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Competing reaction processes on a lattice as a paradigm for catalyst deactivation
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We mobilize both a generating function approach and the theory of finite Markov processes to compute the
probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers.
We consider an N-site lattice populated by a single deep trap, and N — 1 partially absorbing traps (absorption
probability 0 < s < 1). The influence of competing reaction centers on the probability of reaction at a target site
(the deep trap) and the mean walk length of the random walker before localization (a measure of the reaction
efficiency) are computed for different geometries. Both analytic expressions and numerical results are given for
reactive processes on two-dimensional surfaces of Euler characteristic 2 = 0 and €2 = 2. The results obtained
allow a characterization of catalyst deactivation processes on planar surfaces and on catalyst pellets where only a
single catalytic site remains fully active (deep trap), the other sites being only partially active as a result of surface
poisoning. The central result of our study is that the predicted dependence of the reaction efficiency on system
size N and on s is in qualitative accord with previously reported experimental results, notably catalysts exhibiting
selective poisoning due to surface sites that have different affinities for chemisorption of the poisoning agent (e.g.,
acid zeolite catalysts). Deviations from the efficiency of a catalyst with identical sites are quantified, and we find
that such deviations display a significant dependence on the topological details of the surface (for fixed values of
N and s we find markedly different results for, say, a planar surface and for the polyhedral surface of a catalyst
pellet). Our results highlight the importance of surface topology for the efficiency of catalytic conversion processes
on inhomogeneous substrates, and in particular for those aimed at industrial applications. From our exact analysis
we extract results for the two limiting cases s & 1 and s =~ 0, corresponding respectively to weak and strong
catalyst poisoning (decreasing s leads to a monotonic decrease in the efficiency of catalytic conversion). The
results for the s = 0 case are relevant for the dual problem of light-energy conversion via trapping of excitations
in the chlorophyll antenna network. Here, decreasing the probability of excitation trapping s at sites other than
the target molecule does not result in a decrease of the efficiency as in the catalyst case, but rather in enhanced
efficiency of light-energy conversion, which we characterize in terms of N and s. The one-dimensional case and
its connection with a modified version of the gambler’s ruin problem are discussed. Finally, generalizations of

our model are described briefly.
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I. INTRODUCTION

Experimental observations in surface catalysis have been
analyzed using a variety of continuum and lattice models [1].
Aspects of catalytic behavior have been explored using
classical chemical kinetics [2,3] and diffusion-reaction theory.
Studies based on a (Fickian) second-order partial differential
equation with a linear dependence on the concentration(s)
account for behavior in the near-equilibrium regime. Far-from-
equilibrium phenomena (rate oscillations, spatial-temporal
patterns and chaos) have been modelled by considering a non-
linear dependence on the relevant concentration(s) [4]. As for
lattice models, the main focus has been on simulations, princi-
pally Monte Carlo studies on planar lattices. Effects of catalytic
poisoning for specific reactions have been explored by design-
ing algorithms, some general enough to account for “feedback”
between surface concentration and absorption rate [5-7].

In this study, we examine the role of competing reaction
centers in influencing the overall efficiency of a diffusion-
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reaction process. In the problem of catalyst degradation,
deactivation of reaction centers leads to catalyst poisoning,
usually an unwanted effect (although in some systems it
can enhance the selectivity of the reaction). By contrast,
in the dual problem of photosynthesis, deactivation of all
competing reaction centers in the chlorophyll antenna net-
work except for the target molecule optimizes light-energy
conversion.

The present contribution departs from earlier studies based
on a lattice model in two important respects. First, in our
lattice-statistical approach we place emphasis on obtaining
analytic expressions to display the dependence of catalyst
deactivation on such factors as domain size and extent of
surface degradation. And second, we consider explicitly the
geometry of the template. The surface of a planar lattice subject
to periodic boundary conditions is characterized topologically
by Euler characteristic 2 = 0, whereas the surface of a catalyst
pelletby 2 = 2. Empirically, surface deactivation and turnover
on these two templates (both of Euclidean dimension d = 2,
and a domain specified by the number N of surface sites and
their connectivity y) are known to be different, and this we
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For a freshly prepared catalyst, with no sites “poisoned,”
a reactant hitting the surface can react at any site. In a lattice
model, this situation would correspond to all sites being “deep
traps.” Considering now the effect of poisoning by some agent,
one can distinguish two situations, viz., uniform degradation
of the catalytic activity of all sites (which then play the role
of identical imperfect traps) vs nonuniform site degradation.
In the latter case, the simplest setting corresponds to the case
where one site (the deep trap) remains totally active, but the
N — 1 satellite sites are uniformly degraded, so that only with
a certain probability s, catalytic conversion takes place at these
satellite sites. Values of the probability s < 1 characterize
deactivation of the surface until in the limit s = O there remains
only one fully active site. Such inhomogeneous poisoning of
lattice sites is one of the common pathways leading to so-called
selective poisoning, a well studied phenomenon resulting in
nonlinear behavior of the catalytic activity as a function of
poison concentration [1]. A fundamental question for current
research in surface chemistry amounts to elucidating the role
of substrate geometry.

Catalyst poisoning can have two effects. First, the number
of catalytic sites (out of N sites in the domain) that can
promote efficient conversion decreases; and second, the
average distance that a reactant must diffuse before undergoing
reaction (in lattice models, the so-called mean walk length (n))
necessarily increases. It is in calculating this average distance,
(n), that differences in catalyst deactivation for planar surfaces
versus closed polyhedral surfaces mimicking catalyst pellets
can be quantified.

In this study, we mobilize both the method of generating
functions and the theory of finite Markov processes to study
catalyst deactivation. With respect to the latter approach, this
study draws on two earlier studies [8,9], where a method based
on the theory of finite Markov processes was presented to
calculate numerically exact values of the expected walk length
(n) of a random walker performing a Pdlya walk on a regular
d-dimensional N -site lattice with a single perfect trap (absorp-
tion probability equal to 1 as soon as the walker steps on the
trapping site) and N — 1 imperfect traps (absorption probabil-
ity equal to s when the walker steps on any other site). The site-
specific walk lengths of the walker from any/all sites of the host
lattice are determined from the inverse of the fundamental ma-
trix of Markov chain theory. This approach can be mobilized
for any lattice (translational invariance is not a constraint), and
hence can be applied to template topologies of either Euler
characteristic 2. While, as a general rule, the Markovian
approach does not lend itself easily to obtaining analytic
results, its application leads straightforwardly to results which
are numerically exact and satisfy key invariance relations.

