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Families of Fokker-Planck equations and the associated entropic form for a distinct steady-state
probability distribution with a known external force field
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A method of finding entropic form for a given stationary probability distribution and specified potential field
is discussed, using the steady-state Fokker-Planck equation. As examples, starting with the Boltzmann and
Tsallis distribution and knowing the force field, we obtain the Boltzmann-Gibbs and Tsallis entropies. Also,
the associated entropy for the gamma probability distribution is found, which seems to be in the form of the
gamma function. Moreover, the related Fokker-Planck equations are given for the Boltzmann, Tsallis, and gamma
probability distributions.
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I. INTRODUCTION

One of the most important phenomenological equations of
nonequilibrium statistical physics is the linear Fokker-Planck
equation (FPE) [1–6], which expresses the time evolution of
the probability distribution related to a given physical system,
in the presence of an external potential [7]. This equation
describes properly many physical phenomena such as normal
diffusion, which is essentially related to the Boltzmann-Gibss
(BG) formalism, in the sense that the Boltzmann distribution,
usually given by the maximization of the BG entropy under
certain constraints, can also be interpreted as the stationary
solution of the linear FPE.

However, it is well accepted that some physical phenomena
such as anomalous diffusion can not be properly described by
linear FPE, including for instance particle transport in dis-
ordered media (containing impurities or defects) [8], surface
growth [9], and diffusion of micelles in salted water [10]. In or-
der to deal with such anomalous systems, modifications in the
linear FPE have been carried out. Nonlinear FPEs [1,2,4,11–
13], which in many cases appear as simple phenomenological
generalizations of the standard linear FPE, can be derived
by using kinetic transport theory and linear nonequilibrium
thermodynamics [11] or directly from a standard master
equation, by introducing nonlinear effects on its associated
transition probabilities [14–17]. Another approach to describe
these systems is the nonextensive statistical mechanics [18].
The powerlike probability distribution that maximizes the
entropy proposed by Tsallis [19] often appears as a stationary
solution of nonlinear FPEs [1,2,4,11–13].

In Refs. [16,17], the H-theorem has been proved for systems
which are described by nonlinear FPEs in the presence of
external potential. For that, a relation involving terms of FPEs
and general entropic forms has been proposed. Also, it has
been shown that at equilibrium, this relation is equivalent to
the maximum entropy principle.

In this work, starting with a given steady-state probability
distribution and known potential field, we will propose a
method to find associated entropic form, which is equivalent
to the result of the MaxEnt principle. Also, we can find
the terms of the associated FPEs for a distinct probability
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distribution and potential field. In the other words, starting with
a stationary probability distribution and defining the potential
field, it is possible to find the time evolution of that probability
distribution, namely, the related set of FPEs. In the next section,
following [16,17] and using the H-theorem, a relation between
the terms of FPEs and its associated entropic forms is given.
In Sec. III, by introducing a different method we obtain the
related entropic forms for the Boltzmann, Tsallis, and gamma
distributions for a known force field. In Sec. IV, the time
evolution of a given probability distribution is investigated
and in Sec. V, we present a conclusion.

II. A GENERAL NONLINEAR FOKKER-PLANCK
EQUATION AND ITS ASSOCIATED ENTROPY

One form of generalized multivariate FPE has been
obtained by Frank [11] using kinetic transport theory and
linear nonequilibrium thermodynamics. That equation can be
expressed in terms of generalized free energy and entropy of
the system as

∂P (x,t)

∂t
= ∂

∂x
M(P )P

∂

∂x

δF

δP

= ∂

∂x
M(P )P

[
dU0(x)

dx
− Q

∂

∂x

δS

δP

]
, (1)

where F , U0, and S are generalized free energy, generalized
internal energy, and generalized entropy, respectively, and M

is regarded as a mobility or friction matrix [20–22].
Another approach to find generalized FPE has been done

by Schwämmle and co-workers [16,17] which expresses the
FPE as

∂P (x,t)

∂t
= −∂{A(x)�[P (x,t)]}

∂x

+ ∂

∂x

{
�[P (x,t)]

∂P (x,t)

∂x

}
, (2)

where A(x) is the external force associated with a potential
φ(x) [A(x) = −dφ(x)/dx,φ(x) = − ∫ x

−∞ A(x ′)dx ′] and the
functionals �[P (x,t)] and �[P (x,t)] are supposed to be both
positive finite quantities, integrable as well as differentiable (at
least once) with respect to the probability distribution P (x,t).
At the stationary state, namely when the dependence on time
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disappears, the generalized FPE is reduced to

