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Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe
collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are
also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges.
To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for
Vicsek-style models of self-propelled agents from the exact N -particle evolution equation in phase space. The
theory goes beyond mean-field and does not rely on Boltzmann’s approximation of molecular chaos. It can handle
precollisional correlations and cluster formation, which are both important to understand the phase transition to
collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision
operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy.
An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on
a lattice. Agent-based simulations are performed and informative quantities such as orientational and density
correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement
between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are
parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and
nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered
phase and find that it seems to be consistent with a power law with an exponent around −1.8, followed by an
exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.
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I. INTRODUCTION

Recently, collective motion of active matter has been stud-
ied intensively in theories, simulations, and experiments [1–4].
In particular, great progress has been made in theoretical
studies using kinetic theory approaches [5–24] which pro-
vide a bridge from microscopic dynamics to hydrodynamic
equations. The kinetic transport equations have been used to
study the nature of the phase transition to collective motion, the
stability of the ordered phase, and the morphology of emerging
structures. Many of these studies focus on one of the simplest
and most popular models of self-propelled particles—the
Vicsek model (VM) [25–27] and its variants [12,28–34]. Due
to the simplicity of its interaction rules that still lead to rich
collective behavior, the VM has become an archetype of active
matter. Despite the minimality of the VM, its phase behavior is
still not very well understood. Agent-based simulations at large
particle velocities show that the onset of collective motion is
linked to the formation of high-density bands [27,35]. The
bands are typically aligned with the walls of the periodic
simulation box and reach percolating size.

While it is known that these soliton-like bands can
be quantitatively described by kinetic theory and provide
a mean-field mechanism to render the flocking transition
discontinuous [14,36], the situation at small particle velocities,
where correlation effects are expected to be important, remains
elusive. In particular, in Ref. [27] it was reported that bands
are absent in this more physical regime of the small mean
free path. In addition, some researchers have interpreted band
formation and the related discontinuous nature of the flocking
transition as numerical artifacts induced by periodic boundary
conditions [27,29,37,38]. Other groups see band formation
at the threshold to collective motion as inevitable, in the

thermodynamic limit of the Vicsek model [36,39,40]. Based
on simulations of percolating bands at a large mean free
path, a reinterpretation of the flocking transition in terms of
a liquid-gas transition was recently proposed [40,41]. This
description builds on hydrodynamic theories which are either
phenomenological [4,36] or were obtained under mean-field
assumptions [7,8,10,11,42], neglecting correlation effects.

In 2013, Hanke et al. [17] adapted the collision kernel
of the mean-field kinetic theory of Bertin et al. [7,10]
for soft active colloids. Their surprising result was that if
orientational correlations were neglected, kinetic theory fails,
that is, it predicts the absence of collective motion which
is clearly at odds with corresponding molecular dynamics
simulations. Such correlations are likely to be essential for
other experimental systems as well [43–45]. Thus, there
appears to be a need for an analytical approach to active matter
systems that includes correlations and calculates them from
first principles. In the particular case of the Vicsek model,
an approach is needed that remains valid at small mean free
paths where correlations could impact band formation. Such a
theory would deepen our understanding of the ordering process
in active systems and could lead to hydrodynamic equations
with an extended range of validity.

The kinetic theory proposed for Vicsek-style models by
directly adopting the Boltzmann equation [7,10,22] is based
on the following two assumptions. First, only binary collisions
are assumed to occur. This assumption is an intrinsic property
of a Boltzmann-like kinetic theory. It was introduced because
the likelihood of genuine three- and more-particle collisions
in a dilute, regular gas with short-ranged repulsion is small
compared to binary encounters. The second, more serious,
assumption is that the mean free path is long enough for
collisional partners to escape from each other and to lose
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the memory of their encounter before the next collision.
This is the molecular chaos assumption, originally called
“Stosszahl ansatz” by Boltzmann, which is usually reserved
for the low-density regime. At high density, strongly correlated
events, such as recollisions, ring collisions, and cage diffusion,
become relevant [46–49].

On one hand, since the molecular chaos approximation
is equivalent to a mean-field assumption, it leads to a huge
simplification of the corresponding kinetic theories and has
become very popular. On the other hand, molecular chaos
is not plausible for active and granular matter systems when
the relative velocity between particles is greatly reduced after
a collision and when the mean free path is short. This is
especially true in systems with alignment interactions, such
as the Vicsek model near or in the phase of collective motion.
Here particles form clusters and stay together for quite some
time, repeatedly undergoing correlated collisions. Currently,
an accurate bottom-up theory for the order-disorder transition
of self-propelled particles with relevant cluster formation is
lacking, although some progress has been made by means of
a rate-equation approach [50,51]. The ring-kinetic approach
explored here is able to quantitatively describe the effects of
moderate clustering [52]. Therefore, we hope that this paper
will be useful on the way to a detailed theoretical understanding
of the transition to collective motion.

