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Third law of thermodynamics as a key test of generalized entropies
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4Departamento de Fı́sica, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró RN, Brazil
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The laws of thermodynamics constrain the formulation of statistical mechanics at the microscopic level. The
third law of thermodynamics states that the entropy must vanish at absolute zero temperature for systems with
nondegenerate ground states in equilibrium. Conversely, the entropy can vanish only at absolute zero temperature.
Here we ask whether or not generalized entropies satisfy this fundamental property. We propose a direct analytical
procedure to test if a generalized entropy satisfies the third law, assuming only very general assumptions for the
entropy S and energy U of an arbitrary N -level classical system. Mathematically, the method relies on exact
calculation of β = dS/dU in terms of the microstate probabilities pi . To illustrate this approach, we present exact
results for the two best known generalizations of statistical mechanics. Specifically, we study the Kaniadakis
entropy Sκ , which is additive, and the Tsallis entropy Sq , which is nonadditive. We show that the Kaniadakis
entropy correctly satisfies the third law only for −1 < κ < +1, thereby shedding light on why κ is conventionally
restricted to this interval. Surprisingly, however, the Tsallis entropy violates the third law for q < 1. Finally, we
give a concrete example of the power of our proposed method by applying it to a paradigmatic system: the
one-dimensional ferromagnetic Ising model with nearest-neighbor interactions.
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I. INTRODUCTION

Thermodynamics is a phenomenological theory believed
to hold for all physical systems that meet proper minimum
general necessary conditions [1]. These systems range spec-
tacularly in diversity, from regions around black holes at the
centers of galaxies to biochemical reactions in living organ-
isms. The backbone of thermodynamics is formed by very
few but extremely general laws, governing a huge spectrum of
distinct behavior in nature. Statistical mechanics aims to bridge
the fundamental microscopic description of classical and
quantum mechanics with the macroscopic behavior described
by thermodynamics.

Toward that end, the Boltzmann-Gibbs entropy is a fun-
damental quantity in statistical physics. Indeed, for the vast
majority of systems, it adequately captures all the important
aspects of thermodynamic entropy [2,3]. Nevertheless, several
generalizations of the Boltzmann-Gibbs entropy have been
proposed (e.g., see Refs. [4–12]). Some, such as the Rényi
entropy, are not particularly well suited to statistical mechan-
ics. Others have found wide application in studies of diverse
phenomena [7,8]. Two of the most commonly used generalized
entropies are the Tsallis entropy [9,10], which is nonadditive,
and the Kaniadakis entropy [11,12], which is additive. To
gain a better understanding about the distinct formulations
for statistical mechanical entropy, we ask whether or not
generalized entropies satisfy one of the basic laws mentioned
above: the third law of thermodynamics. Our focus here is the
development of an analytical method to answer this question.
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As an important application, we then use this method to
check whether or not the Kaniadakis and Tsallis entropies
are compatible with it.

One may wonder why generalized entropies should be
considered (in fact, this is a relatively old concern [13]). First,
some formal results indicate that there are classes of systems
that might demand extensions of the concept of entropy [14].
Another oft-mentioned justification is to be able to deal with
Hamiltonians with long-range interactions [9,10]. However,
there is no known reason to believe a priori that a particular
choice will be “the” correct entropy for systems with long-
range correlations. The existence of a number of competing
proposals is a sign that there may be no unique solution to
this problem. Recently, it has been proved that nonadditive
entropies violate the Shore and Johnson axioms [2]. Moreover,
systems with long-range interactions have been successfully
studied using conventional (Boltzmann-Gibbs) statistical me-
chanics [15]. Further, it has been shown that nonexponential
distributions can arise via maximization of the Boltzmann-
Gibbs-Shannon entropy together with a nonextensive energy
[3]. On the other hand, it has been claimed that nonadditive
entropies emerge from strong correlations between random
variables of the system, and the Shore and Johnson hypothesis
do not adequately address this issue [16]. Also, generalized
entropies are compatible with the maximum entropy principle
in the context of nonextensive, nonergodic, and complex
statistical systems [4]. Despite the controversy, or perhaps
because of it, research goes on in this field. For example,
the framework of generalized entropies has been successfully
used as a tool for studying complex systems and nonlinear
dynamics [10]. Generalized entropies furthermore inspired
other approaches, e.g., superstatistics and Kaniadakis statistics
[8,11,12]. For instance, the entropy of the black hole has been
discussed in the context of the Tsallis formulation [17,18].
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Kaniadakis statistics has been applied in astrophysics, e.g.,
relativistic plasmas [19] and stellar rotational velocities [20].

Given the growing interest in generalized entropies, an un-
avoidable issue is to know whether or not they are compatible
with the laws of thermodynamics. An inconsistency with the
zeroth law has been pointed out in [21], and a solution based
on nonadditive composition rules has been proposed in [22].
The second law has also been studied in this context [23] (see
the discussion and references below).

