.5, and
64.5, respectively. This means that we profit less from the
cluster exchange estimator than in the case of (+,+) boundary
conditions. The square of gain is quite roughly equal to Iperf

determined in the section above.
Now, let us turn to the analysis of our numerical results for

the thermodynamic Casimir force. Following Refs. [63,68],
we chose the starting point β0 of the integration (13) such that
the approximation discussed in Sec. IV A of Ref. [63] is still
valid. We get

	fex(β0) = ±C2(β0)

ξ 2(β0)

exp[−(L0 + 1 + d/2)/ξ (β0)] − exp[−(L0 + 1 − d/2)/ξ (β0)]

d
, (36)

where we have + for (+,+) boundary conditions and − for
(+,−) boundary conditions. The numerical values of C2(β0)
and ξ (β0) are taken from Ref. [68]. By comparing results
obtained with different choices of β0 we found that the
approximation (36) is accurate at the level of our statistical
error for L0/ξ (β0) � 8. To be on the safe side, we used
L0/ξ (β0) > 10 in the following.

Let us discuss the results obtained for the scaling function
θ (x) � −L3

0,eff	fex, where x = t[L0,eff/ξ0]1/ν . In Fig. 4, we
give our results for (+,−) boundary conditions. The data
for L0 = 64.5 are attached as Supplemental Material [87].
For x � −15, the curves for the three different thicknesses
fall nicely on top of each other. For x � −15, we see
a small deviation of the result for L0 = 16.5 from the
other two thicknesses. The difference between L0 = 32.5
and 64.5 can hardly be resolved. Hence, we are confident
that corrections to scaling are well under control and the
numerically important contributions are well described by
the effective thickness L0,eff = L0 + Ls with Ls = 1.91(5).
Finally, let us discuss the maximum of θ(+,−). Via the
zero of 	Eex we find βmax = 0.392 560(10), 0.389 512(5),
and 0.388 355(3) for L0 = 16.5, 32.5, and 64.5, respec-
tively. This corresponds to xmax = tmax[(L0 + Ls)/ξ0]1/ν =
−5.139(11)[22], −5.131(14)[12], and −5.154(24)[6], where
the number in square brackets gives the error due to the
uncertainty of Ls . Note that the dependence on ν essentially

cancels when taking into account the dependence of the
estimate of ξ0 on ν [Eq. (5)]. The maximal value of −L3

0,eff	fex

is 6.558(3)[54], 6.561(3)[29], and 6.556(7)[15], where again
the number in square brackets gives the error due to the
uncertainty of Ls . The results obtained for the different
thicknesses nicely agree. We conclude

xmax = −5.14(4), θ(+,−)(xmax) = 6.56(3). (37)

These estimates are fully consistent with those of our previous
work [68]. Note that the error bars of the final estimates are
not reduced compared with [68]. This is mainly due to the fact
that the same estimate of Ls is used and that the uncertainty of
Ls is a major source of the error.

For a comparison of the result for θ(+,−)(x) given in
Ref. [68], which is fully consistent with the present result,
with the results of Monte Carlo simulations of the Ising
model [59], experiments on a binary liquid mixture [15], and
the extended de Gennes–Fisher local-functional method, see
Fig. 1 of Ref. [55].

In Fig. 5, we give our numerical results for θ(+,+)(x). The
data for L0 = 64.5 are attached as Supplemental Material [87].
In the neighborhood of the minimum of −L3

0,eff	fex, the
curves for the three different thicknesses fall nicely on top of
each other. But, also for small and large values of the scaling
variable x, the differences remain small. In particular, the
curves for L0 = 32.5 and 64.5 can hardly be discriminated.

022110-9



MARTIN HASENBUSCH PHYSICAL REVIEW E 91, 022110 (2015)

-80 -60 -40 -20 0 20 40
 t (L       /     )   0,eff 0ξ 1/ν

0

1

2

3

4

5

6

7

- 
L

   
   

   
 fΔ

0,
ef

f
ex

3

L   = 16.50
L   = 32.50
L   = 64.50

FIG. 4. (Color online) Numerical results for the scaling function
θ (x) for (+,−) boundary conditions. We plot −L3

0,eff	fex as a
function of t(L0,eff/ξ0)1/ν , where L0,eff = L0 + Ls with Ls = 1.91,
ξ0 = 0.2283, and ν = 0.630 02. The thicknesses of the film are
L0 = 16.5, 32.5, and 64.5. The error bars are typically smaller than
the thickness of the lines.

We conclude that similar to the case of (+,−) boundary
conditions, corrections to scaling are well under control. Let
us look at the minimum of θ(+,+) in more detail. We find
βmin = 0.382 213(22), 0.385 670(10), and 0.387 001(7) for
L0 = 16.5, for L0 = 16.5, 32.5, and 64.5, respectively. This
corresponds to xmin = tmin[(L0 + Ls)/ξ0]1/ν = 5.851(23)[25],
5.881(29)[14], and 5.866(57)[7], where the number in square
brackets gives the error due to the uncertainty of Ls . The
minimal value of −L3

0,eff	fex is −1.755(3)[14], −1.747(4)[8],
and −1.750(7)[4], where again the number in square brackets
gives the error due to the uncertainty of Ls . We conclude

xmin = 5.87(7), θ(+,+)(xmin) = −1.75(1). (38)

Also, these estimates are fully consistent with those of our
previous work [68].
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FIG. 5. (Color online) Same as previous figure, but for (+,+)
instead of (+,−) boundary conditions.

VI. THERMODYNAMIC CASIMIR FORCE FOR (O,+)
BOUNDARY CONDITIONS

The three-dimensional Ising model and the improved
Blume-Capel model with (O,+) boundary conditions have
been simulated in Refs. [59] and [26,65], respectively. In
Ref. [65], we simulated films with (O,+) boundary conditions
for the thicknesses L0 = 8.5, 12.5, and 16.5 by using a
combination of heat-bath and cluster updates. As transversal
extension we took L = 32, 48, and 64, respectively. Note that
the correlation length of the film is ξ2nd,film ≈ 0.224(L0 + Ls)
at the critical point [65]. Therefore, we expect that finite
L effects are small for the values that we had chosen. We
performed 108, 108, and 2 × 108 update cycles for L0 = 8.5,
12.5, and 16.5, respectively. In total, 10 years of CPU
time on a single core of an AMD Opteron 2378 were
used.

Here, we complement these simulations and study the thick-
nesses L0 = 16.5 and 24.5 using L = 64 and 96, respectively.
We used the same type of update cycle as above for (+,+) and
(+,−) boundary conditions. In particular, we used ir = 2 and
nexc = 20 for L0 = 16.5 and ir = 3 and nexc = 20 for L0 =
24.5. For each value of β we simulated at, 107 update cycles
were performed. This large number of updates, compared with
the study of (+,−) and (+,+) boundary conditions discussed
above, is needed to get accurate results for the first and second
derivatives of the thermodynamic Casimir force with respect
to the surface field h1. Also, these simulations took about
10 years of CPU time on a single core of an AMD Opteron
2378.

In the case of (O,+) boundary conditions we have the
choice, whether we perform the exchange cluster update at
the + or the O boundary. Taking the conventions of Secs. II A
and IV, this means that we either fix sx,1 = sx,2 = 0 for x0 = 0,
sx,1 = 1 for x0 = L0 + 3/2, and sx,2 = 1 for x0 = L0 + 1/2
or sx,1 = sx,2 = 1 for x0 = 0, sx,1 = 0 for x0 = L0 + 3/2, and
sx,2 = 0 for x0 = L0 + 1/2. In both cases, the frozen clusters
have their origin at x0 = L0 + 1/2. Preliminary tests show that
it is preferential to perform the exchange cluster algorithm
at the + boundary. In Fig. 6, we give the average size Sc

per area of the frozen exchange clusters for (O,+) boundary
conditions, where the exchange cluster update is performed at
the + boundary. For comparison, we give the analogous result
for (+,+) boundary conditions and L0 = 16.5. At high and
low values of β, Sc does not depend on the thickness of the
film. Furthermore, it coincides with Sc for (+,+) boundary
conditions. In the neighborhood of βc, the behavior of Sc

depends on L0 and furthermore for L0 = 16.5, the behavior
for (+,+) and (O,+) boundary conditions is different. We
notice that also for (O,+) boundary conditions, Sc remains
small compared with the thickness L0 of the film in the whole
range of β that we have simulated.