We wish to take advantage of insights gained using both of
the above strategies. By making use of the generating function
formalism for random walks developed by Montroll and
Weiss [10], we rederive and significantly extend some results
obtained previously [9], thus establishing the relationship
between the generating-function approach and Markov theory
for lattices with competing reaction centers. The generating
function approach is only easily applicable to translation-
invariant lattices, and in this sense is less flexible than the
Markov method. However, the approach has the significant
advantage of providing a straightforward way of calculating
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higher order moments of the walk length (the moments
are usually expressible in terms of suitable derivatives of
generating functions). Using this method, it is usually simpler
to find explicit, closed expressions for the moments in terms of
lattice size N, rather than having to develop analytic solutions
from numerical data generated for lattices of increasing size
N using the Markov approach.

Inlight of recent work by Yuste, Abad, and Lindenberg [11],
we draw the reader’s attention to the fact that homogeneous
absorption at each of the imperfect traps may be interpreted as a
special case of arecently developed generating-function theory
for so-called “mortal walkers,” i.e., walkers that have a finite
probability of “dying” at each time step [11]. For purposes
of the present study, that probability will be assumed to be
stationary and homogeneous, although these restrictions can be
relaxed in future work. The approach developed in Refs. [11]
assumes translational invariance of the host lattice; in our lat-
tice model this condition is implemented by imposing periodic
boundary conditions on a planar template, and corresponds
topologically to mapping the planar lattice onto the surface
of a torus. The significant advantage gained in mobilizing the
theory of generating functions is that analytic expressions can
be obtained for the mean walk length (see Sec. II).

Placing the present study in a larger context, to the best of
our knowledge the problem of random walks with competing
decay channels seems to have received surprisingly little
attention in the literature. Rosenstock was one of the first
(if not the first) to address this problem, as he considered a
walker subject to spontaneous emission moving on a lattice
where a fraction of the sites are perfect traps [12]. He
computed for various cases the probability that the walker
dies by spontaneous emission rather than by stepping on a
trap. Various authors subsequently elaborated further versions
of this problem in different dimensions [13-15]. Several
years later, Den Hollander and Kasteleyn considered a similar
problem, a lattice with a periodic array of partially absorbing
traps [16]. Evans and Nord reviewed the connection between
the generating function approach and the Markov method for
multiple trap problems [17].

Finally, in a study of particular relevance to the problem
studied here, Weiss [18] dealt with a random walk on a
lattice with partial traps, each having different absorption
probabilities. An expression was given for the probability of
the walker being absorbed at a given trap in terms of generating
functions. The examples given in that paper focused mainly
on the case of one or two partially absorbing traps.

In what follows, we consider the case where all but one of
the lattice sites have the same absorption probability. Thus, the
walker is “mortal,” i.e., it has a constant probability of “dying”
per unit step as long as it does not step on the deep trap. In
related applications, for example those describing spontaneous
light emission or radioactive decay, background absorption can
be regarded not as a property of the substrate but rather as a
stochastic death process due to the intrinsic properties of the
diffusing particle. However, we shall hereafter mainly focus
on the problem of nonuniform catalyst degradation, where the
absorption probability of each site is interpreted to be directly
related to the (local) catalytic activity of the substrate.

The plan of the paper is as follows. In Sec. II we derive
explicit formulas for the probability of the walker being
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absorbed at the deep trap and for the walk length for specific
initial configurations of the walker and the deep trap (these
two quantities are intimately related). We also give a general
expression for the walk length (n) when the average over
all possible configurations is taken. In Sec. III we briefly
discuss the one-dimensional case and the connection with the
so-called ruin problem. In Sec. IV we focus on the specific case
of a d = 2 dimensional lattice subject to periodic boundary
conditions and show how to recover and then generalize
the results in Sec. V of Ref. [9]. In Sec. V we summarize
the numerical results obtained for both catalyst surfaces and
catalyst pellets, and compare them to results for the case where
two deep traps are placed on a lattice with no background
absorption. Finally, in Sec. VI we discuss the relevance of our
analytical and numerical results to the experimental problem
of catalyst deactivation.

II. GENERAL FRAMEWORK

We consider a random walker and an immobile deep trap
placed at two different sites on an N-site, d-dimensional
periodic lattice. The site at which the trap is placed is fully
absorbing, whereas all other sites (including the oneqfrom
which the random walker starts off, that is, the origin 0) are
partially absorbing, with absorption probability s. Thus, two
competing absorption mechanisms (one localized at the deep
trap and the other distributed over the whole lattice) are at play.
In the present problem, the deep trap represents a catalytic site
that remains fully active, whereas the surrounding sites of the
substrate are partially poisoned.

A. Quantities for specific walker-trap configurations

We first ask, what is the trajectory-averaged walk length
(n)7 for a specific initial location of the trap with respect to
the random walker. The posmon of the trap will be specified
by the d-dimensional vector [ = 1,8y, ... ,40) # 0. Follow-
ing the convention used in Refs. [8,9], we take (n); = 1if the
walker is trapped at the very outset. The kth order moment of
the walk length is

o0
=y nt A0,
n=1

where A, (Z) is the probability that the walker is absorbed after
exactly n steps, which is the sum of the probabilities for two
mutually exclusive events, viz., that the walker is absorbed at
the deep trap or that it is absorbed at any other site.