Our goal is to discover precisely when generalized entropies
are compatible with the third law of thermodynamics, which
states that the entropy of a condensed-matter system in
thermodynamic equilibrium approaches zero as the absolute
temperature approaches zero [24,25] [we ignore the (trivial)
case of degenerate ground states and assume, without loss of
generality, a nondegenerate ground state]. Since the entropy
is non-negative and the negative of the entropy is a convex
function of the internal energy, it is easy to show that the
entropy cannot become zero at positive absolute temperatures.
The third law and its converse thus guarantee that the entropy
can vanish if and only if the absolute temperature vanishes. We
emphasize a fundamental point, often overlooked in previous
works (and one of the reasons this specific compatibility test
should be chosen). The third law must be verified by all
Hamiltonian systems, irrespective of whether or not long-
range interactions are present. Therefore, its satisfiability is
a powerful constraint and hence a crucial check. The third law
should be satisfied by any credible and reliable microscopic
description of matter, regardless of the type and details of the
interaction (or “forces”) between the constituents.

With this stated purpose, we start with simple but general
considerations about the expressions for the entropy S and
energy U of a system having an arbitrary number N of
microstate configurations. Then, taking β = 1/(kBT ) in the
traditional Boltzmann-Gibbs scenario (for simplicity, setting
the Boltzmann constant kB = 1), we write the thermodynamic
macroscopic relation β = dS/dU in terms of the state’s mi-
croscopic probabilities p′s. Finally, we determine the relation
between the low entropy limit S → 0 (or more generally
S → Smin; see the next section) and the low-temperature
limit β → +∞. The main result reported here is therefore
an analytical method to test whether claimed generalizations
of statistical mechanics are compatible with the third law of
thermodynamics.

We apply the procedure to the Boltzmann-Gibbs entropy
(as a comparison standard) and also to the Kaniadakis and
Tsallis entropies (abbreviated as BG, K , and T , respectively).
For the latter two, we illustrate the power of the method by
unveiling the ranges of their parameters for which the third law
is satisfied. We focus on the K and T formulations because of
their previously mentioned importance. But we emphasize that
the present approach can in fact be used for any generalized
statistical mechanical entropy. The K entropy obeys the third
law provided its free parameter is restricted to the values
usually assumed in the literature. But we find that the Tsallis
entropy can vanish at nonzero temperatures in certain ranges
of q. Our results raise questions about whether it can properly
generalize statistical mechanics.

Finally, as a concrete example, we consider the paradig-
matic one-dimensional (1D) Ising model, which is one of the

most important models in all of physics. The Ising model
plays the role of the “simple harmonic oscillator” of statistical
mechanics, and we know a priori that it must satisfy the third
law. The reason we have chosen the 1D Ising model is that we
can calculate the exact solutions in any statistical mechanical
framework. Almost a century ago, Ising [26] solved the
problem in the canonical ensemble, which is equivalent to
using the Boltzmann-Gibbs entropy. But the Ising model
can also be solved exactly in nonstandard ensembles using
generalized statistical mechanical entropies.

II. THE METHOD

Consider a general system, whose energies Eλ for the
possible microscopic configurations are ordered as E0 < E1 �
E2 � · · · � EN , N arbitrary. The state λ = 0 then charac-
terizes the lowest-energy state, also called the ground state.
Any degeneracies for the ground state can easily be treated
separately, without changing the relevant physical discussion,
so we do not consider degeneracy here. Let the probability
for the system to be in the microscopic state λ = 0,1, . . . ,N

be 0 � pλ � 1, where
∑

λ pλ = 1. Let n = 1,2, . . . ,N , so
that n spans the same integers as λ except for λ = 0. Then,
from a mathematical point of view, we can consider all pn

as independent variables and express p0 as a function of the
pn, as follows: p0 = p0(p1,p2, . . . ,pN ) = 1 − ∑

n pn. In this
way, letting f be any function of the probabilities, we get
∂f (p0)/∂pn = −∂f (p0)/∂p0.

Let us write the system entropy S and energy U as

S = −p0 s(p0) −
∑

n

pn s(pn), (1)

U = 1

P

[
p0 u(p0) E0 +

∑
n

pn u(pn) En

]
. (2)

Here, P is a normalization, usually (but not always, see below)
taken as 1. Boltzmann-Gibbs statistical mechanics and many
generalizations of it can be recast in the above form if one also
assumes the following general properties:

(i) s(p) � 0: This is to guarantee non-negative entropy.
(ii) limp→0 p s(p) = s(1) = 0: Full knowledge that a state

is not (is the only one) available should decrease to zero the loss
of information associated with that state (the whole system).

(iii) u(p) is well behaved for any 0 � p � 1: uE might be
seen as an effective energy of each microscopic state (of “bare”
energy E), conceivably due to the interactions with the others.
So, it should not diverge or present discontinuous changes as
p varies.

(iv) u(1) = 1: If just a single state is occupied, its own bare
energy should not be changed given that eventual interactions
between the microstates would be absent (unless in the case of
self-interaction, not assumed in this work).

(v) P is a well-behaved function of the {pλ}′s: P is just a
normalization for the energy expression; moreover, if pλ = 1
for a given λ (with all the other p′s being zero), then P = 1.