A(x) = �[Peq]

�[Peq]

dPeq (x)

dx
, (3)

where Peq refers to the probability distribution at equilibrium.
The H-theorem for a system that exchanges energy with

its surrounding corresponds to a well-defined sign for the
time derivative of the free-energy functional, which can be
considered as

dF

dt
� 0, (4)

where F is the free-energy functional, defined as

F = U − 1

β
S; U =

∫ ∞

−∞
dxφ(x)P (x,t) (5)

and S is a general entropic form satisfying the following
conditions:

S =
∫ ∞

−∞
dxg[P (x,t)]; g(0) = 0; g(1) = 0;

d2g

dP 2
� 0.

(6)
Using the above definitions, it is possible to find a condition
which preserves the H-theorem [Eq. (4)] [16,17]:

d2g

dP 2
= −β

�[P ]

�[P ]
. (7)

It should be noticed that Eq. (7) expresses an important
correspondence between whole families of the FPEs, defined
in terms of the functionals �[P ] and �[P ], and their related
entropic forms in the presence of an external potential. On the
other hand, starting with a given entropic form, one can find the
class of FPEs associated to it and vice versa. For example, by
imposing �[P ] = Da[P ] and �[P ] = Pa[P ] with constant
D and arbitrary function a[P ], the Boltzmann-Gibbs entropy
is given. Also, in [17] it is shown that at equilibrium, Eq. (7)
is equivalent to the maximum entropy principle.

III. A METHOD OF FINDING ENTROPIC FORM RELATED
TO A DISTINCT PROBABILITY DISTRIBUTION AND A
GIVEN POTENTIAL FIELD, USING STEADY-STATE FPE

The probability distribution of a system is usually obtained
through the maximization of the entropic form under certain
constraints (the so-called MaxEnt principle). Also, this prob-
ability distribution can be given as the stationary solution of
the FPE. For example, using the MaxEnt principle to find the
probability distribution of BG entropy is the same as finding
the stationary solution of the linear FPE [1–6]. Also, some
other kinds of probability distributions are given as stationary
solutions of nonlinear FPEs [1,2,4,11–13]. In both procedures,
knowing the functionality of potential (or force) is essential.
In the former case, the potential field is entered as an energy
constraint U = ∫ ∞

−∞ dxφ(x)P (x,t), and in the latter, the force
field, A(x) = −dφ(x)/dx, appears in the FPE [Eq. (2)].

However, stationary probability distributions are found
experimentally in many systems in nature. So, the reverse
procedure, namely, finding the entropic form of the system,
assuming the knowledge of the probability distribution and of
the external potential, may be interesting. In the following, we
will propose a method to achieve that aim. In that method,

we start with the stationary probability distribution of a
system as a function of potential field φ(x). By differentiating
P (x) with respect to x, in the other side of the equation
A(x) = −dφ(x)/dx appears. At this stage, we can compare
the obtained equation with the stationary FPE [Eq. (3)] and
so the ratio �[P ]

�[P ] is given. Using Eq. (7) and knowing the ratio
�
�

, the entropic form is obtained and also the related FPE can
be written. Following the method, we will find the entropic
forms for the BG, Tsallis, and gamma distributions.

A. Boltzmann distribution

It is known that the maximization of the BG entropy under
the normalization and energy constraints results in

P (x) = αe−λφ(x), (8)

where φ(x) is the potential field, α is the normalization
constant, and λ is the Lagrange multiplier of the en-
ergy constraint. Now, we start with the Boltzmann dis-
tribution [Eq. (8)] and will attempt to find the entropic
form. By differentiation of the probability distribution, one
finds

dP (x)

dx
= −αλe−λφ(x) dφ(x)

dx
= λA(x)P (x), (9)

where the relation A(x) = − dφ(x)
dx

is used. Now, we at-
tempt to write the above equation as the stationary FPE
[Eq. (3)]. Comparing the above equation with Eq. (3), one can
write

A(x) = 1

λP

dP (x)

dx
⇒ �[P ]

�[P ]
= 1

λP
. (10)

Substituting Eq. (10) in Eq. (7) and then integrating that
equation, one obtains

dg

dP
= −β

λ
ln P + C ⇒ g[P ] = −P ln P, (11)

where we have used the condition g(0) = g(1) = 0 to elimi-
nate the constant C, and set the Lagrange multiplier β = λ,
which shows that the parameter λ is the same as β, defined in
Eq. (5). It should be noted that in the definition of free energy
[Eq. (5)], 1/β is used instead of temperature (T ) and so the
Boltzmann constant (kB) is set to 1.