Let F, (Z) denote the probability that the walker reaches the
deep trap exactly at the nth step conditional on its not having
been absorbed previously at any other site [thus, F, (Z) plays
the role of a conditional first-passage probability]. One then
has

A€ = (1 = sY"Fo(D) + (1 — 5" 'sU,_1(£),

where U,(£) = 1 — Y"_, F;(€) is the survival probability of
the walker after n steps when sites other than the deep trap
are nonabsorbing (s = 0). The terms on the right-hand side of
the above equation have the following interpretation: the term
(1 — s)" F,(€) is the probability that the walker is not absorbed
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at any of the partially absorbing sites before the nth jump and
that this jump results in stepping on the deep trap. On the other
hand, the second term states that, in order to be absorbed at a
partial trap after exactly n steps, the walker must have survived
both absorption at the deep trap and at the partially absorbing
traps during the previous n — 1 steps. The probability for this
to happen is (1 — )"~ U,_, ().
Hence, we have

oo
=Y 1M1 =) F(@) + (1 = )" 'sU, (). (1)
n=I
In particular, for k =0 Eq. (1) yields the zeroth order
moment:

n%); = Ar() + Ao(f) = 1, )

where A7 (£) = Yoo (1 —s) F,(£) is the probability that the
walker terminates its walk at the deep trap, and AO(Z) =
Zzoz 4= s)”_lsUn,l(Z) is the probability that it is absorbed
at any other site. These probabilities are most conveniently
expressed in terms of generating functions. Introducing the
generating function F(£,z) = Yoo Fu (€)z" there results

Ar(€) = F(£,2)|.m1—s — Fo(€) = F(£,2)].21—5 — 0
- P, 1—ys)
=Fl,1—s5)= ——. 3
( ) PO,1 —5) )

In the last line we have made use of the fact that
F(Z )= P(E Z)/P(O 7), where P(Z D=y 0P (E)z is
the generating function for the probability P, (Z) of the walker
being at the lattice site ¢ after exactly n steps in an unrestricted
random walk [10(b)].

On the other hand, AO(E) can be written as AO(E)
sU (Z 1-— s) where the generating function U (Z 7)
> —o L U, (E)z has been introduced. The spemﬁc expression
of U(Z z) in terms of F(Z 7) = P(Z Z)/P(O z) is available
(see, for example, Ref. [19], p. 158):

P(E,z):| 1
P(0,z) 1

[1— F(,7)].

- 1
Ul = 1—z|:1 -

“4)

Hence, AO(Z) =1—-F (E,l —s), as required by the normal-
ization condition for the splitting probabilities.

We next turn to the equation for the first order moment of
the walk length distribution, that is,

o]

(m)p=Y_ n{(1 =)' Fu(D)+ (1 — )" 'sU_1(D}).  (5)

n=1

Equation (5) can be rewritten as follows:

(n)p =1 =5 nF,0)(1 —s)""!

n=I

+s Z(n — DU, (&)1 — s)*!

n=1

+5 Y Uy (D1 =5y,

n=1
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or, in terms of generating functions,

=1~ S)B%F(Z,z) +5(1 — s)a%U(Z,z)

z=1-s z=l-s

+5U,2)|em1 s

By virtue of Eq. (4), one then has

(ny; = (1 — s)a%F(Z,o

z=1-—s

9 -
(1 —8) (1= 271 = F(£,2))}

z=1—s
+5(1 =271 = F(€.2) 21—

which can be simplified to obtain
1 -
(n); = ;(1 — F(,1—y)).

In terms of the generating function of the sojourn probabil-
ity of an unrestricted walker, one thus has

<n>~_l 1_m (6)
s PO,1—s5)]"

B. Global quantities

In this subsection we study quantities that are averaged over
a uniform set of initial walker-trap configurations (excluding
the case where the walker and the trap are initially at the
same location). Such quantities are obtained either by fixing
the position of the deep trap and summing over the N — 1
possible positions of the walker that do not overlap with
the trap (as done in Ref. [9]), or by fixing the position of
the walker and averaging over all possible positions of the
deep trap (because of the symmetry of the system, both
approaches are equivalent). Here, we choose the second option
for convenience.

For the initial-condition averaged probability A7 =
ﬁ > ¢ Ar(£) of having absorption at the deep trap, Eq. (3)
yields

Ar =T0,1 —s), (7)

where the key quantity

N 1 1
I'o,z) = - —1 8
R ((1 — )P (0.2) ) ®)

has been introduced. When derivigg the above result, advan-
tage was taken of the relation, P(0,z) + P(Z,z) =(1-2z)7",
which follows from the normalization condition P, (6) +
Z[ P,(¢) =1 for an unrestricted random walk (recall that
{is only allowed to take values different from the origin).
The generating function P(Z,z) drops out of the final result
for the probability of absorption at the deep trap, and the
above quantity is expressible solely in terms of functions of
the generating function P(a,z) for the probability of return to
the origin in an unrestricted random walk.

For the global walk length (n) = ﬁ > i (n);, a quantity
that can be used to gauge the efficiency of the absorption

PHYSICAL REVIEW E 91, 022106 (2015)

process in experiments, we have

1—Ar

Ao 1 —T'0.1—5)

N N N

(n) ©))

Equation (9) states that the mean walk length can be
straightforwardly computed in terms of the probability of
absorption at any of the partial traps. The connection between
the zeroth and the first order moment of the walk length is not
entirely surprising as, in the absence of background absorption,
the moments of the distribution are also known to obey a
hierarchy of equations [20].

Note also that for increasingly large lattices the probability
for the walker to be absorbed at the deep trap is dramatically
reduced; if we fix s, Az — 0as N — oo and thus (n) — s~
which is the value of the walk length on a lattice where all
sites have the same absorption probability s.

The above limiting behavior is not surprising. Indeed,
think of the “walker” as a radioactive isotope decaying
according to an exponential law oce™ as it diffuses on a
homogeneous substrate (absorption is thus ascribed not to the
substrate properties, but to radioactive decay). In discretized
time, the probability to “die” upon performing a jump is
s =1—¢7**" and thus one has s = AAt for small enough
AAt. On the other hand, A~! is also known to be the mean
lifetime of the isotope (t) = (n)At, from whence (n) = s~!
follows.

III. ANALYTIC RESULTS FOR A LINEAR CHAIN

Though the primary focus of the present work is on higher-
dimensional template geometries, it is worth noting that exact
results for arbitrary values of s and N can be obtained for a one-
dimensional lattice subject to periodic boundary conditions
(topologically, a ring with N lattice sites). In this case, we
have Montroll’s well-known (exact) result [10(a)]

1 1+ xV
4/1—Z21—XN’

with x = z7'(1 — +/1 — z2). After tedious algebra, the use of
the above formula for (n) yields

Ns ++/2s — s2(1 —
N s2(N = 1)

P(0,2) =

n) izl

. (10)

with ¢ = (1 — /25 — 52)/(1 — s5). Results calculated using
the above expression recover exactly the exact numerical
results reported in Table 1 of Ref. [8], e.g., for N = 8 and
for N = 20 with s = 0.1.