In addition to the above, the expressions for S and U must
also bear a fundamental relation. In any proper statistical
mechanical formalism, a relevant parameter to characterize
equilibrium in a thermal process is given by β = dS/dU
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(see, e.g., the clear discussion in [27]). The connection with
thermodynamics is thereby established through the association
β = 1/T , with T the thermodynamic temperature. In one-
parameter generalizations of the BG entropy, the thermody-
namic temperature β = dS/dU no longer necessarily equals
the generalized statistical mechanical temperature βα , where
α is the tunable generalization parameter. So β may differ
from βα in pλ = F(βα Eλ), with F depending on the specific
formulation and generalizing the usual exponential function of
BG. In general, βα = ζ β [for 0 < ζ = ζ (α) �= ζ (T )]. But note
that ζ �= 1 does not change the fact that β should diverge with
T going to zero. Obviously, for the BG entropy, we have the
equality ζ = 1. For K and T entropies one finds, respectively,
ζ = 1/

√
1 − α2 (−1 < α < +1) [12] and ζ = 1 [28,29].

We have previously discussed that the third law guarantees
that S = 0 if and only if T = 0 (β → +∞). However, since
we are considering generalized statistics, we may relax the
S = 0 condition, assuming instead

S → Smin if and only if β → +∞, (3)

where Smin is the lowest possible entropy in a given context
(e.g., for a specific value of the formulation parameter α). The
issue is hence to determine when the “extended” third law, (3),
holds true. For the sake of argument, consider a generic set of
parameters � controlling the variation of both S and U , where
the low entropy state is given by S(�0) = Smin. In what fol-
lows, we will focus on the “only if” direction in condition (3),
since the “if” direction is easy. In the low entropy limit, we have

β = dS

dU
= lim

�→�0

S(�) − Smin

U (�) − U (�0)
.

Therefore, β → +∞ requires (a) U (�0) to be (at least a
local) minimum, otherwise we cannot get the correct positive
signal in the limit; and (b) for � → �0, |	U | must decay
sufficiently faster than |	S|, thus yielding the proper divergent
behavior.

From the functional forms of Eqs. (1) and (2), it is natural to
use the probabilities {pλ} to check for (3). Indeed, by writing
β = ∑

n βn = ∑
n ∂S/∂pn (∂U/∂pn)−1, we get

∂S

∂pn

= −pn

∂s(pn)

∂pn

− s(pn) + p0
∂s(p0)

∂p0
+ s(p0),

∂U

∂pn

= 1

P

[
En

(
pn

∂u(pn)

∂pn

+ u(pn)

)
(4)

− E0

(
p0

∂u(p0)

∂p0
+ u(p0)

)]
− U

P

∂P

∂pn

.

Here the βn is the contribution to β from energy level n. In sum-
mary, one first determines which set {pλ} leads to a minimum
for S, next one analyzes how U and βn behave in this limit,
and finally one compares the results with the third law, (3).

A. Boltzmann-Gibbs statistics

It is instructive to apply the above framework to the standard
BG statistics, for which

s(p) = ln[p], u(p) = 1, P = 1. (5)

Then ∂U/∂pn = En − E0 and ∂S/∂pn = − ln[pn/p0]. Since
in this case p0 → 1 (consequently with all the other p′

ns

vanishing) implies that S → 0 and U goes to its minimum
possible value of E0, we need to calculate limp0→1,{pn}→0 βn, or

lim
pn → 0
p0 = 1

βn = − lim
pn→0

ln[pn]

(En − E0)
= +∞ ∀ n. (6)

Thus, we verify that the third law and its converse are satisfied
(furthermore with the usual Smin = 0 for a nondegenerate
ground state). Indeed, it could not be otherwise because BG
statistics is compatible with thermodynamics.

III. EXACT RESULTS FOR TWO GENERALIZED
STATISTICS

We now consider the two well-studied Kaniadakis and
Tsallis statistics. Let α = κ for the Kaniadakis case and
α = q − 1 for the Tsallis case. Then we have

s(p) = pα − p−α

2α
, u(p) = 1, P = 1, for K ,

(7)

s(p) = pα − 1

α
, u(p) = pα, P =

∑
λ

p1+α
λ for T .

For the K formulation, −1 < α < +1, whereas for the T ,
α is real. For convenience we use the same label, α, as the
parameter in the two statistics. In both, α → 0 corresponds
to the BG. Hence, in our derivations we do not need to be
mathematically concerned with the α = 0 case. Lastly for
Tsallis, depending on α the previous properties (ii), (iii), and
(v) may not hold true for p = 0.

For convenience, let us denote by L0 and L∞, respectively,
the limits p0 → 1 and {pn} → 0 and pλ → 1/(N + 1) ∀ λ.
We recall that in the BG canonical ensemble, L0 (L∞)
corresponds to T → 0 (T → +∞). Finally, in all of the
subsequent calculations, the procedural order will be the
following: (a) consider completely arbitrary {pλ}′s, (b) assume
specific values for α, and finally (c) take the proper limits, e.g.,
for L0: p0 → 1 and {pn} → 0 (with the rates in which the p′

ns
vanish specified whenever necessary).