B. Tsallis distribution

The above-mentioned method can be used for the
Tsallis probability distribution [18,19] P (x) = α[1 − λ(q −
1)φ(x)]

1
q−1 , where α is the normalization constant. Following

the method, we have

A(x) = 1

λαq−1
P q−2 dP

dx
⇒ �[P ]

�[P ]
= 1

λαq−1
P q−2 ≡ DP q−2

(12)
and so the entropic form can be obtained as

d2g

dP 2
= −βDP q−2 ⇒ g[P ] = −βD

P q

q(q − 1)
+ CP + E,

(13)
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where g(0) = g(1) = 0 results in E = 0 and C = βD

q(q−1) . If we
consider D = q

β
, the Tsallis entropy can be given as

gq[P ] = −P q − P

q − 1
. (14)

C. Gamma distribution

One of the examples of the gamma distribution is the energy
distribution of an ideal gas proposed by Maxwell around
1860 [23]:

f (E) = dN

dE
= 2πN

(πkT )3/2
E1/2e−E/kT , (15)

where dN is the number of molecules with energy between E

and E + dE. The gamma probability distribution, considered
as a combination of exponential and power-law distributions,
appears in description of many systems [24–29] and has the
form

P (x) = αxd−1e−λx, (16)

where α = λd

�(d) is the normalization constant and the gamma
function is defined as

�(d) =
∫ ∞

0
xd−1e−xdx. (17)

We assume that the probability distribution is a gamma
function in terms of φ(x), namely,

P (x) = αφ(x)d−1e−λφ(x), φ(x) � 0 (18)

where the condition φ(x) � 0 satisfies the positivity of
the probability distribution. Following the method, one can
differentiate from P (x) and so

dP

dx
=

[
(d − 1)

P (x)

φ(x)
− λP (x)

]
dφ

dx

⇒ 1(
λ − d−1

φ

)
P

dP

dx
= A(x). (19)

Comparing the above equation with Eq. (3) and then using
Eq. (9), we have

− 1

β

d2g

dP 2
= �[P ]

�[P ]
= 1(

λ − d−1
φ

)
P

, λφ(x) � d − 1 (20)

where the condition λφ(x) � d − 1 is set because of the
concavity condition of the entropy. It should be noted that
the fraction �[P ]

�[P ] is a function of P ; so in Eq. (20), φ must be
written as a function of P . Using Eq. (18), we can write

φ(P ) = 1 − d

λ
W [z],

λ

1 − d

(
P

α

) 1
d−1

, (21)

where W [z] is the Lambert W function [30] and defined in the
relation z = W [z]eW [z]. Using the above equations, one can
write

− 1

β

d2g

dP 2
= �[P ]

�[P ]
= W [z]

λP (1 + W [z])
= d − 1

λ

dW

dP
, (22)

where we have used
dW [z]

dz
= W [z]

z(1 + W [z])
. (23)

Integrating Eq. (22), one obtains

dg

dP
= β(1 − d)

λ
W [z] + C1 ⇒ g(p)

= β(1 − d)

λ

∫ P

0
W [z]dP + C1P + C2, (24)

where C1 and C2 are integration constants. By defining z =
AP

1
d−1 , where A = λα

1
1−d

1−d
, for g(P ) we have

g(P ) = −β(1 − d)2

λAd−1

∫ z

0
W [z]zd−2dz + C1P + C2. (25)

If we consider t = W [z],∫ z

0
W [z]zd−2dz =

∫ W [z]

0
td−1e(d−1)t dt +

∫ W [z]

0
tde(d−1)t dt

= 1

(1 − d)d
�(d,0,(1 − d)W [z])

+ 1

(1 − d)d+1
�(d + 1,0,(1 − d)W [z]),

(26)

where �(d,x1,x2) is the generalized incomplete gamma func-
tion and defined as the difference of two incomplete gamma
functions

�(d,x1,x2) =
∫ x2

x1

xd−1e−xdx = �(d,x1) − �(d,x2) (27)

with �(d,x) = ∫ ∞
x

xd−1e−xdx. Using the definitions α = λd

�(d)

and A = λα
1

1−d

1−d
and substituting Eq. (26) in Eq. (25), the

entropic form can be given as

g(P ) = −β

�(d)
{(1 − d)�(d,0,(1 − d)W [z(P )])