For comparison, we simulated for L0 = 16.5 with the
exchange cluster update performed at the O boundary at 41
values of β, and 4 × 105 update cycles only. In Fig. 13, we plot
the resulting Sc. We see that Sc assumes a maximum ≈2.12
at β ≈ βc, which is considerably larger than the maximum
≈1.42 for the other choice, reached at β ≈ 0.38. At β = 0.34,
which is the smallest inverse temperature that we simulated,
Sc is almost equal for the two choices. On the other hand,
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FIG. 6. (Color online) We plot the average size Sc per area of the
frozen exchange clusters as a function of β for (O,+) boundary
conditions and the thicknesses L0 = 16.5 and 24.5 of the film.
For comparison, we give Sc for (+,+) boundary conditions and
L0 = 16.5.

for β = 0.41, Sc ≈ 1.51 for the exchange cluster performed
at the O boundary, while Sc ≈ 1.11 for the exchange cluster
performed at the + boundary.

In Fig. 7, we plot gain (35) as a function of β. For L0 =
16.5, we give results for both performing the exchange cluster
update at the O as well as the + boundary. For L0 = 24.5,
only results for performing the exchange cluster update at
the + boundary are available. The behavior of gain for the
exchange cluster updates at the + boundary is qualitatively
very similar to what we have seen above for (+,+) boundary
conditions. For β � βc, it depends little on β, while for larger
values of β we see a rapid increase of the gain with increasing
β. The behavior for the exchange cluster updates at the O

boundary is complementary. For β � βc, the gain increases
with decreasing β, while for larger values of β we see only
a small increase with increasing β. The intersection between
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O boundary, L   = 16.50
+ boundary, L   = 16.50
+ boundary, L   = 24.50

FIG. 7. (Color online) We plot the gain for films with (O,+)
boundary conditions. For L0 = 16.5, we performed the exchange
cluster update at the O as well as the + boundary. For L0 = 24.5,
only exchange cluster updates at the + boundary were performed.
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FIG. 8. (Color online) Numerical results for the scaling function
θ(O,+)(x). We plot −L3

0,eff	fex as a function of t[L0,eff/ξ0]1/ν , where
L0,eff = L0 + Ls with Ls = 1.43, ξ0 = 0.2283, and ν = 0.630 02.
The thicknesses of the films are L0 = 8.5, 12.5, 16.5, and 24.5. The
error bars are typically smaller than the thickness of the lines.

the two gain curves for L0 = 16.5 is located at β ≈ 0.383,
where ξ = 6.643(1) [88]. Overall, also taking into account
the behavior of Sc, performing the cluster exchange algorithm
at the + boundary is the better choice. Both versions of the
cluster update clearly reduce the variance of 	E.

Let us discuss the results for the scaling function of
the thermodynamic Casimir force. In Fig. 8, we plot our
numerical results for θ(O,+)(x). The data for L0 = 8.5 and
12.5 are taken from Ref. [65], while those for L0 = 16.5
and 24.5 are computed by using the exchange cluster algo-
rithm. The data for L0 = 24.5 are attached as Supplemental
Material [87]. For x � −5, the curves fall perfectly on top
of each other. For smaller values of x, small differences
between the results for different thicknesses can be ob-
served. The scaling function θ(O,+)(x) shows a maximum
in the low temperature phase, very close to the critical
point. In order to locate the maximum, we determine the
zero of 	Eex. We find βmax=0.390 713(6), 0.389 446(6),
0.388 874 7(15), and 0.388 362 6(10) for L0 = 8.5, 12.5,
16.5, and 24.5, respectively. This corresponds to xmax =
tmax[(L0 + Ls)/ξ0]1/ν =−1.1925(24)[38], −1.1764(41)[27],
−1.1743(15)[21], and −1.1723(18)[14]. For θ(O,+)(xmax),
we get the estimates −	fex(βmax)[L0 + Ls]3 =0.5664(7)[34],
0.5657(5)[24], 0.5647(4)[19], and 0.5635(4)[13], where we
used Ls = 1.43(2) as input. The number in square brackets
gives the error due to the uncertainty of Ls . We see that
−	fex(βmax)[L0 + Ls]3 is monotonically decreasing with L0

and the error due to the uncertainty of Ls is larger than the
statistical one. Therefore, we performed a fit, leaving Ls

as free parameter. We get, taking all four thicknesses into
account, θ(O,+)(xmax) = 0.5636(23) and Ls = 1.41(2), which
is consistent with our previous estimate of Ls . As our final
estimate, we quote

xmax = −1.168(5), θ(O,+)(xmax) = 0.5635(20), (39)

where we extrapolated xmax linearly in L−2
0 to L0 → ∞.

The error bar of xmax is chosen such that the estimate
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obtained for L0 = 24.5 is included. In the case of θ(O,+),max,
the estimate obtained for L0 = 24.5 and our fit essen-
tially coincide, which leads to our final estimate. Our
present estimates are compatible with xmax = −1.174(10) and
θ(O,+),max = 0.564(3) [65], and the error bars are slightly
reduced. For a summary of previous results, we refer the
reader to Sec. VI C of Ref. [65]. At the critical point, we
get −	fex(βmax)[L0 + Ls]3 =0.4978(7)[30], 0.4982(6)[21],
0.4976(4)[17], and 0.4964(3)[11] for L0 = 8.5, 12.5, 16.5,
and 24.5, respectively, where again we used Ls = 1.43(2) as
input. The value for L0 = 24.5 is slightly smaller than that
for L0 = 8.5, 12.5, and 16.5. Mainly based on the result for
L0 = 24.5, we quote

θ(O,+)(0) = 0.496(2) (40)

as our final result, which is fully consistent with θ(O,+)(0) =
0.497(3) obtained in Ref. [65] and with θ(O,+)(0) = 0.492(5)
given in Eq. (34) of Ref. [26].

Next, let us turn to the derivatives of the thermodynamic
Casimir force per area with respect to the surface field h1.
The thermodynamic Casimir force per area as a function of
the inverse temperature β and the surface field h1 follows the
scaling law

FCasimir(β,h1) = kBT L−d
0 �(O,+)

(
x,xh1

)
, (41)

where

xh1 = h1[L0/lex,nor,0]yh1 , (42)

where for our model lex,nor,0 = 0.213(3) [Eq. (73) of [65]], and
the surface critical RG-exponent yh1 = 0.7249(6) [Eq. (52)
of [65]]. In particular, for a vanishing surface field we get the
scaling function

θ(O,+)(x) = �(O,+)(x,0) (43)

discussed above.
Following Ref. [65], we compute the Taylor expansion of

the thermodynamic Casimir force with respect to the boundary
field h1 around h1 = 0 up to the second order. To this end, we
compute the first and second derivatives of 	fex with respect
to h1. The nth derivatives can be written as

∂n	fex(L0,β,h1)

∂hn
1

= −
∫ β

β0

dβ̃
∂n	Eex(L0,β̃,h1)

∂hn
1

, (44)

where

∂n	Eex(L0,β,h1)

∂hn
1

=∂n〈E〉(L0+1/2,β,h1)〉
∂hn

1

−∂n〈E〉(L0−1/2,β,h1)

∂hn
1

.