A. The Kaniadakis formulation

In this case, we have that

U
L0−→ E0, U

L∞−→ (N + 1)−1
∑

λ

Eλ (any α), (8)

S
L0−→ Smin, S

L∞−→ Smax (|α| � 1),
(9)

S
L0−→ Smax, S

L∞−→ Smin (|α| > 1).

Smin = 0, Smax = SN+1 (|α| < 1),

Smin = N/2, Smax = SN+1 (|α| = 1),
(10)

Smin = SN+1, Smax = +∞ (|α| > 1),

SN+1 = [(N + 1)|α| − (N + 1)−|α|]/(2|α|),
∂S

∂pn

= − (α + 1)

2α

(
pα

n − pα
0

) − (α − 1)

2α

(
p−α

n − p−α
0

)
,

(11)
∂U

∂pn

= En − E0.
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Note the limit L0 always leads to a minimum for U regardless
the value of α, but it yields Smin if |α| � 1 and Smax if |α| > 1
(in this latter case with S → Smin for L∞). So, we have

lim
pn → 0
p0 = 1

βn = lim
pn→0

(α + 1)
(
1 − pα

n

) + (α − 1)
(
1 − p−α

n

)
2α (En − E0)

=
{+∞ if |α| < 1,

(En − E0)−1 if |α| = 1.
(12)

For K , the third law (in the common case of Smin = 0) is
true for |α| < 1, which is the range usually assumed for α [12].
If |α| = 1 (note Smax = SN+1 > Smin = N/2), the extended
third law is violated if we demand it to be independent of
the system’s particular features [see the following discussion
regarding the character of β = ∑

n βn = ∑
n(En − E0)−1].

Finally, we have already observed that if the same specific
limit L yielding Smin does not also result in a (local) minimum
for U , (3) automatically is not satisfied. The K statistics clearly
illustrates this fact for |α| > 1, when L∞ gives a minimum for
S, but not a local minimum for U . Thus, calculating the limit
L∞ for βn [using Eq. (11) with |α| > 1], one obtains βn → 0,
contradicting the third law. For completeness, we also observe
that the limit L0 for βn when |α| > 1 is −∞.

In Ref. [12], the interval −1 < α < +1 has been es-
tablished through intricate and subtle considerations, e.g.,
imposing concavity, additivity, and extensively to the statistics.
From the above, one sees that the third law can be a much
simpler way to determine the acceptable values for the
formulation parameter α.

B. The Tsallis formulation

For the T entropy, we have

U
L0−→ E0, U

L∞−→ UN+1 (α + 1 > 0),

U
L0−→ UN+1, U

L∞−→ UN+1 (α + 1 = 0),

U
L0−→ (N∗)−1

∑
n∗

En∗ , U
L∞−→ UN+1 (α + 1 < 0),

UN+1 = (N + 1)−1
∑

λ

Eλ. (13)

In the above, {n∗} denotes the labels of all the N∗ probabilities
p′

n∗s, which go to zero at the same rate1 and vanish faster than
any other pn /∈ {pn∗ } (for comparison, in the BG canonical
ensemble with nondegenerate states, N∗ = 1 since if T → 0,
pN = exp[−βEN ]/

∑
λ exp[−βEλ] is the fastest decaying p),

S
L0−→ Smin, S

L∞−→ Smax (α + 1 � 0),

S
L0−→ Smax, S

L∞−→ Smin (α + 1 < 0), (14)

Smin = 0, Smax = SN+1 (α + 1 > 0),

Smin = SN+1, Smax = SN+1 (α + 1 = 0),

1The corresponding energy reads (N∗)−1
∑

n∗ γn∗En∗ for pn∗ =
�n∗p∗ and �n∗ → γn∗ (γn∗ a finite constant) when p∗ → 0. For
simplicity, in our analysis we assume γn∗ = 1.

Smin = SN+1, Smax = +∞ (α + 1 < 0),

SN+1 = [1 − (N + 1)−α]/α, (15)

∂S

∂pn

= − (α + 1)

α

(
pα

n − pα
0

)
,

∂U

∂pn

= (α + 1)

P

[
(En − U )pα

n − (E0 − U )pα
0

]
. (16)

Then, for α + 1 > 0 we have the normal trend, with L0

resulting in a minimum for U and S (moreover, with Smin = 0).
The value α + 1 = 0 leads to constant U and S regardless of
the p′

λs [30] [in agreement with Eq. (16), since identically
∂S/∂pn = ∂U/∂pn = 0 because the multiplicative term α +
1, which is null in this case]. Hence dS/dU = 0 and β = 0 for
α = −1. Finally, if α + 1 < 0, Smin is obtained from the limit
L∞. On the other hand, exactly which limit yields a (local)
minimum for U will depend on the behavior of the p′

ns and on
the properties of the system energy spectrum. Notice for the T

statistics there are no general closed analytical expressions for
the p′

λs, only implicit relations [5]. But as is clarified below, this
latter information is not essential to check for condition (3).