For strong absorption (s & 1), the exact result (10) for the
walk length can be expanded about s = 1 as follows:

N -2 N -5
1+ "Za-
=ty U9ty

For weak absorption (s ~ 0) one has
_NWN+D (N+2)(N+DNWN -2)
6 30

Note that the first term on the right-hand side corresponds to
the s = 0 case and is a well-known result by Montroll [10].

(1 -9+ 0[(1 —s5)°].

(n) s+ 0(s?).
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The probability to die at the deep trap can then be obtained
from the above results via the exact relation A7 = 1 — s(n).
For asymptotic results, this expression can be expanded about
s=0ors=1.

A connection can be established between results obtained
assuming no background absorption (s = 0) and the problem
of computing the mean duration of a game in the classical
“ruin problem” (see Feller [21]). It is interesting that this
correspondence also holds for the case studied above (s # 0).
The latter situation corresponds to a modified version of
the ruin problem where the gambler (or the bank) has a
constant probability s of quitting the game spontaneously
after each bet. Thus, the game may not only terminate by
breaking the bank or going bankrupt, but also by spontaneous
withdrawal.

IV. RESULTS FOR SPECIFIC PLANAR LATTICES

A. Correspondence between generating function
approach and Markov theory

In order to test the validity of the theoretical expression (9)
for the walk length in higher dimensions, we next focus on the
particular case of a nearest neighbor, symmetric random walk
taking place on a square planar lattice with periodic boundary
conditions. For odd lattices, values for the walk length for
particular values of the absorption probability s were computed
from the solution of a Markov model and given in Table V of
Ref. [9]. From the analysis of these data, a dramatic decrease in
the mean walk length with respect to increase in the absorption
probability was found.

To recover these results using the generating function
approach, we make use of Eq. (9) in conjunction with the
generating function for an unrestricted walk on a rectangular
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planar lattice of N sites, where N = L| x Lj:

Li—1Ly—1
P(0,z)=

1
Nkz 2 1 — (z/2)[cos(2rki/L1) + cos(2mka/Ly)]°

1=0 k=0

In what follows, we focus primarily on the case of the square
planar lattice (L} = L, = L):

L-1 L-1
= 1
PO.=—>">" '
N = = 1= @/Dlcos2rki/L) + cos(2mka /L)]

Y

Taking Eq. (11) as a starting point, we have obtained
rational expressions in terms of s-polynomials for the global
walk length given in Table I. These expressions are in perfect
agreement with the Markov results obtained for odd square-
planar lattices and specific values of s; see Table V of Ref. [9].
In Table II, we also provide additional results for the first
few even lattices. As the lattice size N becomes larger, the
results converge to s~ from below, i.e., limy_, o (n) = s~ .
According to the statistical arguments given in [9] and in
Sec. II of the present paper, this is the average walk length
that would correspond to a walker wandering in a lattice that
has been made homogeneous by replacing the deep trap with
a partially absorbing site equivalent to the ones surrounding
the trap. In the limit of a large lattice, the influence of the
deep trap becomes of increasingly less consequence and the
results become indistinguishable from the case of a single
decay channel.

Finally, in Table III we give for completeness the polyno-
mial expressions for the global absorption probability at the
deeptrap Ay = 1 — s(n) for the first few square lattices as well
as for the 3 x 2 lattice. Representative results are depicted in
Fig. 1, displaying a dramatic decrease of Ay with increasing
values of N, and the correct behavior in the limit s — 0 and

TABLE 1. Analytic results for odd, planar lattices: {N,d,y,Q2: Lx L,2,4,0}.

N=LxL (n)
3% 3 _94s
—1 —8s +s2
3%5 475 + 5005 — 150s% — 60s° + 3s*
15+ 483s + 47452 — 15053 — 57s* + 3s°
7 %7 19551 + 81634s + 480205 — 45570s° — 12642s* + 75185 — 845 — 12657 + 358
273 4+ 20727s + 8148052 + 4600853 — 452465* — 1211455 + 73925° — 9657 — 12358 4 35
9%x9 (3696759 + 351163355 + 84334608s> + 231834965 — 66328065s* — 141835055 + 19050552s° + 697320s”
— 178591558 4 540455 + 5292050 — 2160s"" — 315s5'2 4 55'3)/(28305 + 39942905 + 3575389552 + 83886300s3a
+21978585s* — 659607305 — 13644985s° + 18868840s” + 641035s% — 1764770s° + 55565s'0 + 52220s"!
— 216552 — 310s'3 4 5s514)
11 x 11 (3696427911 + 635613100435 + 3341355696692 4+ 5936031959773 + 45005438412s* — 6403308698605

— 163367711980s° + 2996878907885 + 4490822483453 — 72517838822s° + 256667862s'°

+7857511310s"" — 8665502125'2 — 28100894853 + 4588755654 + 25456205 — 62254556 + 643557

+ 148558 — 1551%) /(17607315 + 4036077210s + 653990165405 + 3366534636305 + 590537465925s*

+ 387458504405 — 6380645832005 — 158901448200s” + 298332459150s% + 43588975980s° — 72034228680s '
+397468260s"'! + 77851090505 ' — 8669026805 '3 — 2777932805 '* + 45645720s'> — 250225550

—617910s'7 4 654058 + 14705 — 1552°)
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TABLE II. Analytic results for even, planar lattices: {N, d, y, Q2: Lx L, 2,4, 0}.