(45)
Note that there is no bulk contribution since the internal
energy of the bulk does not depend on h1. In the Monte Carlo
simulation, the first derivative can be computed as

∂〈E〉(L0,β,h1)

∂h1
= 〈EM1〉 − 〈E〉〈M1〉, (46)

where

M1 =
∑
x1,x2

s(1,x1,x2). (47)

The second derivative is given by

∂2〈E〉(L0,β,h1)

∂h2
1

= 〈
EM2

1

〉 − 2〈EM1〉〈M1〉 − 〈E〉〈M2
1

〉 + 2〈E〉〈M1〉2. (48)

Higher derivatives could be computed in a similar way.
However, it turns out that the relative statistical error of the
second derivative is much larger than that of the first one.
Therefore, we abstain from implementing higher derivatives.

We computed the quantities (46) and (48) with reduced
variance by using the exchange cluster update. Here, we did
not work out an explicit expression as Eq. (31) for 	E. Instead,
we implemented Eq. (30) directly for the observables that enter
Eqs. (46) and (48). In order to avoid a numerical effort that
is proportional to the volume of the film, we kept track of the
values of E of the two films, while exchange cluster updating
and performing the Todo-Suwa updates of the ir layers.

In the case of L0 = 16.5, we can compare with our results
obtained in Ref. [65], where we performed 20 times more
measurements. Using the cluster exchange update, we have
reduced the statistical error of ∂	Eex(L0,β̃,h1)

∂h1
by a factor slightly

larger than 2 for β � βc compared with the result of Ref. [65].
In the low temperature phase, this factor increases up to ≈6
at β = 0.405. For the second derivative with respect to h1 a
similar reduction of the statistical error can be observed.

In Fig. 9, we plot our results for θ ′
(O,+)(x) ≡

∂�(O,+)(x,xh1 )
∂h1

|h1=0. The curves for different thicknesses fall
nicely on top of each other. One observes that in contrast
to θ (x), θ ′(x) has a large amplitude also for x � 0. In
particular, the minimum is located close to the critical
point, in the high temperature phase. The analysis of the
data gives βmin = 0.384 04(5), 0.385 75(3), 0.386 44(2), and
0.387 020(10) for L0 = 8.5, 12.5, 16.5, and 24.5, respec-
tively. This corresponds to xmin = 1.468(20)[5], 1.345(20)[3],
1.305(20)[2], and 1.284(18)[2], where again the number in
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FIG. 9. (Color online) We plot y = −L3
0,eff (L0,eff/lex,nor,0)−yh1

∂	fex
∂h1

as a function of t(L0,eff/ξ0)1/ν for (O,+) boundary conditions
for the thicknesses L0 = 8.5, 12.5, 16.5, and 24.5. To this end,
we have used L0,eff = L0 + Ls with Ls = 1.43, ξ0 = 0.2283, ν =
0.63002, lex,nor,0 = 0.213, and yh1 = 0.7249.
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square brackets gives the error due to the uncertainty of Ls .
Still, we see a small trend in the numbers. Therefore, we
extrapolated linearly in 1/L2

0, arriving at xmin = 1.253(16). For
−L3

0,eff(L0,eff/lex,nor,0)−yh1
∂	fex

∂h1
, with L0,eff = L0 + Ls we get

at the minimum the values −0.697(1)[3]{7}, −0.694(2)[2]{7},
−0.691(1)[2]{7}, and −0.689(1)[1]{7} for L0 = 8.5, 12.5,
16.5, and 24.5, respectively. Here the number in square
brackets gives again the error due to the uncertainty of Ls ,
while the number in curly brackets gives the error induced
by the uncertainty of lex,nor,0. It turns out that the latter is
dominating. As our final result, we quote

xmin = 1.25(4), θ ′
(O,+)(xmin) = −0.689(3){7}. (49)

As final estimate of xmin, we took our extrapolation and
the error bar is chosen such that the result for L0 = 24.5
is still included. As final estimate of θ ′

(O,+),min, we simply
took the result obtained for L0 = 24.5. The error bar given
in parentheses is mainly motivated by the comparison with
the result for L0 = 16.5. The dominant error given in curly
brackets is due to the uncertainty of lex,nor,0. Our present
estimates are consistent with and slightly more accurate than
those given in Ref. [65].

In Fig. 10, we plot our results for θ ′′
(O,+)(x) ≡

∂2�(O,+)(x,xh1 )

∂h2
1

|h1=0. Here, the error bars are, despite the variance

reduction, larger than the thickness of the lines. For L0 = 12.5,
taken from Ref. [65], and L0 = 24.5 we give the error bars. For
L0 = 8.5 and 16.5 we omit them to keep the figure readable.
The curves for different thicknesses fall reasonably well on
top of each other. The discrepancies might be attributed to
the statistical error. The function displays a single maximum.
Analyzing the data, we arrive at the final result

xmax = −2.0(1), θ ′′
(O,+)(xmax) = 0.41(1){1}. (50)

The number given in curly brackets gives the error due to
the uncertainty of lex,nor,0. Again, our result is consistent with
Ref. [65].
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FIG. 10. (Color online) We plot y = −L3
0,eff (L0,eff/

lex,nor,0)−2yh1
∂2	fex

∂h2
1

as a function of t(L0,eff/ξ0)1/ν for (O,+)

boundary conditions for the thicknesses L0 = 8.5, 12.5, 16.5, and
24.5. To this end, we have used L0,eff = L0 + Ls with Ls = 1.43,
ξ0 = 0.2283, ν = 0.63002, lex,nor,0 = 0.213, and yh1 = 0.7249.

We have demonstrated that also the statistical error of the
derivatives of 〈	E〉 with respect to the boundary field h1 can be
reduced by using the exchange cluster update. As a result, we
reduced the errors of the scaling function θ(O,+)(x), θ ′

(O,+)(x),
and θ ′′

(O,+)(x) with respect to Ref. [65]. This, however, leaves
the conclusions of Ref. [65] unchanged. Therefore, we refer
the reader to Ref. [65] for a detailed discussion. A particularly
interesting observation is that for a finite boundary field h1, the
thermodynamic Casimir force might change sign as a function
of the thickness L0.

VII. FILMS WITH (O,O) BOUNDARY CONDITIONS

In contrast to the cases studied above, (O,O) boundary
conditions do not break the global Z2 symmetry of the system.
Therefore, films with (O,O) boundary conditions are expected
to undergo a second order phase transition that belongs to
the universality class of the two-dimensional Ising model.
At this transition, the correlation length of the film diverges
and we therefore expect large finite size effects, where the
finiteness in the transversal directions is meant. This should
also affect the thermodynamic Casimir force. This problem
has been discussed in Ref. [59] and for the case of films with
periodic boundary conditions in Ref. [67]. Here, we put this
discussion on a quantitative level. Since the transition belongs
to the two-dimensional Ising universality class, we can make
use of the universal finite size scaling function of the free
energy density that we compute in Sec. VII A by using the
exact solution of the two-dimensional Ising model [89]. In
Sec. VII B, in order to make use of this universal function,
we accurately determine the transition temperature and match
the scaling variable for a large range of thicknesses of the
film. Finally, in Sec. VII C we compute the thermodynamic
Casimir force for L0 = 8.5, 12.5, 16.5, and 24.5 by using
the exchange cluster algorithm. The algorithm seems to fail
in reducing the variance in the low temperature phase of the
films. We suggest to remediate this problem by breaking by
hand the Z2 symmetry in the low temperature phase. Still, in
the neighborhood of the transition of the film, we benefit only
little from the exchange cluster update.