For each βn, we calculate the proper limits L0: setting p0 =
1 and taking pn → 0, when α + 1 > 0; and L∞: setting pλ =
(N + 1)−1 ∀ λ, when α + 1 < 0. For α = −1, we already have
seen that (3) cannot hold. We get thus

lim
pn → 0
p0 = 1

βn = 1

α
lim

pn→0

(
p−α

n − 1
)

(En − E0)
if α > −1,

=
{+∞ if α � 0,

−α−1

En−E0
if − 1 < α < 0,

lim
pλ→ 1

N+1

βn = −1

α(N + 1)α
lim

pn→p0

(pn/p0)α − 1

(En − E0)
if α < −1,

= 0. (17)
To summarize, when α � 0 (or q � 1), T vanishes as

S vanishes, in agreement with the third law. For α � −1
(q � 0), condition (3) is not observed. Moreover, for this
parameter range, the T entropy is also known not to be
convex (see Sec. V). Finally, as for the K with |α| = 1,
for T with −1 < α < 0, we find β = |α|−1 ∑

n(En − E0)−1.
Obviously, for N finite (a relevant example being the Ising
model below), the third law is not obeyed. Even with N

infinite, (3) will not stand, e.g., if 1/(En − E0) ∼ 1/nγ for
all n � Nγ and γ > 1. Therefore, to have a general physical
law, i.e., spectrum-independent (which is the case for the
Boltzmann-Gibbs entropy and for the Kaniadakis entropy only
if −1 < α < +1), this range for the statistics parameter should
be excluded. As far as we know, a restriction to the range
0 < q < 1 for the T formulation has not been previously
reported in the literature.

IV. AN IMPORTANT EXAMPLE: THE ISING MODEL

The 1D Ising model, with zero field and periodic boundary
conditions, is defined by the Hamiltonian (σN+1 = σ1)

H = −J

N∑
i=1

σiσi+1. (18)
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The N spins take values σi = ±1. The thermodynamic limit
follows from N → ∞. We denote by p− and p+ the
probabilities that a randomly chosen pair of neighboring spins
has the bond in the low-energy −J (i.e., parallel spins) and
high-energy +J (antiparallel spins) states, respectively. In
the microcanonical ensemble, the internal energy per spin is
simply U = J (p+ − p−), where p+ + p− = 1.

The essential and very useful property of the 1D Ising
model—not shared by its 2D and 3D counterparts—is that
although on the one hand there are spin-spin correlations at fi-
nite temperatures, on the other hand the bonds are uncorrelated
at nonzero temperatures. Indeed, the bond energies become
independent and identically distributed random variables, and
the system reduces to a collection of uncoupled two-level
systems. This feature allows us to calculate the entropy
per spin of the 1D Ising model for any choice of entropy
formula.

Thus, the Boltzmann-Gibbs entropy per bond (or spin) is
given by our previous general expression with N = 1, λ = 0
(λ = 1) corresponding to the state − (+), E0 = E− = −J ,
E1 = E+ = +J , and β = β1. Here we briefly digress and note
from the relations in Eq. (5) and p− + p+ = 1 that p± =
exp[∓βJ ]/Z, with Z = 2 cosh[βJ ] the partition function.
So, U = −J tanh[βJ ] recovering Ising’s expression for the
internal energy at zero field. Moreover, S = βU + ln[Z]
(which also can be cast as the well-known relation T S =
U − F since the free energy is given by F = − ln[Z]/β).
Our exact results show then that β = β1 = +∞ only when S

is zero (which is also true for the case of negative temperatures
when p− → 0). Of course, this is not a surprise; in fact, it was
already implied by Ising’s original exact solution based on the
transfer matrix method. Another relevant fact here is the exact
behavior of U and S at small temperatures (β large). It is a
simple exercise to verify that U goes to its minimum of −J

much faster than S goes to zero.
Now, we consider our previous calculations for the Ka-

niadakis and Tsallis entropies, again in the case of N = 1.
We are of course assuming a departure from the canonical
ensemble, but still we can obtain exact solutions for the
Ising model for generalized entropies. So, for the Kaniadakis
entropy (in the commonly assumed range −1 < α < +1), the
third law is always observed (and as for the Boltzmann-Gibbs
entropy, this also being the case for negative temperatures:
p− → 0). On the other hand, for the Tsallis entropy with
α � −1, (3) is not satisfied (perhaps not a surprise given the
behavior of S in this interval; see the next section). However,
we unexpectedly find that the third law is also violated by
the T formulation when −1 < α < 0 since S = 0 at T0 =
2J/|α|.

Figure 1 shows for the Ising model in the Kaniadakis
formulation some examples of the behavior of S and β versus
p+ in the conventional |α| < 1 case, as well as for |α| � 1
(with 2J = 1). In agreement with the third law, when |α| < 1,
β (which is the inverse of thermodynamic temperature) goes
to +∞ as the system settles down completely into the ground
state, i.e., as p− → 1 and p+ → 0.