N=LXxL (n)
2%x?2 10 — 4s
3+ 65 — 352
4x4 824 — 1925 — 2005 + 48
45 4+ 780s — 21052 — 180s3 + 4554
6x6 60462 + 104288s — 79662s> — 43500s> 4 33458s* — 20885 — 1458s5° + 180s’
1225 + 62300s + 9989052 — 80080s3 — 40880s* + 3262055 — 2170s% — 1400s7 + 17558
8 x 8 2218528 + 128167685 + 8978272s% — 19491904s° — 3922880s* 4 10393600s> — 21269125% — 95014457 + 363424s°

— 1625657 — 5408510 + 4485'1) /(22491 + 23607365 + 128401565% + 85465805 — 19379493s* — 3635856s°
+ 1022918455 — 2140488s” — 922383s% + 357840s° — 1638050 — 5292s'! 4 4415'%)

(—3256308650 — 394726363005 — 1185585794005 — 15345099760s> + 207911678528s* + 870156753653

10 x 10
— 145465668840s% + 31547082160s” + 36021452700s® — 147951140245° — 21294356085'° 4 1929090160s!!
— 192332240s'2 — 584100005 + 12913800s'* — 343600s'> — 8125056 + 4500s'7)/(—19422315 — 35214499985
—40246687305s% — 1180232174885 — 13024710468s* + 2067472305365 + 66405410285° — 143986415760s’
+3192231497458 + 35489278044s° — 1473062995850 — 2068800624s!! 4+ 190964070052 — 19283695253
— 574188125 + 1278446455 — 344619s'® — 80190s'7 4 4455s'8)

12 x 12 (18249873048 + 3670069317125 + 21382648144565% + 3356002773168s> — 3267252599712s* — 6945718665088s°

+4748718028640s° + 4100541294 14457 — 3821796757808s® — 183567728768s5° + 10103992966565'° — 2828233950405 !
— 3282928412852 4 26441535360s' — 299914320054 — 363317184s'5 + 9046562456 — 3203712s'7 — 28576858

+ 142565'9) /(70855785 + 19866593604s + 3769625925785 + 2150333360604s° + 3321525822329s* — 3306677438064s°
— 6877690997320s° + 4767003349680s” + 40433884482425% — 3807307521160s° — 1693877299405
+1001462998536s!! — 2820047484542 — 321598099685 + 2624023116054 — 299345217655

— 35822143556 + 89775972s'7 — 319433458 — 2831405 + 141575%)

s — 1. The analytic results for (n) inferred from the A values
given in Table III can be compared with those reported earlier
for the global absorption probability for random walks on
the surface of five polyhedra, the Platonic solids [22]; see
Table IV.

B. Large-s limit (minimal degradation)

The analytical results depicted in Tables II and III are exact
and valid for small lattices of increasing size. In the limit of
s close to 1 and of s close to 0, rather general results can be

obtained. For a catalyst, the first situation would correspond to
weak poisoning, whereas the second limit would correspond
to strong poisoning (see Sec. IV C.).

In this subsection we discuss the limit of weak poisoning,
which corresponds to z = 1 — s ~ 0%, In this case, P(6,z) can
be expanded as follows:

PO, =1+12+0G", L=>3. (12)

This expansion follows by using the expansion
(1-C2) ' =1+ Cz+ C?*:> + 0(z%) in the definition of

TABLE III. Absorption probabilities at the deep trap for planar lattices subject to periodic boundary conditions: {N,d, y,2: Lx L, 2,4, 0}.

Ll X L2 AT
2% 2 3 —4s 452

3+ 65 — 352
3x2 354375 —s2 =53

5 (—7 —33s + 752 + s3)

3x3 _TlEs

—1—8s +s2
4 x4 45 — 445 — 1852 + 20s* — 3s5*

45 4+ 780s — 210s% — 180s3 + 45s*
3%5 15 + 85 — 2652 + 3s*
15 + 483s + 47452 — 15053 — 57s* + 3s°

6x6 1225 + 18385 — 4398s5% — 4185 + 2620s* — 838s% — 825 + 5857 — 5s°

1225 + 62300s + 9989052 — 8008053 — 40880s* + 32620s> — 217055 — 1400s7 + 17558
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0 01 02 03 04 05 06 07 08 09 1
S

FIG. 1. Initial-condition averaged probability Ay of absorption
at the deep trap as a function of the absorption probability s of the
partially absorbing sites. The different curves correspond, from top
to bottom, to N = 4 (2 x 2 lattice), 6 (3 x 2 lattice), 9 (3 x 3 lattice),
16 (4 x 4 lattice), and 25 (5 x 5 lattice).

P(6,z) [Eq. (11)], and subsequently using the relation

L—-1 L—-1

Z Z [cos(2k; /L) + cos(2mky/L))* = L*

k1=0 k=0

to compute the coefficient of the z> term. Inserting the
expansion (12) into Eq. (7) and expanding once again the
resulting expression in powers of 1 — s one finds

_ 1 _ T 1 — )2
+0[(1—5)], L=>3,
and hence
_l—AT_1+N—21_
(n) = " = ﬁ( s)
4N —-1)—-17 2 3

The case of the 2 x 2 lattice must be treated separately,
since in this case Zilzo Z,izzo [cos(mk;) + cos(mky)]? = 8 #

4. One thus has P(6,z) =1+ (1/2)z> + 0(z*). Accordingly,
a similar calculation as the one outlined above gives

Ar =51 —5)+ (1 -5+ 0[(1 -9’1, (L=2),

PHYSICAL REVIEW E 91, 022106 (2015)

C. Small-s limit (significant degradation)

In order to obtain results corresponding to the limit of strong
poisoning, we first split the generating function P(0,z) in a
standard fashion, namely, as a sum of a part which is singular
as z — 1 and a nonsingular part ®(0,z),

P0,z) = + ®0,7).

1
N1 -2
We now take advantage of the well-known form of the
asymptotic expansion for P(0,z) (see, e.g., Ref. [16]):

P(0,7) = +d— (=) +-z— 17, (13)

N —72)
where the lattice size expansion of the coefficients ® = @(6, 1)

and ¢’ = CD’(6,1) = Bzd>(6,1)|z:1 reads as follows:

®=aInN+a+aN'+aN2+-.-,
& =b; +byInN +b3+byN ' +bsN2+...

with

ai=n"", b =0.061871145451...,

a» =0.195062532..., by=—2n)"",

az = —0.116964779 ..., b3=—0.1347623119...,
as = 0484065704 ..., by=0.2005850758...,

bs = 0.428 368 3639....