A. Finite size effects in the neighborhood of the 2D transition

The reduced Hamiltonian of the Ising model on the square
lattice in the absence of an external field is given by

H = −β
∑
〈xy〉

sxsy, (51)

where sx ∈ {−1,1} and 〈xy〉 is a pair of nearest neighbor sites.
For the discussion of the critical behavior of the Ising model
on the square lattice, it is convenient to introduce

τ = 1

2

(
1

sinh 2β
− sinh 2β

)
(52)

as reduced temperature. The exponential correlation length in
the thermodynamic limit behaves as

ξ � ξ0,±|τ |−ν, (53)
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where ν = 1, ξ0,+ = 1/
√

2, and ξ0,− = ξ0,+/2, where ξ0,+ and
ξ0,− are the amplitudes of the exponential correlation length
in the high and the low temperature phases, respectively.

The reduced free energy density in the thermodynamic limit
is given by [90]

f (τ ) = − 1
2 ln(2 cosh2 2β) + fsing(τ ), (54)

where

fsing(τ ) = −
∫ π

0

dθ

2π
ln

[
1 +

(
1 − cos2 θ

1 + τ 2

)1/2
]

. (55)

In the neighborhood of the critical point, the reduced free
energy density behaves as

f (τ ) � 1

2π
τ 2 ln|τ | + A(τ ), (56)

where A(τ ) is an analytic function.
Here, we are interested in the finite size scaling behavior of

the reduced free energy density

f (β,L) = − 1

L2
ln Z(β,L), (57)

where L = L1 = L2 is the linear extension of the lattice
and periodic boundary conditions are assumed. To this end,
we have numerically evaluated Eq. (39) of Ref. [89]. The
differences

	f2(β,L) = f (β,2L) − f (β,L) (58)

and

	f∞(β,L) = f (β,∞) − f (β,L) (59)

are governed by finite size scaling functions

gn(τL) � 	fn(β,L)L2. (60)

We have constructed the function g2 numerically by evaluating
Eq. (39) of Ref. [89]. In order to get g∞, Eq. (54) is used
in addition. Our results obtained for L = 1024 are given in
Fig. 11. Comparing with results for smaller L, we conclude that
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FIG. 11. Finite size scaling function gn(τL) obtained by evaluat-
ing the free energy density of the Ising model on the square lattice
with periodic boundary conditions for L = 1024.

the deviation of our result for L = 1024 from the asymptotic
limit is less than 10−6.

B. Phase transition of films with (O,O) boundary conditions

The transition is expected to be of second order and to share
the universality class of the two-dimensional Ising model.
This allows us to take advantage of exact results obtained
for the two-dimensional Ising model and conformal field
theory. In our numerical study, we shall follow the approach
of Ref. [75], where films of the Ising model with periodic
boundary conditions were studied.

We determine the inverse transition temperature βc,2D(L0)
by finite size scaling. For simplicity, we consider lattices with
L1 = L2 = L. An estimate β̄c,2D(L0,L) of βc,2D(L0) is given
by the solution of

R(β,L0,L) = R∗, (61)

where R(β,L0,L) is a renormalization group invariant quantity
like the Binder cumulant U4, the second moment correlation
length over the lattice size ξ2nd/L, or the ratio of partition
functions RZ = Za/Zp, where Za is the partition function of
a system with periodic boundary conditions in 1-direction and
antiperiodic boundary conditions in 2-direction, while Zp is
the partition function of a system with periodic boundary in
both 1- and 2-directions. The fixed point value R∗ is defined
by

R∗ := lim
L→∞

R(βc,2D,L0,L). (62)

It can be obtained, e.g., from the study of the two-dimensional
Ising model. It is known to high numerical precision for ξ2nd/L

and U4 [91]. The fixed point value of RZ is exactly known for
arbitrary ratios L1/L2. It can be derived both from the exact
solution of the two-dimensional Ising model [89] as well as
from conformal field theory. For L1 = L2 one gets

R∗
Z = 0.372 884 880 824 589 . . . . (63)

The estimate of the inverse critical temperature converges as

β̄c,2D(L0,L) − βc,2D(L0) = c(L0)L−1/ν2D−ω + · · · , (64)

where ν2D = 1 is the critical exponent of the correlation length
of the two-dimensional Ising universality class. In the case of
ξ2nd/L and U4 we have effectively ω = 1.75 due to the analytic
background of the magnetic susceptibility. For RZ , the leading
correction is caused by the breaking of the rotational symmetry
by the lattice, resulting in ω = 2. For a detailed discussion of
corrections to scaling in two-dimensional Ising models, see
e.g. Ref. [92]. Therefore, following Ref. [75], we determine
β̄c,2D(L0,L) by using the ratio RZ of partition functions.

We determined the coefficients of the Taylor expansion
of the quantities we were interested in up to the third order
around the inverse temperature βs , where we simulated at.
We have chosen βs as good approximation of β̄c,2D(L0,L).
This estimate is obtained by preliminary simulations, or from
results for smaller lattice sizes that we had simulated already.
We solved Eq. (61) by replacing R(β,L0,L) on the left side of
the equation by its third order Taylor expansion around βs .

We simulated films of a thickness up to L0 = 64 and
a transversal lattice size up to L = 1024. In most cases,
we performed 106 update cycles. One cycle consists of one
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TABLE II. Numerical results for β̄c,2D(L0,L) [Eq. (61)] and the
slope over the linear lattice size S̄/L [Eq. (66)] for the thicknesses
L0 = 4 and 8 for a large range of transversal lattice sizes L.

L0 L β̄c,2D − 1
L

∂RZ

∂β
|RZ=R∗

Z

4 8 0.4395281(25) 2.45398(26)
4 12 0.4396433(18) 2.49361(30)
4 16 0.4396701(14) 2.50712(33)
4 24 0.4396820(10) 2.51720(38)
4 32 0.43968400(72) 2.51981(41)
4 48 0.43968644(50) 2.52385(45)
4 64 0.43968672(40) 2.52391(48)
4 128 0.43968708(20) 2.52453(54)
4 256 0.43968704(18) 2.5259(11)
8 16 0.4072021(10) 3.7970(5)
8 24 0.40723203(69) 3.8380(6)
8 32 0.40723991(53) 3.8520(6)
8 48 0.40724338(37) 3.8621(7)
8 64 0.40724454(27) 3.8664(8)
8 128 0.40724568(20) 3.8710(12)
8 512 0.40724571(12) 3.8750(38)

heat-bath sweep, one Todo-Suwa [84] sweep, a Swendsen-
Wang [83] cluster update, and a wall-cluster [93] update plus a
measurement of Za/Zp for each of the two directions. In total,
these simulations took about 2 years of CPU time on a single
core of a Quad-Core AMD Opteron(tm) 2378 CPU.

In Table II, we give the results obtained for L0 = 4 and 8
for a large range of L. Here we performed 108 update cycles,
except for L0 = 4, L = 256 where we performed 3.3 × 107

update cycles, and L0 = 8, 128, and 512 where we performed
5.5 × 107 and 9.6 × 106 update cycles, respectively. Fitting
the data with the ansatz

β̄c,2D(L0,L) = βc,2D(L0) + cL−3 (65)

we get, taking all data into account, βc,2D(4) =
0.439 687 10(12), c = −0.080(1), and χ2/d.o.f.= 1.16, and
βc,2D(8) = 0.407 245 61(9), c = −0.181(4), and χ2/d.o.f.=
1.39 for L0 = 4 and 8, respectively. Note that for L0 = 4
and 8 for L � 16L0, the estimate of β̄c,2D(L0,L) is consistent
with βc,2D(L0) within the statistical error. Therefore, in the
following, for other thicknesses L0 we took β̄c,2D(L0,L) with
L � 16L0 as our final estimate of βc,2D(L0).