Figures 2 and 3 illustrate the Ising model in the Tsallis
formulation (in both graphs we have again used 2J = 1 for
convenience). Figure 2 displays how S, U , and β behave for
selected values of α = q − 1 as the probability p+ of being in
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FIG. 1. The Kaniadakis entropy for the 1D Ising model is well-
behaved. Here, α = κ and 2J = 1. The (a) entropy S and (b) β = 1/T

as a function of the probability p+ of a bond being in the excited
state. For the valid parameter range |α| < 1, β correctly diverges in
the vanishing entropy limit p+ → 0, in agreement with the third law
of thermodynamics.
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FIG. 2. The Tsallis entropy of the Ising model behaves anoma-
lously in the limit of zero entropy, because not only does it directly
violate the third law for q < 0, but it also violates the converse of
the third law for q < 1. The Ising model (a) entropy S, (b) energy U ,
and (c) β = 1/T as a function of the probability p+ of a randomly
chosen bond being in the excited state and for distinct values of α.
Here E+ − E− = 2J = 1. For α � 0 (q � 1), we see the normal
behavior of vanishing entropy and divergent β in the limit of p+ → 0,
thus observing the third law. On the other hand, the entropy does not
vanish [inset in (a)] and the energy does not go to a minimum [inset in
(b)] for α < −1 (or q < 0), violating the third law [top inset in (c)].
Moreover, for −1 < α < 0 (0 < q < 1) surprisingly the third law
is also violated because entropy can vanish at finite β, i.e., nonzero
temperature T = 1/β [bottom inset in (c)].
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FIG. 3. The Tsallis entropy can vanish at nonzero temperatures, in
violation of (the converse of) the third law. Here −1 < α < 0, where
q = α + 1. The Ising model (a) entropy S and (b) the temperature
1/β as a function of p+ (around 0) for some α values. For p+ → 0,
1/β tends to T0, the temperature at which the entropy vanishes. The
positive temperatures seen violate the third law of thermodynamics.

the higher-energy state is varied. Whereas for α � 0 (q � 1),
β diverges (T falls to zero) as p+ → 0, in contrast for α < 0
(q < 1) the temperature does not vanish as it should. Figure
3 shows the S and the absolute temperature (1/β) in the even
more intriguing interval of −1 < α < 0 (0 < q < 1), when
the entropy does vanish for p+ → 0 and p− → 1, but the
third law is violated.

V. DISCUSSION AND CONCLUSION

Recall that in statistical mechanics, a vanishing entropy
S = 0 means that we have complete knowledge or information
of the system description at any level, i.e., there is no
uncertainty about the microstate. In both classical and quantum
mechanics, a positive absolute temperature T > 0 guarantees
thermal fluctuations of energy, so that it is impossible to
know with complete certainty whether or nor the system is
in the ground state. So, for systems in thermal equilibrium,
it should be impossible for the entropy to vanish if T �= 0
[31]. Yet one of the analyzed entropies, the Tsallis, does
precisely this (at least for α < 0 or equivalently q < 1). In
contrast, the Kaniadakis entropy (in its proper parameter range
−1 < α < +1) behaves in a manner consistent with the third
law. We conjecture that the additive property of the Kaniadakis
entropy is the reason for this compatibility with the third
law.

Previous works have shown that for some q values, the
Tsallis entropy is incompatible with the second law of thermo-
dynamics. By investigating the second law of thermodynamics
in the context of kinetic theory, the Tsallis statistics has
been studied in the classical [6], the relativistic [32], and
also in the quantum-mechanical regimes [33]. Another study
considered the convexity property of the generalized relative
entropy in the quantum regime [34], leading to the constraint

q ∈ (0,2] for the Tsallis entropy (see, e.g., [6,32,33]). Putting
together these previous results with those reported here, we
conclude that the Tsallis entropy is compatible with all the
laws of thermodynamics only for q in the range 1 � q � 2
(0 � α � 1).

Concerning our concrete particular example, it could be
argued (although not very convincingly in our opinion) that
because the 1D Ising model with nearest-neighbor interactions
does not possess long-range interactions, then our conclusions
above are not justified. In the near future, we hope to explicitly
study Hamiltonians with long-range interactions, but for now
we can foresee a direct rebuttal to this objection. The third
law of thermodynamics does not distinguish between short-
versus long-range interactions, but rather is sensitive only to
the features of the lowest energy levels. So, although two-
level Hamiltonian systems cannot be considered to have any
interactions at all (whether short- or long-range), they must
still obey the third law of thermodynamics. More generally,
our analysis of N -level systems has proven conclusively that
in fact the Boltzmann-Gibbs and Kaniadakis entropies both
satisfy the third law of thermodynamics. But for q < 1, the
Tsallis entropy does not. Our results have nothing to do with
the range of interactions (if any). Rather, they pertain to the
way S goes to minimum in relation to the behavior of U at low
temperatures.

Finally, recent experimental results in the Tsallis formula-
tion confirm deviations from a Gaussian neighbor for velocity
distributions. Some examples are as follows: the velocities of
cold atoms in dissipative optical lattices (q = 1.396 ± 0.005)
[35]; the velocities of particles in quasi-two-dimensional dusty
plasma (q = 1.08 ± 0.01) [36]; single ions in radiofrequency
traps interacting with a classical buffer gas (q = 1.03−1.87)
[37]; transverse momenta distributions at LHC experiments
[38]; etc. Remarkably, all these experimental values for q are
within our predicted interval 1 � q � 2 for thermodynamic
validity.