Inserting the asymptotic expansion (13) into Eq. (7) and
using the expansion

(a+bx —cxH™!
=al'—ba'x+ (1_3(b2 + ac)x2 + 0(x3),

it follows that

Ar=1—-0

N? N? o2 7, (s’
N—1S+N—1[ + N}s + 067,

If one retains all of the above terms in the lattice size
expansions of ® and @', this formula yields very good
results even for small lattices. For instance, in the 2 x 2 case
the formula gives A7 = 1 — 3.399 18s + 8.5001s2, whereas
the Taylor expansion of the exact result about s =0 gives
Ar = 1 —3.33335 + 8s2. For the 3 x 3 case, the agreement is
already very good; one finds A7 = 1 — 8.9853s + 72.7776s>
from the above formula and Ay = 1 — 9s + 73s2 from the
Taylor expansion. Note, however, that higher order terms in
the expansion representing further nonlinear corrections are

and important. For instance, even for values as small as s = 0.05,
) =1+ 2(1 —s) + 1(1 9240l —sPL. (L=2). the sz term in thg Taylor expansion (593s%) is about 40.6% of
3 2 the s~ term (73s7).
TABLE IV. (From Ref. [22].) Mean walk length for polyhedral lattice surfaces: {N,d, y, 2: N, 2,4,2}.
N (n)
4 3/(1 4 2s)
6 (2/5) (=13 + 35)/(—=1 — 4s + s?)
8 (1/7) (116 — 525 — s2)/(2 + 145 — 75?)
12 (5/11) (56 + 4s — 55%)/(2 + 24s + 5% — 25°)
20 (1/19) (1096 + 1388s — 97552 — 10s3 + 40s*)/(2 4 60s + 675> — 505> + 25°)

022106-7



E. ABAD AND J.J. KOZAK

As for the walk length, from the relation (n) = s~'(1 — Ay)
one finds
NZ N3
N—1 N-1

(n) = @ [<I>2 + 3/} s+ 0(s2).

N
In the limit of a very large lattice (N — 00) one obtains the
asymptotic expressions

Ar =1 —7""(NInN)s + (byN> + 7 N*In’N)s> + 0(s%)
and
(n)=a"'NInN — (byN*> + 7 2N%In’N)s + O(s?),

where the first term on the right-hand side corresponds to the
well-known Montroll result [10(c)], and the second term is the
leading order correction for background absorption.

V. EXACT RESULTS FOR PLANAR LATTICES AND
POLYHEDRAL SURFACES

Displayed in Tables V and VI are representative numerical
results on catalyst degradation obtained from a Markov theory
approach similar to the one used in Refs. [8,9]. The starting
point of this method is the linear set of equations

(mp=1+1—=9> pi_pln)g (14)
Z,

for the site specific walk lengths, where p;_ ; represent the
transition probabilities from a specific nontrapping site { to
nearest-neighbor sites ¢ (in the above equations (n); is taken
to be zero if it corresponds to the location of a deep trap). The
transition probabilities obey the normalization condition, i.e.,
> 7 Pi_ i = L. Once the site specific walk lengths have been
found, the global walk length follows as (n) = ﬁ Y i (n);.
In most cases, the number of equations in the above linear
system can be reduced by lumping symmetry-equivalent sites
into a single state of the underlying Markov chain. Last but
not least, we note that Eq. (14) can be derived from the master
equation for the sojourn probabilities P, (Z) and the associated
generating function P (Z ,2) of an unrestricted random walk by
standard techniques [cf. Eq. (6)].

Companion results are presented in Table V for the walk
length (whose inverse is a measure of the reaction efficiency of
the substrate) for a template having N = 6, 54, 96, 150 sites
modelled as a planar surface (lattice subject to periodic bound-
ary conditions) vs a polyhedral surface, both surfaces having a
single, fully active catalytic site and N — 1 surrounding satel-
lite sites of specified activity, 0 < s < 1. Numerical results
for planar lattices subject to periodic boundary conditions can
be obtained either by using the generating function approach
or Markov theory. Values for polyhedral surfaces are (only)
obtained using Markov theory.

To contrast the results obtained above for the case of
a single, fully catalytic site (deep trap with absorption
probability 7 = 1)and N — 1 partially absorbing satellite sites
(s # 0), we present in Table V values of the walk length for
two catalytically active sites (both with absorption probability
T = T* = 1), maximally separated, on the designated planar
or polyhedral template, the catalytic activity of the remaining
N — 2 satellite sites totally suppressed (s = 0).

PHYSICAL REVIEW E 91, 022106 (2015)

Focusing on the walk length, Table VI gives a more detailed
accounting of the differences between the planar surface
and the polyhedral surface for the particular case, s = 0. A
centrally located active site on a polyhedral face is designated
“1,” a nearest-neighbor site to site 1 is designated “2,” etc.

Conclusions and trends drawn from the results displayed in
Tables V and VI will be presented in the following section.

VI. DISCUSSION

We have developed a lattice-statistical approach to study
systems with competing reaction channels, focusing on the
problem of catalyst deactivation. We have taken advantage
of two complementary theoretical strategies, the first based
on the use of generating functions, and the second on
the theory of finite Markov processes. Each of these two
approaches has particular advantages, and we shall draw on
results obtained using both approaches to discuss the catalysis
problem addressed here.

One of the first applications of the theory of generating
functions was to a problem of fundamental importance in
biophysics. Montroll [10(c)] considered the random motion
of an excitation on the chlorophyll antenna network (modelled
as a lattice) before being localized at a preferred site, subse-
quently triggering the photosynthetic process. Later work on
this model explored the consequences of competing reaction
centers, and their effect on the efficiency of the process [9]. In
the latter study, a dramatic dependence of the mean walk length
(n) on satellite-site trapping probability s emerged, namely

: -1
Jim ) =7

The catalyst deactivation problem considered here can be
regarded as the “mirror image” of the chlorophyll antenna
problem. In the latter, small changes in s in the vicinity of
s ~ 0 compromise dramatically the light-energy conversion
efficiency and the limiting value (above) is approached asymp-
totically. In the catalyst degradation problem, the scenario is
exactly the reverse. For an “ideal” catalyst, all sites N lead
to conversion, and their degradation (values of s decreasing
from s = 1) gradually changes the efficiency of the process,
with complete “poisoning” in the regime s — 0. Thus, the
optimal regime for photosynthetic activity is in the vicinity
s — 0, whereas the optimal regime for catalytic activity is in
the range s — 1.