In order to match the reduced temperature of the two-
dimensional Ising model and the reduced temperature of
the film, the derivative of RZ with respect to the reduced
temperature t at R∗

Z is a useful quantity. Taking ∂RZ/∂t =
−∂RZ/∂β at R∗

Z means that the derivative is taken at β̄, which
is the solution of Eq. (61). It behaves as

S̄ := − ∂RZ

∂β

∣∣∣∣
RZ=R∗

Z

= aL1/ν2D (1 + cL−ω + · · · ). (66)

In the fourth column of Table II we give S̄/L for L0 = 4 and
8 for all L we have simulated. We fitted these data with the
ansatz

S̄/L = a + bL−2. (67)

TABLE III. Numerical results for the phase transition of films
with (O,O) boundary conditions. The thickness of the film is given
by L0 and L is the linear extension in the two transversal directions. In
the third column, we give our estimate of the inverse of the transition
temperature βc,2D(L0) as defined by Eq. (61). In the fourth column,
we give S̄/L as defined by Eq. (66).

L0 L βc,2D − 1
L

∂RZ

∂β
|RZ=R∗

Z

4 256 0.43968704(18) 2.5259(11)
5 160 0.4258884(15) 2.903(7)
6 384 0.41724094(59) 3.256(9)
7 112 0.4114039(17) 3.579(8)
8 512 0.40724571(12) 3.875(4)
9 300 0.40416349(61) 4.157(11)
10 256 0.40180434(69) 4.430(12)
11 256 0.39995347(66) 4.669(13)
12 192 0.39846789(82) 4.918(13)
13 192 0.39725856(81) 5.147(14)
14 256 0.39625624(59) 5.391(15)
15 256 0.39541461(57) 5.568(16)
16 256 0.39470035(55) 5.789(16)
17 256 0.39408852(54) 6.048(17)
24 384 0.39148514(31) 7.350(23)
25 384 0.39125639(31) 7.524(24)
32 512 0.39013763(21) 8.661(29)
48 768 0.38900912(12) 10.988(46)
64 1024 0.38854284(8) 12.973(52)

Taking all data for L0 = 4 into account, we get a =
2.525 02(18), b = 4.546(22), and χ2/d.o.f.= 1.17, while fit-
ting all data for L0 = 8 we get a = 3.8708(4), b = 18.91(19),
and χ2/d.o.f.= 0.68. In the case of L0 = 8, we find that S̄/L

for L = 128 and 512 is consistent with the asymptotic result
obtained from the fit. For L0 = 4, this is the case only for
L = 128 and 256. For L = 64, we see a deviation of about two
standard deviations. In Table III, we give our final estimates
of βc,2D and the slope S̄/L for all thicknesses L0 that we
have simulated. We took results obtained for L � 16L0 as our
final estimate. Note that for other values of L0, the statistics is
considerably smaller and therefore the statistical errors larger
than for L0 = 4 and 8.

The transition temperature of the film approaches the
transition temperature of the three-dimensional bulk system
as the thickness L0 of the film increases. Based on standard
RG arguments, one expects [79,94]

β2D,c(L0) − β3D,c � aL
−1/ν

0 . (68)

It turns out that corrections to scaling have to be included to
fit our data. First, we allowed for an effective thickness of the
film

βc,2D(L0) − βc,3D = a[L0 + Ls]
−1/ν, (69)

where we fixed βc,3D = 0.387 721 735 and ν = 0.630 02. The
parameters of the fit are a and Ls . Taking into account only
thicknesses L0 � 24 we still get χ2/d.o.f. = 2.91. Therefore,
we added a term that takes into account the leading analytic
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TABLE IV. Fitting the data of Table III with the ansatz (70),
where βc,bulk = 0.387 721 735 and ν = 0.630 02 are fixed, while a, b,
and Ls are the parameters of the fit. Data for thicknesses L0 � L0,min

are taken into account.

L0,min a b Ls χ 2/d.o.f.

6 0.61841(5) 0.546(5) 0.9665(18) 3.41
7 0.61815(7) 0.505(9) 0.9570(29) 1.23
8 0.61813(7) 0.502(9) 0.9560(29) 1.12
9 0.61806(7) 0.485(12) 0.9513(37) 0.97
10 0.61799(8) 0.467(17) 0.9467(46) 0.85
11 0.61797(10) 0.462(22) 0.9453(61) 0.93
12 0.61791(11) 0.440(30) 0.9401(77) 0.91

correction

βc,2D(L0) − βc,3D = a[L0 + Ls]
−1/ν + b[L0 + Ls]

−2/ν,

(70)

where now b is an additional parameter of the fit. We find
that already for L0,min = 8, where all data for L0 � L0,min are
taken into account, χ2/d.o.f. ≈1. Hence, the ansatz (70) along
with the numerical values of the parameters given in Table IV
can be used to obtain estimates of βc,2D(L0) for thicknesses
8 � L0 � 64, where we have not simulated at. One should
note that the parameters have a clear dependence on the value
of ν that is used. For example, fixing ν = 0.629 92 we get
for L0,min = 10 the results a = 0.618 75(8), Ls = 0.9569(48),
0.4931(17), and χ2/d.o.f. = 0.83. An important observation is
that the results obtained for Ls are fully consistent with Ls =
0.96(2) obtained in Ref. [65] by studying the magnetization
profile of films with (O,+) boundary conditions at the critical
point. In terms of the scaling variable, we get

xc = −aξ
−1/ν

0 = −6.444(10), (71)

where we have taken into account the uncertainties of ν

and βc.
In Ref. [95], the authors computed βc,2D for the Ising model

on the simple cubic lattice, using the crossing of the Binder
cumulant. They obtain βc,2D = 0.258 44(4), 0.242 89(3),
0.235 87(2), 0.232 09(3), 0.229 65(3), and 0.228 04(3) for the
thicknesses L0 = 4, 6, 8, 10, 12, and 14, respectively. In the
case of the Ising model, we expect that corrections proportional
to L−ω

0 with ω = 0.832(6) contribute significantly, making the
extrapolation to L0 → ∞ more difficult than in the case of the
improved Blume-Capel model. Despite this fact, to get at least
a rough answer, we fitted the Ising data with the ansatz (69),
using βc,3D = 0.221 654 62(2) [see Eq. (A2) of [68]]. We find
a = 0.480(4), Ls = 1.18(5), and χ2/d.o.f. = 0.95 taking into
account all data for L0 � 8. Using the estimate of ξ0 given
in Eq. (A10) of [68] we get xc = −6.37(5), which is close
with our estimate obtained for the improved Blume-Capel
model. Equation (12) of Ref. [38] gives xc ≈ −6.5 for the
Ising universality class, which is in excellent agreement with
our result.

Finally, we studied the behavior of S̄/L at the critical point
as a function of the thickness L0 of the film. It behaves as

S̄/L � a [L0 + Ls]
1/ν−1. (72)

Performing various fits, using Ls = 0.96(2) and ν =
0.630 02(10) as input, we arrive at a = 1.12(1). In terms of
the scaling variable x = t[(L0 + Ls)/ξ0]1/ν , this means

S̄x := ∂RZ

∂x
= S̄[(L0 + Ls)/ξ0]−1/νL � aξ

1/ν

0

L

L0 + Ls

= 0.1074(10)
L

L0 + Ls

. (73)

For the transversal correlation length of the film in the high
temperature phase, Eq. (53) translates to

ξfilm � 1.99(2)[L0 + Ls](x − xc)−1 (74)

using

lim
L→∞

[S̄/L]2D Ising = lim
L→∞

1

L

∂Za/Zp

∂τ

∣∣∣∣
τ=0

= 0.302 124 710 040 7 . . . (75)

for the two-dimensional Ising model.
In Fig. 12, we plot Ū4 as a function of L/(L0 + Ls),

where Ū4 is the Binder cumulant U4 = 〈m4〉
〈m2〉2 at RZ = R∗

Z ,
where m = ∑

x sx is the magnetization. Following Ref. [91],
U ∗

4 = 1.167 922 9 ± 0.000 004 7. It is interesting to see that
already starting from L0 = 4, finite L effects nicely scale
with the effective thickness L0 + Ls . We have checked that
the decay of corrections with increasing L is consistent
with Ū4 − U ∗

4 ∝ L−7/4, as theoretically expected. Finally,
we convinced ourself that ξ̄2nd/L converges to (ξ2nd/L) =
0.905 048 829 2 ± 0.000 000 000 4 [91] as L/(L0 + Ls) →
∞. These observations strongly support the hypothesis that
the transition of the film, for any thickness L0, belongs to the
two-dimensional Ising universality class.