We conclude by recalling a well-known statement attributed
to Albert Einstein: “Classical thermodynamics . . . is the only
physical theory of universal content which I am convinced . . .

will never be overthrown.” Therefore, in proposing generalized
entropies, it is necessary to determine whether they are in
fact properly defined in terms of necessary conditions. But
which principles should be used to construct them? It follows
that no attempt to extend the thermodynamic or Boltzmann-
Gibbs entropy can lead to a general physical theory without
passing through the key test of compatibility with the laws of
thermodynamics. The third law, very important in a “down to
earth” way in science, is valid irrespective of the microscopic
details and deals with a very objective aspect: how matter
behaves at very low temperatures. Here, we have explicitly
shown how to perform the test of compatibility with the third
law.
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[25] W. Nernst, Überber die beziehung zwischen warmeentwicklung
und maximaler arbeit bei kondensierten systemen, Er. K. Pr.
Akad. Wiss. 52, 933 (1906).

[26] E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Phys. 31,
253 (1925).

[27] R. K. Pathria and P. D. Beale, Statistical Mechanics (Academic,
Boston, 2011).

[28] S. Abe, Temperature of nonextensive system: Tsallis entropy as
Clausius entropy, Physica A 368, 430 (2006).

[29] Z. Huang, B. Lin, and J. Chen, A new expression of the
probability distribution in incomplete statistics and fundamental
thermodynamic relations, Chaos Sol. Fract. 40, 1277 (2009).

[30] F. C. Blondeau, A. Delahaies, and D. Rousseau, Tsallis entropy
measure of noise-aided information transmission in a binary
channel, Phys. Lett. A 375, 2211 (2011).

[31] R. H. Fowler and E. A. Guggenheim, Statistical Thermodynam-
ics (Cambridge University Press, Cambridge, 1939).

[32] A. Lavagno, Relativistic nonextensive thermodynamics, Phys.
Lett. A 301, 13 (2002).

[33] R. Silva, D. H. L. Anselmo, and J. S. Alcaniz, Nonextensive
quantum H -theorem, Europhys. Lett. 89, 10004 (2010).

[34] S. Abe and A. K. Rajagopal, Validity of the second law in
nonextensive quantum thermodynamics, Phys. Rev. Lett. 91,
120601 (2003).

[35] P. Douglas, S. Bergamini, and F. Renzoni, Tunable Tsallis
distributions in dissipative optical lattices, Phys. Rev. Lett. 96,
110601 (2006).

[36] B. Liu and J. Goree, Superdiffusion and non-Gaussian statistics
in a driven-dissipative 2D dusty plasma, Phys. Rev. Lett. 100,
055003 (2008).

[37] R. M. Pickup, R. Cywinski, C. Pappas, B. Farago, and P.
Fouquet, Generalized spinglass relaxation, Phys. Rev. Lett. 102,
097202 (2009).

[38] V. Khachatryan et al. (CMS Collaboration), Transverse-
momentum and pseudorapidity distributions of charged hadrons
in pp collisions at

√
s = 7 TeV, Phys. Rev. Lett. 105, 022002

(2010).