Focusing specifically on catalyst degradation, the results
presented in Table V for catalysts defined by small domains
(relatively few active sites N) show that (n) is less sensitive
to poisoning of closed polyhedral surfaces mimicking catalyst
pellets than on planar surfaces, whereas exactly the opposite
situation pertains for larger system sizes. One possible con-
clusion that can be drawn from these data is that nanoparticles
are likely to be more immune to poisoning than nanosur-
faces, with the situation reversed above a critical domain
size.

If one associates the mean walk length (n) with a mean
time (t) for conversion and the inverse (t)~! to an estimate of
the rate constant, departures from the 1/s dependence of the
inverse rate constant (associated with a nonlinear dependence
of the rate constant on concentration, see below) have been
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TABLE V. Reaction between a diffusing atom or molecule (the walker) and competing reaction centers for selected geometries. The
probability of irreversible absorption at the target molecule is specified by 7 = 1 (deep trap), at a competing reaction site by 7*, and at satellite
sitesby 0 < s < 1.

{N,d,y,2:6,2,4,0} {N,d,y,2:6,2,4,2}
Plane 3 x 2 torus Abs. prob. T, T*, s (n) Polyhedron closed Abs. prob. T, T*, s (n)
T=1s5s=0 5.771 T=1s5s=0 5.2
s = 0.001 5.743 5.178
s = 0.002 5.715 5.156
s = 0.005 5.633 5.092
s =0.010 5.502 4.989
s =0.020 5.257 4.794
s = 0.050 4.638 4.292
s = 0.100 3.878 3.655
s = 0.200 2.923 2.818
s = 0.500 1.688 1.672
s = 1.000 1 1
T=1,T"=1,s=0 1.362 T=1T"=1,s=0 1.333

{N,d,y,2:54,2,4,0} {N,d,y,2:54,2,4,2}
Plane 9 x 6 torus
T=1s5s=0 82.480 T=1s5s=0 84.544
s = 0.001 76.147 77.890
s = 0.002 70.719 72.190
s = 0.005 58.263 59.219
s =0.010 45.048 45.582
s = 0.020 31.003 31.224
s = 0.050 16.041 16.082
s = 0.100 8.907 8.914
s = 0.200 4.724 4.724
s = 0.500 1.967 1.967
s = 1.000 1 1
T=1,T"=1,s=0 34.634 T=1,T"=1,s=0 34.520

{N,d,y,2:96,2,4,0} {N,d,y,2:96,2,4,2}
Plane 12 x 8 torus
T=1s=0 163.233 T=1s=0 168.620
s = 0.001 140.075 143.941
s = 0.002 122.677 125.570
s = 0.005 89.388 90.823
s =0.010 61.572 62.184
s = 0.020 37.977 38.169
s = 0.050 17.699 17.723
s = 0.100 9.382 9.385
s = 0.200 4.846 4.846
s = 0.500 1.982 1.982
s = 1.000 1 1
T=1,T"=1,s=0 70.094 T=1,T"=1,s=0 71.158

{N,d,y,2:150,2,4,0} {N,d,y,Q2:150,2,4,2}
Plane 15 x 10 torus
T=1s=0 275.572 T=1s=0 282.710
s = 0.001 215.392 219.571
s = 0.002 176.799 179.504
s = 0.005 115.021 116.045
s =0.010 72.725 73.070
s = 0.020 41.943 42.026
s = 0.050 18.515 18.522
s = 0.100 9.605 9.606
s = 0.200 4.901 4.901
s = 0.500 1.988 1.988
s = 1.000 1 1
T=1,T"=1,s=0 119.291 T=1T"=1,s=0 119.448
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TABLE VI. Reaction between a diffusing atom or molecule (walker) and a stationary target molecule (deep trap) for selected geometries
{N,d,y, 2}: N is the number of surface sites, d is the Euclidean dimension, y is the connectivity of the reaction space, and €2 is the Euler

characteristic of the surface.

(N,d,y; Q) Surface Boundary conditions Reaction center Walk length ({n))
{6,2,4,0} plane 3 x 2 torus any site 5.771428571
{6,2,4,2} octahedron closed any site 5.2
{54,2,4,0} plane 9 x 6 torus any site 82.48027996
18 x 3 torus any site 141.714 3833
{54,2,4,2} polyhedron closed any site 1 84.543843823
any site 2 86.20603538
any site 3 90.34311180
{96,2,4,0} plane 12 x 8 torus any site 163.2332366
32 x 3 torus any site 401.0412934
{96,2,4,2} polyhedron closed any site 1 168.6198973
any site 2 172.1422298
any site 3 182.5297641
{150, 2, 4, 0} plane 15 x 10 torus any site 275.5720626
32 x 3 torus any site 926.4635800
{150, 2, 4,2} polyhedron closed any site 1 282.7097284
any site 2 284.5828348
any site 3 287.5025078
any site 4 288.0941334
any site 5 312.3516256

seen in numerous experimental studies. For example, in a
classic study of the CO poisoning of para-H, conversion
over a Pt foil, one finds a gradual change in conversion rate
between 1 x 10 and 5 x 10" molecules of CO per cm~2 with
a more pronounced change as the concentration approaches
10" molecules/cm? [23]. Although poisoning on a Pt foil and
poisoning on (an imagined) Pt pellet would both exhibit an
eventual 1/s dependence on CO concentration, the approach
to this 1/s dependence is analytically different for the two
geometries. The simplest case for which results can be
compared directly is for a template of N = 6 active sites.
For a nanosurface of N = 3 x 2 = 6 sites, the behavior is (cf.
Table I1I)

(n) = (2/5)(—101 + 18s + 35%)/(—7 — 33s + 75> + 5°)

(this result can be derived using either the generating-function
approach or Markov theory). In contrast, for a nanopellet
(Table IV), the dependence is [22]

(n) = 2/5)(—=13 + 35)/(— 1 — 4s + s7).

The numerical consequences of opting for one or the other
of these topologies for domain sizes N > 6 are documented in
Table V for various settings of s. As s decreases, the walk
length is seen to increase faster on a planar surface than
on a polyhedral surface. Already for the next domain size
reported in Table V, a support having N = 54 active sites, the
behavior is the opposite, i.e., poisoning of a catalyst surface is
of somewhat less consequence than for a catalyst pellet. Such
behavior is also observed for N = 96 and 150.