2 4 8 16 32
L/(L  +L  )  0       s

1.15

1.2

1.25

1.3

U
4

L   = 40
L   = 80
other

FIG. 12. (Color online) We plot Ū4 as a function of L/(L0 + Ls)
with Ls = 0.96. For comparison, we give U ∗

4 = 1.167 922 9 as green
dashed line. The data points for L0 = 4 and 8 are given as black
circles and red squares, respectively. For all other thicknesses, the
data points are shown as blue diamonds. The error bars are smaller
than the size of the symbols. For the definition of the quantities and
a discussion, see the text.
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FIG. 13. (Color online) We plot the size of the frozen exchange
clusters Sc for the thickness L0 = 16.5. We compare (O,+) and
(O,O) boundary conditions. In case of (O,O), we give results for
the simulation with and without breaking of the Z2 symmetry. The
vertical lines give the inverse transition temperature of films of the
thickness L0 = 16 and 17.

C. Thermodynamic Casimir force for (O,O)
boundary conditions

The thermodynamic Casimir force for (O,O) boundary
conditions has been studied for the Ising model [59] and
the improved Blume-Capel model [26]. We have simulated
films of the thicknesses L0 = 8.5, 12.5, 16.5, and 24.5. For
the parameters of the update, we took nexc = 20 throughout
and ir = 1, 2, 2, and 3 for L0 = 8.5, 12.5, 16.5, and 24.5,
respectively. We simulated the transversal lattices sizes L =
32, 64, 128, and 256 for L0 = 8.5, L = 48, 96, and 192
for L0 = 12.5, L = 64 for L0 = 16.5, and L = 96 and 192
for L0 = 24.5. For all thicknesses, we simulated at slightly
more than hundred values of β in the neighborhood of the
bulk critical point. The larger transversal lattice sizes were
simulated at less values of β than the smaller ones, focusing at
the neighborhood of the transition of the film. We performed
106 update cycles for each value of β and most lattice sizes.
Exceptions are (L0,L) = (8.5,256) and (12.5,192) were we
performed only 2 × 105 update cycles. In total, we used about
5 years of CPU time on a single core of an AMD Opteron 2378
running at 2.4 GHz.

Let us first discuss the performance of the exchange cluster
algorithm. In Fig. 13, we plot the average size per area of the
frozen exchange clusters Sc for L0 = 16.5 and L = 64. For
comparison, we give our result for (O,+) boundary conditions,
where the exchange cluster update is performed at the O

boundary. For small β, the curves for (O,+) and (O,O)
boundary conditions fall on top of each other. While for (O,+)
boundary conditions a maximum is reached at β ≈ βc, for
(O,O) ones we find that Sc is growing monotonically with
increasing β. At the inverse transition temperatures of the
two films, Sc is already a significant fraction of the thickness
L0 of the film. We find Sc ≈ 3.25, 3.82, 4.32, and 5.15
at β = [βc,2D(L0 + 1/2) + βc,2D(L0 − 1/2)]/2, for L0 = 8.5,
12.5, 16.5, and 24.5, respectively. For those thicknesses, where
we have simulated more than one value of L, we find at βc,2D

0.394 0.396 0.398 0.4
β

3.2

3.6

4

S c

L =   48
L =   96
L = 192

FIG. 14. (Color online) We plot the size of the frozen exchange
clusters Sc for the thickness L0 = 12.5 for the three transversal
extensions L = 48, 96, and 192.

and in a certain neighborhood below a small dependence of Sc

on L. In Fig. 14, we plot as an example Sc for L0 = 12.5 and
L = 48, 96, and 192.

Looking at the simulation in the low temperature phase in
detail, we find that the large frozen exchange clusters grow,
when the magnetization of the two systems have different sign.
Physically, one could force the two systems to have the same
sign by applying a bulk field h, such that hL0L

2m � 1, where
m is the magnetization of the film. The larger L, the smaller the
amplitude of the bulk field h could be chosen. At the end, one
would extrapolate the results obtained to h = 0. Here instead,
we break the symmetry by hand. After the sweeps with the heat
bath and the Todo-Suwa algorithm and the Swendsen-Wang
cluster update of the two systems, before starting the nexc

exchange cluster updates, we forced the two systems to positive
or zero magnetization. To this end, we multiplied all spins of
a system with −1, if its magnetization is negative. This is
certainly an update of the configuration that does not fulfill
balance and hence we introduce a systematic error. However,
we expect that this error vanishes in the limit L → ∞ and
also decreases as we go deeper into the symmetry broken
phase. In Fig. 13, we also give Sc for simulations with this
explicit symmetry breaking (SB). We find that indeed Sc is
much smaller than for the simulation without SB. Also, in the
low temperature phase of the films, Sc is now decreasing with
increasing β. For large β, the curve is falling on top of that for
(O,+) boundary conditions.

Let us briefly discuss the gain (35) that we do not plot here.
Without SB, for all L0 that we studied, it is almost linearly
decreasing with increasing β, until βc,2D(L0 + 1/2) is reached.
Starting from this point, it stays roughly constant with a value
that is approximately equal to 1.4. For β ≈ 0.389 gain takes
about the same value 4 for all thicknesses that we study. Using
SB, starting from β above βc,2D(L0 − 1/2), the gain rapidly
increases with increasing β. For example, the gain reaches the
value 5 at β ≈ 0.421, 0.403, 0.3973, and 0.3925 for L0 = 8.5,
12.5, 16.5, and 24.5, respectively.

For β somewhat larger than βc,2D, we simulated with SB
and without. For example, for L0 = 8.5 we find that the
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FIG. 15. (Color online) We plot 	2L,L = 	E(L0,2L) −
	E(L0,L) for L0 = 8.5. Our numerical data are given by black
circles, red squares and blue diamonds for L = 32, 64 and 128,
respectively. The solid lines give the theoretical prediction, obtained
from the universal finite size scaling function of the free energy
density of the 2D Ising transition. The vertical dashed green
line indicates the phase transition for L0 = 9 and the vertical
dashed-dotted violet line the phase transition for L0 = 8.

results for 	E are consistent at the level of our statistical
accuracy starting from β = 0.409, 0.408, 0.4075, and 0.407
for L = 32, 64, 128, and 256, respectively. In our analysis
of the thermodynamic Casimir force below, we have used the
results obtained with SB starting from slightly larger values of
β, to have a safety margin.

In a first step of the analysis we check whether finite L

effects in 	Eex are well described by the universal finite size
scaling function gn [Eq. (60)]. In Fig. 15, we plot 	2L,L =
	E(L0,2L) − 	E(L0,L) for L0 = 8.5 and L = 32, 64, and
128. Note that 	E(L0,2L) − 	E(L0,L) = 	Eex(L0,2L) −
	Eex(L0,L) since the bulk energy density cancels. Our
numerical results are compared with the prediction obtained
from the universal finite size scaling function g2. As input, we
use the inverse transition temperature βc,2D and the slope of
RZ at R∗

Z given in Table III, and Eq. (75):

[E(L0,2L) − E(L0,L)]predict

= − d

dβ
g2{c [βc,2D(L0) − β] L}L−2, (76)

where

c = [S̄/L]film,L0

[S̄/L]2D Ising
. (77)

We find that for L = 32 the data are quite close to the
prediction obtained from the universal finite size scaling
function g2. Note that for (L0,L) = (12.5,48) and (24.5,96)
similar observations can be made. Going to L = 64 the
matching between the data points and the predicted behavior
becomes better. Only at the minimum and the maximum of
the curve a small mismatch can be observed. For L0 = 12.5
and L = 96, a similar observation can be made. Finally, for
L = 128, at the level of our statistical accuracy, the match
between the data points and the predicted behavior is perfect.
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FIG. 16. (Color online) We plot −L3
0,eff	fex as function of

t(L0,eff/ξ0)1/ν for (L0,L) = (8.5,32), (12.5,48), (16.5,64), and
(24.5,96), where we used L0,eff = L0 + Ls with Ls = 0.96, ξ0 =
0.2283, and ν = 0.630 02. The vertical dashed violet line gives the
position of the phase transition of the film.