+�(d + 1,0,(1 − d)W [z(P )])} + C1P + C2. (28)

For d �= 1, g(0) = 0 results in C2 = 0 and C1 can be obtained
by the condition g(1) = 0. But, in the case d = 1, we have
limd→1(1 − d)W [z] = − ln P

λ
, and so g(P ) can be written as

g(P ) = −β�

(
2,0, − ln

P

λ

)
+ C1P + C2 = −P ln P, (29)

where β = λ and the constants C1 = −(1 + ln β) and C2 =
β satisfy g(0) = g(1) = 0. It is clear that the BG entropy is
recovered from Eq. (28) in the limit d = 1, as expected.

Other types of gamma entropy have also been introduced in
Refs. [31,32], by considering some scaling properties, which
recover some known entropies such as the BG and Tsallis
entropies as special limits.

IV. TIME EVOLUTION OF A GIVEN PROBABILITY
DISTRIBUTION IN THE PRESENCE OF AN EXTERNAL

POTENTIAL FIELD

By using the expressed method in the previous section,
one can find the ratio �

�
for a given probability distribution.

It is clear that if both � and � are multiplied by a function
of P (for example b[P ]), the ratio �

�
does not change. So,

there are families of FPEs, corresponding to the same ratio
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associated with a single stationary probability distribution or
a single entropic form. This ambiguity also exists in the Frank
FPE [Eq. (1)], where one can choose different functions of
M(P ). For example, two special cases of Eq. (1) are obtained
when the drift term (the first term in the right-hand side of
the equation) or the diffusion term (the second term in the
right-hand side of the equation) become linear with respect to
P . In Refs. [14–16], �[P ] is set equal to P which is equivalent
to set M(P ) = 1. In this section, we also consider �[P ] = P ;
according to the previous section, we can have the ratio �

�
. So,

�[P ] and the related FPE are obtained. In the three forenamed
cases, we have the following:

The Boltzmann distribution. In that case, according to
Eq. (10) and �[P ] = P , one obtains �[P ] = 1

λ
and so the

related FPE [Eq. (2)] can be written in the form

∂P

∂t
= − ∂

∂x
{A(x)P } + 1

λ

∂2P

∂x2
, (30)

which is the familiar linear Fokker-Planck equation.
The Tsallis distribution. According to Eq. (12) and �[P ] =

P , we have �[P ] = DP q−1 [ Eq. (12)] and the correspondent
FPE is obtained as

∂P

∂t
= − ∂

∂x
{A(x)P } + D

∂

∂x

(
P q−1 ∂P

∂x

)
(31)

or

∂P

∂t
= − ∂

∂x
{A(x)P } + D

q

∂2

∂x2
P q, (32)

which becomes the same as the expressed FPE in Ref. [1], only
by the substitution q → 2 − q or q − 1 → 1 − q in the FPE
[Eq. (32)] and also in the definition of probability distribution.

The gamma distribution. According to Eq. (22) and �[P ] =
P , we obtain �[P ] = W [z(P )]

λ{1+W [z(P )]} and so the related FPE is
obtained as

∂P

∂t
= − ∂

∂x
{A(x)P } + 1

λ

∂

∂x

{
W [z(P )]

1 + W [z(P )]

∂P

∂x

}
(33)

with z(P ) defined by Eq. (21).

V. CONCLUSION

In this study, a method is proposed to derive a particular kind
of Fokker-Planck equations from given relationships between
stationary probability densities and potential functions. These
Fokker-Planck equations are nonlinear with respect to their
probability densities. The stationary probability densities of
those so-called nonlinear Fokker-Planck equations maximize
certain entropy functionals under the constraints of a canonical
ensemble. Therefore, the entropy functionals are determined
by the method as well. This phenomenological approach
addresses an interesting problem of how to construct a
stochastic process on the basis of information about how a
system responds in the stationary case to a potential force.
The method can also have engineering applications in the
study of noise generators that asked the following question:
Given an arbitrary probability density and a linear force (i.e.,
quadratic potential), how can we construct a Fokker-Planck
equation such that the probability density is the stationary
probability density of that equation? The Langevin equation of
such a Fokker-Planck equation can then be used in engineering
applications as noise generator for the desired probability
density [33–35]. It would be interesting that a similar question
can be addressed from two perspectives (this work and the
work by Primak) which demand new attempts to study.
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