022105-7

http://dx.doi.org/10.1103/PhysRevLett.111.180604
http://dx.doi.org/10.1103/PhysRevLett.111.180604
http://dx.doi.org/10.1103/PhysRevLett.111.180604
http://dx.doi.org/10.1103/PhysRevLett.111.180604
http://dx.doi.org/10.1073/pnas.1320578110
http://dx.doi.org/10.1073/pnas.1320578110
http://dx.doi.org/10.1073/pnas.1320578110
http://dx.doi.org/10.1073/pnas.1320578110
http://dx.doi.org/10.1073/pnas.1406071111
http://dx.doi.org/10.1073/pnas.1406071111
http://dx.doi.org/10.1073/pnas.1406071111
http://dx.doi.org/10.1073/pnas.1406071111
http://dx.doi.org/10.1103/PhysRevLett.83.4233
http://dx.doi.org/10.1103/PhysRevLett.83.4233
http://dx.doi.org/10.1103/PhysRevLett.83.4233
http://dx.doi.org/10.1103/PhysRevLett.83.4233
http://dx.doi.org/10.1103/PhysRevLett.86.2938
http://dx.doi.org/10.1103/PhysRevLett.86.2938
http://dx.doi.org/10.1103/PhysRevLett.86.2938
http://dx.doi.org/10.1103/PhysRevLett.86.2938
http://dx.doi.org/10.1080/00107510902823517
http://dx.doi.org/10.1080/00107510902823517
http://dx.doi.org/10.1080/00107510902823517
http://dx.doi.org/10.1080/00107510902823517
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1016/S0378-4371(01)00184-4
http://dx.doi.org/10.1016/S0378-4371(01)00184-4
http://dx.doi.org/10.1016/S0378-4371(01)00184-4
http://dx.doi.org/10.1016/S0378-4371(01)00184-4
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1103/RevModPhys.22.56
http://dx.doi.org/10.1103/RevModPhys.22.56
http://dx.doi.org/10.1103/RevModPhys.22.56
http://dx.doi.org/10.1103/RevModPhys.22.56
http://dx.doi.org/10.1209/0295-5075/96/50003
http://dx.doi.org/10.1209/0295-5075/96/50003
http://dx.doi.org/10.1209/0295-5075/96/50003
http://dx.doi.org/10.1209/0295-5075/96/50003
http://dx.doi.org/10.1016/j.physrep.2013.10.001
http://dx.doi.org/10.1016/j.physrep.2013.10.001
http://dx.doi.org/10.1016/j.physrep.2013.10.001
http://dx.doi.org/10.1016/j.physrep.2013.10.001
http://arxiv.org/abs/arXiv:1404.1257
http://dx.doi.org/10.1016/j.physletb.2013.09.032
http://dx.doi.org/10.1016/j.physletb.2013.09.032
http://dx.doi.org/10.1016/j.physletb.2013.09.032
http://dx.doi.org/10.1016/j.physletb.2013.09.032
http://dx.doi.org/10.1140/epjc/s10052-013-2487-6
http://dx.doi.org/10.1140/epjc/s10052-013-2487-6
http://dx.doi.org/10.1140/epjc/s10052-013-2487-6
http://dx.doi.org/10.1140/epjc/s10052-013-2487-6
http://dx.doi.org/10.1086/520326
http://dx.doi.org/10.1086/520326
http://dx.doi.org/10.1086/520326
http://dx.doi.org/10.1086/520326
http://dx.doi.org/10.1088/0004-637X/696/1/L48
http://dx.doi.org/10.1088/0004-637X/696/1/L48
http://dx.doi.org/10.1088/0004-637X/696/1/L48
http://dx.doi.org/10.1088/0004-637X/696/1/L48
http://dx.doi.org/10.1103/PhysRevE.67.036114
http://dx.doi.org/10.1103/PhysRevE.67.036114
http://dx.doi.org/10.1103/PhysRevE.67.036114
http://dx.doi.org/10.1103/PhysRevE.67.036114
http://dx.doi.org/10.1103/PhysRevE.83.061147
http://dx.doi.org/10.1103/PhysRevE.83.061147
http://dx.doi.org/10.1103/PhysRevE.83.061147
http://dx.doi.org/10.1103/PhysRevE.83.061147
http://dx.doi.org/10.3390/e16052408
http://dx.doi.org/10.3390/e16052408
http://dx.doi.org/10.3390/e16052408
http://dx.doi.org/10.3390/e16052408
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.1016/j.physa.2006.04.001
http://dx.doi.org/10.1016/j.physa.2006.04.001
http://dx.doi.org/10.1016/j.physa.2006.04.001
http://dx.doi.org/10.1016/j.physa.2006.04.001
http://dx.doi.org/10.1016/j.chaos.2007.09.002
http://dx.doi.org/10.1016/j.chaos.2007.09.002
http://dx.doi.org/10.1016/j.chaos.2007.09.002
http://dx.doi.org/10.1016/j.chaos.2007.09.002
http://dx.doi.org/10.1016/j.physleta.2011.04.043
http://dx.doi.org/10.1016/j.physleta.2011.04.043
http://dx.doi.org/10.1016/j.physleta.2011.04.043
http://dx.doi.org/10.1016/j.physleta.2011.04.043
http://dx.doi.org/10.1016/S0375-9601(02)00964-7
http://dx.doi.org/10.1016/S0375-9601(02)00964-7
http://dx.doi.org/10.1016/S0375-9601(02)00964-7
http://dx.doi.org/10.1016/S0375-9601(02)00964-7
http://dx.doi.org/10.1209/0295-5075/89/10004
http://dx.doi.org/10.1209/0295-5075/89/10004
http://dx.doi.org/10.1209/0295-5075/89/10004
http://dx.doi.org/10.1209/0295-5075/89/10004
http://dx.doi.org/10.1103/PhysRevLett.91.120601
http://dx.doi.org/10.1103/PhysRevLett.91.120601
http://dx.doi.org/10.1103/PhysRevLett.91.120601
http://dx.doi.org/10.1103/PhysRevLett.91.120601
http://dx.doi.org/10.1103/PhysRevLett.96.110601
http://dx.doi.org/10.1103/PhysRevLett.96.110601
http://dx.doi.org/10.1103/PhysRevLett.96.110601
http://dx.doi.org/10.1103/PhysRevLett.96.110601
http://dx.doi.org/10.1103/PhysRevLett.100.055003
http://dx.doi.org/10.1103/PhysRevLett.100.055003
http://dx.doi.org/10.1103/PhysRevLett.100.055003
http://dx.doi.org/10.1103/PhysRevLett.100.055003
http://dx.doi.org/10.1103/PhysRevLett.102.097202
http://dx.doi.org/10.1103/PhysRevLett.102.097202
http://dx.doi.org/10.1103/PhysRevLett.102.097202
http://dx.doi.org/10.1103/PhysRevLett.102.097202
http://dx.doi.org/10.1103/PhysRevLett.105.022002
http://dx.doi.org/10.1103/PhysRevLett.105.022002
http://dx.doi.org/10.1103/PhysRevLett.105.022002
http://dx.doi.org/10.1103/PhysRevLett.105.022002