Next, we checked how the results for the thermodynamic
Casimir force are scaling with the thickness L0 of the
film. To this end, we plot in Fig. 16 our numerical results
for −(L0 + Ls)3	fex as function of t[(L0 + Ls)/ξ0]1/ν for
(L0,L) = (8.5,32), (12.5,48), (16.5,64), and (24.5,96). Since
L/[L0 + Ls] is similar for these lattices, we expect that finite
L/[L0 + Ls] corrections to scaling are similar. For x � −3,
the curves fall almost perfectly on top of each other. In
contrast, for smaller values of x, the different curves can be
resolved at our level of numerical accuracy. In particular, the
one for L0 = 8.5 is clearly different from the others. Since
the difference between the results for L0 = 16.5 and 24.5 is
rather minute, we expect that for L0 = 24.5 deviations from
the scaling limit are of a similar size as our statistical errors for
L0 = 24.5. A more quantitative discussion of corrections will
be given below, when we analyze the position of the minimum
of the scaling function θ .

Finally, in Fig. 17 we plot −(L0 + Ls)3	fex as function
of t[(L0 + Ls)/ξ0]1/ν for L0 = 24.5 for L = 96 and 192 and
our extrapolation of the L = 192 result to L → ∞ obtained
by using the universal scaling function g∞. The extrapolated
data are attached as Supplemental Material [87]. We see that
the minimum of θ deepens as the lattice size increases and the
position of the minimum approaches xc. The position of the
minimum for L → ∞ is close to xc but definitely different
from it. We extrapolated our results obtained for L0 = 8.5,
L = 256 and L0 = 12.5, L = 192 to L = ∞. Note that for
L0 = 16.5 we have only data for L = 64, and therefore a
reliable extrapolation is not possible. Analyzing these data, we
find that (xmin,θmin) = [−5.771(2)[19], − 1.6922(4)[108]],
[−5.757(5)[14], − 1.6924(8)[76]], and [−5.746(7)[7], −
1.6925(10)[40]] for L0 = 8.5, 12.5, and 24.5, respectively.
Again, the number in square brackets gives the error due to the
uncertainty of Ls . As our final result for the limit L0 → ∞,
we quote

xmin = −5.75(2), θ(O,O)(xmin) = −1.693(5), (78)
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FIG. 17. (Color online) We plot −L3
0,eff	fex as function of

t(L0,eff/ξ0)1/ν for L0 = 24.5 for L = 96 and 192 and our extrap-
olation to L → ∞. We used L0,eff = L0 + Ls with Ls = 0.96,
ξ0 = 0.2283, and ν = 0.630 02. The vertical dashed violet line
indicates xc.

which is consistent with the results obtained for the three
different thicknesses.

Since xmin is definitely larger than xc = −6.444(10),
the correlation length of the film at xmin is fi-
nite. Following Eq. (74), ξFilm(xmin) ≈ 1.99 × (−5.75 +
6.444) L0,eff≈1.4L0,eff . For L � 10ξFilm, finite L effects
should be small. Hence, for L � 14 L0 the features of the
minimum of θ should be essentially independent of L. This is
consistent with the observations of Ref. [26] (see in particular
their Fig. 16). Obviously, in an experiment no periodic
boundary conditions can be applied. Still, ξFilm(xmin) indicates
how large the transversal linear size of the system should be
to avoid finite size effects.

Our result can be compared with Ref. [59] who simu-
lated the Ising model on the simple cubic lattice and the
thicknesses L0 = 7.5, 11.5, 15.5, and 19.5. Throughout,
they used ρ = L0/L = 1/6. They arrive at (xmin,θmin) =
[−5.74(2),−1.629(3)] and [−5.73(4),−1.41(1)], depending
on whether they use their Eqs. (18), (20), or (21) to extrapolate
to L0 → ∞. Interpolating our data to ρ = 1/6 using the
universal finite size scaling function of the free energy,
we arrive at xmin ≈ −5.46 and θmin ≈ −1.61. Hence, the
apparently good agreement of xmin with our result seems to
be a coincidence. The authors of Ref. [26] give no explicit
result for xmin and θmin in the text. From the inset of their
Fig. 16 we read off xmin ≈ −5.5(1) and θmin ≈ −1.66(5). The
main reason for the larger error bar of [26] compared with us
is that they use Ls = 0.8(2), c′ in their notation, instead of
our Ls = 0.96(2). Using field theoretic methods, the author of
Ref. [38] arrives at xmin ≈ −5.53 and θmin ≈ −1.5.

Similar to Eq. (41), the thermodynamic Casimir force per
area as a function of the inverse temperature β and the surface
fields h1 and h2 follows the scaling law

FCasimir(β,h1,h2) = kBT L−d
0 �(O,O)(x,xh1 ,xh2 ), (79)
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FIG. 18. (Color online) We plot y(2,0) = −L3
0,eff (L0,eff/

lex,nor,0)−2yh1
∂2	fex

∂h2
1

and y(1,1) = −L3
0,eff (L0,eff/lex,nor,0)−2yh1

∂2	fex
∂h1∂h2

at

h1 = h2 = 0 as a function of t(L0,eff/ξ0)1/ν for (O,O) boundary
conditions for the thicknesses L0 = 8.5, 12.5, and 16.5. To this
end, we have used L0,eff = L0 + Ls with Ls = 0.96, ξ0 = 0.2283,
ν = 0.630 02, lex,nor,0 = 0.213, and yh1 = 0.7249. To keep the figure
readable, error bars are only shown for L0 = 16.5, where they are
the largest. We use the same types of lines for y(2,0) and y(1,1). Note
that y(1,1) < y(2,0) in the whole range that is plotted.

where

xh1 = h1[L0/lex,nor,0]yh1 , xh2 = h2[L0/lex,nor,0]yh1 , (80)

where for our model lex,nor,0 = 0.213(3) [Eq. (73) of [65]] and
the surface critical RG exponent yh1 = 0.7249(6) [Eq. (52)
of [65]].

The partial derivatives of 	fex with respect to h1 and h2 at
h1 = h2 = 0 are determined in a similar fashion as for (O,+)
boundary conditions. In the high temperature phase of the film,
due to the Z2 symmetry of the problem, the first derivatives
vanish. In Fig. 18, we plot our results for

θ (1,1)(x) ≡ ∂2�(x,xh1 ,xh2 )

∂xh1∂xh2

∣∣∣∣
xh1 =xh2 =0

� −L3
0,eff(L0,eff/lex,nor,0)−2yh1

∂2	fex

∂h1∂h2
(81)

and

θ (2,0)(x) ≡ ∂2�(x,xh1 ,xh2 )

∂x2
h1

∣∣∣∣∣
xh1 =xh2 =0

� −L3
0,eff(L0,eff/lex,nor,0)−2yh1

∂2	fex

∂h2
1

. (82)

Despite variance reduction, the statistical error increases
rapidly with increasing thickness. Our data for L0 = 24.5
already have a quite large statistical error and we therefore
did not plot them in Fig. 18. In the high temperature phase of
the bulk system, only θ (1,1) has a significant amplitude and it is
negative. Going to lower temperatures, towards the transition
temperature of the film, both θ (1,1) and θ (2,0) = θ (0,2) rapidly
increase. Also, θ (1,1) and θ (2,0) = θ (0,2) approach each other
in this range. As a result, in this range, the thermodynamic
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FIG. 19. (Color online) We plot y = −L3
0,eff (L0,eff/

lex,nor,0)−yh1
∂	fex
∂h1

as a function of t(L0,eff/ξ0)1/ν for (O,O)
boundary conditions for the thicknesses L0 = 8.5, 12.5, 16.5, and
24.5 for the low temperature phase of the film. To this end, we have
used L0,eff = L0 + Ls with Ls = 0.96, ξ0 = 0.2283, ν = 0.630 02,
lex,nor,0 = 0.213, and yh1 = 0.7249.