Two topologically distinct models of a catalyst template
have been considered in this study, the first a planar surface (a
discrete lattice subject to periodic boundary conditions with
Euler characteristic €2 = 0) and the second a pellet (a cube
with domains of square-planar symmetry on each of the six

faces with Euler characteristic €2 = 2). Since catalysts are
neither “perfect” planar surfaces nor “perfect” cubes, it is
important to address the relevance of our results to “real”
catalyst geometries.

We begin by noting that only passive diffusion is considered
in this study, that is, we assume that a species migrating on
a template having a specified array of reaction sites is not
subject to any distance-dependent, long-range forces. In this
case, for a given specification of €2, the surface being modelled
can be diffeomorphically distorted into any topological shape
provided no “cuts” or other disjoint seams are introduced.
All that matters is the Euclidean dimension of the lattice
(here, d = 2), the total number N of lattice sites defining the
domain, and their connectivity y (here all sites are of uniform
coordination, y = 4). Topologically then, an “ideal” planar
or polyhedral surface can be deformed into any geometry
having the same Euler characteristic €2 (however “irregular’)
and trends deduced from results calculated for a given setting
of [N,d,y] remain valid.

The results reported in Table V have relevance to the
problem of chip design. Presented there are values of (n)
calculated for one fully active catalytic site, with N — 1
satellite sites assigned a range of values, s # 0. These can be
compared with values of (n) for the case where the full catalytic
activity of two sites is maintained (both are “deep traps™)
but the catalytic activity of the remaining N — 2 satellite
sites totally suppressed (s = 0). Spatially, the two active sites
are specified to be maximally separated on the template. We
find that there is a crossover value of the satellite absorption
probability s for which (n) values calculated for both chip
fabrications are in correspondence. This crossover value of s
shifts to smaller values as the lattice size N increases. Thus,
the catalytic effectiveness of a few (here two) fully active
sites on a small chip can match the catalytic activity of a
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companion chip with a single active site and N — 1 partially
absorbing sites. It is noteworthy that this correspondence can
be maintained for larger chip sizes only if satellite reactivity
is further suppressed. We suggest that this feature may be
important in the design of nanosystem sensors.

The consequences of assigning different positions of a
catalytically active site on the surface of a polyhedron of N
sites are explored in Table VI. Numerical differences in values
of (n) can be significant. By contrast, all sites on a planar
lattice for which translational invariance holds are equivalent,
so the calculated walk length to any assigned site remains
invariant. However, for planar templates of arbitrary shape
translational invariance may be lost, in which case the Euler
characteristic reverts to Q2 = 2, all sites are not equivalent,
and, like an arbitrary (non-Platonic) polyhedral surface, the
calculated mean walk length will depend on the position
of the catalytically active site(s) with respect to the boundary
of the domain.

To summarize the principal results of our study, we have
shown that the presence of competing reaction channels can
have a dramatic effect on the efficiency of the underlying
diffusion-reaction process. We have quantified the role of sys-
tem geometry (specified by the domain size N, dimensionality
d, connectivity y, and Euler characteristic €2) and site-specific
reaction rates (as gauged by the absorption probability s).
While our lattice model is admittedly a schematic characteri-
zation of a real catalyst system, it has the virtue of capturing
essential behavior, thus contributing to an understanding of the
interplay between reactivity and surface geometry.

For a catalyst with all sites being identical, the 1/s behavior
of (n) has the following implication. If the site degradation
probability p = 1 — s is assumed to depend linearly on the
concentration ¢ of the poisoning agent, then the efficiency of
catalytic conversion as measured by the normalized rate 1/(n)
will follow a linear law in ¢. However, for a small enough
catalyst it is enough that a single site remains unaffected
by poisoning to see how a more complicated (nonlinear) ¢
dependence can arise.

Nonlinear dependencies of the efficiency of catalytic
conversion on ¢ are well documented in the literature (see
Ref. [23]). For example, as is often the case for the protonic
sites of acid zeolites [24], selective poisoning due to differ-
ences in the affinity of individual sites with respect to the
chemisorbed poison species can occur. Even in a scenario
where only a single site remains fully active (considered in the
present study) the calculations reveal that the observed devia-
tions from linear behavior in ¢ are very sensitive to the topolog-
ical details of the surface. Such deviations have been charac-
terized in detail by analysis of some representative examples.

PHYSICAL REVIEW E 91, 022106 (2015)

The importance of providing a detailed characterization
of geometric effects in heterogeneous catalysis and their
relevance to industrial applications is self-evident. A straight-
forward generalization of our model would allow more realistic
scenarios involving more than one fully active site or even a
random collection thereof (in Ref. [25] specific cases have been
addressed with Markov methods, but a more comprehensive
understanding of the interplay between geometry and reaction
kinetics is needed). Certain cases with two fully active sites
have already been studied here, and we note that our results
for odd square planar lattices may be relevant for systems
with more than one fully active site. Indeed, the problem of
computing the walk length distribution for an odd square
planar N-site lattice with periodic boundary conditions is
mathematically equivalent to computing the same distribution
for a lattice composed of an arbitrary number of juxtaposed
lattices identical with the original one. Since the original
N-site lattice is replicated several times, one ends up with
more than one trap in the final lattice. Large (small) values
of the sublattice size N would correspond to a dilute (high)
concentration of reaction centers (deep traps).

The present study is in the same genre as other lattice mod-
els reported in the literature which capture salient features of
catalysis, for example the now-classical Ziff-Gulari-Barshad
model for the oxidation of carbon monoxide to carbon dioxide
on a catalyst surface [26]. That said, to provide a more realistic
description of real systems, the present work can be extended
in several directions. From the point of view of catalyst deacti-
vation, the effect of introducing more complex inhomogeneous
landscapes is of interest as is introducing time-dependent
absorption probabilities and considering down-range forces
between the diffusing reactant and an ensemble of reaction
centers. We anticipate that interesting kinetic effects will arise
when the assumption of reaction irreversibility is relaxed or
mobility of reaction centers is introduced. Progress along these
lines will be reported in the near future.
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