Casimir force varies much less with h1 for h1 = −h2 than, for
example, for h1 = h2.

At the minimum of θ(O,O) we have θ (2,0) ≈ θ (1,1) ≈ 500.
This means that, for example, for h1 = h2, already for xh1 �
0.03 the characteristics of the thermodynamic Casimir force
for (O,O) boundary conditions are completely wiped out.

For completeness, we also give our results for temperatures
below the transition temperature of the film. Here, we rely on
our simulations with SB. Since the Z2 symmetry is broken,
the first derivative with respect to xh1 does not vanish. The
numerical integration is started at large values of β. Our
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FIG. 20. (Color online) We plot y(2,0) = −L3
0,eff (L0,eff/

lex,nor,0)−2yh1
∂2	fex

∂h2
1

and y(1,1) = −L3
0,eff (L0,eff/lex,nor,0)−2yh1

∂2	fex
∂h1∂h2

as

a function of t(L0,eff/ξ0)1/ν for (O,O) boundary conditions for the
thicknesses L0 = 8.5 and 12.5 in the low temperature phase of the
film. To this end, we have used L0,eff = L0 + Ls with Ls = 0.96,
ξ0 = 0.2283, ν = 0.630 02, lex,nor,0 = 0.213, and yh1 = 0.7249.

numerical data are plotted in Fig. 19. For L0 = 12.5, 16.5,
and 24.5, we find a quite good collapse of the data on a single
scaling curve. The function θ ′ is positive in the whole range
x < xc. It rapidly increases as xc is approached.

Finally, in Fig. 20 we plot our results for the second
derivatives of the scaling function with respect to the scaling
variables. Here, the statistical errors are quite large and grow
rapidly with the thickness of the film. Therefore, we give only
results for L0 = 8.5 and 12.5. In the whole range x < xc,
we find that θ (1,1) ≈ θ (2,0). The functions are negative and the
amplitude increases rapidly as xc is approached.

Our results can be compared with those of [66], who
studied films with finite values of h1 and h2. In particular,
in their Figs. 7 and 8 they give results for h1 = |h2| and
h2 = 0, respectively. Their results for small h̃1 are essentially
consistent with ours. Matching their data with ours, we get
h̃1 ≈ 0.9xh1 for the relation between the scaling variables that
are used.

VIII. CONCLUSIONS AND OUTLOOK

We study the thermodynamic Casimir force by using
Monte Carlo simulations of lattice models. In particular, we
are concerned with the bulk universality class of the three-
dimensional Ising model, which for example characterizes a
continuous demixing transition of fluid binary mixtures. In
Ref. [73], we used the exchange cluster algorithm, or geometric
cluster algorithm [74], to study the thermodynamic Casimir
force between a spherical object and a plane substrate. The
main point of the exchange cluster algorithm applied to this
problem is that it allows us to define a variance reduced
estimator for the difference of the internal energy of two
systems that are characterized by slightly different distances
between the spherical object and the substrate. In the case of
the sphere-plate geometry, it turned out to be mandatory to
use this variance reduced estimator to get a meaningful result
for the thermodynamic Casimir force by using the approach
discussed by Hucht [57].

Here, we go one step back and apply the exchange cluster al-
gorithm to the film or plate-plate geometry. For this geometry,
quite satisfactory numerical results were obtained already. A
long list of references is given in the Introduction. We simulate
the improved Blume-Capel model on the simple cubic lattice
with (+,+), (+,−), (O,+), and (O,O) boundary conditions,
where + and − are strongly symmetry breaking boundary
conditions and O stands for the ordinary surface universality
class. For a discussion of these boundary conditions, see the
Introduction and Sec. II. We demonstrate that also for the
film geometry, the exchange cluster algorithm allows for a
considerable reduction of the variance. The only exception
are films with (O,O) boundary conditions in the direct
neighborhood of the transition of the film. This allowed us
to simulate films with a larger thickness than before, allowing
us to consolidate previous results. Our final estimates for the
thermodynamic Casimir force only moderately improve on
previous estimates. This is due to the fact that the remaining
errors mainly stem from quantities such as Ls (see Sec. II) and
lex,nor,0 [see Eq. (42)] that were used as input. These quantities
were taken from previous work and are computed by analyzing
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physical quantities different from the thermodynamic Casimir
force.

In Sec. IV, we discuss that the exchange cluster algorithm
can be applied to a larger class of boundary conditions than
simulated here. In particular, enhanced surface couplings or
finite surface fields could be studied. Quite recently, the authors
of [69,70] computed the thermodynamic Casimir force in the
presence of an external bulk field. To this end, one can compute
the difference in the excess free energy per area by integrating
the difference in the excess magnetization per area over the
external field [70], where the difference is taken for films of
thickness L0 + 1/2 and L0 − 1/2. The integration is started at
a strong external field, where the difference in the excess free
energy vanishes. Alternatively, one might start at a vanishing
external field, where the difference in the excess free energy per
area is known from previous simulations. It seems likely that
the exchange cluster algorithm allows us to reduce the variance
of the difference in the excess magnetization in such studies.
Furthermore, one could think of applications different from
the thermodynamic Casimir force. For example, one could
compute the free energy of defects. It would be interesting to
check whether the simulation of spin glass models could be
speeded up by exchanging spins between replica.

The emphasis of our physics analysis is on (O,O) boundary
conditions. Films with such boundary conditions are expected
to undergo a second order phase transition in the universality
class of the two-dimensional Ising model. This transition

has been studied for the Ising model on the simple cubic
lattice for thicknesses up to L0 = 14 in Ref. [95]. Here,
we obtain accurate results for thicknesses up to L0 = 64
using the finite size scaling approach discussed in Ref. [75].
Our numerical results nicely confirm the expectation that
the transition belongs to the universality class of the two-
dimensional Ising model. We compute the finite size scaling
function gn [Eq. (60)] that governs the finite size scaling
behavior of the free energy density in the universality class of
the two-dimensional Ising model for n = 2 and ∞. We show
that finite L effects in the thermodynamic Casimir force, where
L is the extension of the film in the transversal directions, are
described by gn. In particular, using g∞, our knowledge of the
inverse transition temperature of the film and the numerical
matching of the scaling variable, we extrapolate our results for
the thermodynamic Casimir force to L → ∞. For details, see
Sec. VII C. This approach could also be applied to other types
of boundary conditions that do not break the Z2 symmetry of
the problem, in particular, to periodic boundary conditions or
enhanced surface couplings that allow us to study the special
surface universality class.
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[67] A. Hucht, D. Grüneberg, and F. M. Schmidt, Phys. Rev. E 83,

051101 (2011).
[68] M. Hasenbusch, Phys. Rev. B 85, 174421 (2012).
[69] O. A. Vasilyev and S. Dietrich, Europhys. Lett. 104, 60002

(2013).
[70] D. L. Cardozo, H. Jacquin, and P. C. W. Holdsworth, Phys. Rev.

B 90, 184413 (2014).
[71] O. A. Vasilyev, Phys. Rev. E 90, 012138 (2014).
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