To get a first idea about the possible failure of the mean-field
assumption one can compare its predictions for the transition
to collective motion with agent-based simulations. For the
Vicsek model at low densities and velocities, it is found that the
theory overestimates the threshold noise by a factor between
2 and 3 [53]. More detailed critiques on the molecular chaos
assumption in active matter can be found in Refs. [12,16,54].
Recently, it was shown explicitly for the Vicsek model (in the
low speed regime and close to the flocking transition) that the
binary collision assumption is also not valid, not even at very
low particle densities [19].

A kinetic theory for Vicsek-like models, called the phase-
space or Enskog-like approach, was recently developed by one
of us [11,19]. It is not restricted to low densities and binary
collisions but can handle collisions of an arbitrary number
of partners [55]. Like most kinetic theories of active matter,
it still assumes molecular chaos. However, in this approach,
molecular chaos is not an uncontrolled approximation. Instead,
it is adjusted by an additional small parameter ε = R/λ, that
is, the ratio of the interaction radius R to the mean free path
λ = τv0, where τ is the finite time step and v0 is the speed
of particles in the Vicsek model. For ε → 0, molecular chaos
becomes exactly valid [56]. On the downside, in the VM at low
densities, we only found good agreement between mean-field
theory and agent-based simulations for unrealistically long
mean free paths λ of a least 5 times the radius of interaction
R [12]. This is quite an unphysical regime because it allows
agents to pass each other at very short distances without
interaction. Improving this unrealistic situation requires to go
beyond mean-field and was a main motivation for this study.

Mathematically, the molecular chaos assumption is usually
implemented by replacing N -particle distribution functions by
products of one-particle functions. This leads to a noncorre-
lated closure in the Boltzmann-like theory and reduces the
infinite Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)

hierarchy of equations [57–59] to just the first equation.
Recently, Hanke et al. [17] have tried to “repair” the first
BBGKY equation by including correlation effects obtained
from agent-based scattering simulations, see also Ref. [60].
Recent extensions of dynamic density functional theory
[61–63] to active systems [64–66] also contain correlation
effects in an approximated form by assuming that certain
functional relations known from equilibrium systems are still
valid out of equilibrium. In Ref. [67] a Smoluchowski approach
for self-propelled repulsive disks was approximately closed
by introducing a force coefficient which is proportional to
an integral over pair correlations but remains an undetermined
parameter. To the best of our knowledge, nobody has attempted
yet to self-consistently account for correlation and memory
effects in Vicsek-style models by closing a BBGKY-like
hierarchy at a higher level and explicitly solving the second
hierarchy equation. The second equation describes the time
evolution of the two-particle correlation function and has the
potential to predict long-ranged positional and orientational
correlations. Such an approach is called ring-kinetic theory
and has led to many interesting results in regular and granular
fluids such as the calculation of the so-called long-time tails
and long-ranged spatial correlations [46–49,68–75]. In this
paper, we take a step beyond the mean-field assumption of
molecular chaos for self-propelled particles. We set up the
so-called repeated-ring-kinetic theory for a Vicsek-style model
and solve the second BBGKY-like equation numerically in the
limit of small density. In the long term, we aim to answer
the following more fundamental question: Is it possible to
set up a first-principles theory that quantitatively describes
far-from-equilibrium systems of many interacting objects even
in parameter ranges where mean-field theories fail?

In repeated-ring-kinetic theory, both the one-particle den-
sity f1 and the two-particle density f2 provide input to the
temporal evolution of f1 and f2, whereas higher-order corre-
lations are neglected. This allows for the implicit treatment
of correlated interaction sequences, called ring collisions. To
give an example of a ring collision, consider three initially
uncorrelated particles and assume that particle 1 first interacts
with particle 2, and then particle 2 interacts with particle
3. Finally, assume that, an instant later, particle 1 collides
with particle 3. Even though particles 1 and 3 have never
met directly, their interaction has precollisional correlations
because they were in contact with the same particle 2 in the
past and, as a result, carry information about their common
experience with particle 2.

Ring-kinetic theory is tedious and has significant limita-
tions, which probably contributed to its rather low popularity
after the 1970s [49,76,77]. In our case, the difficulty level
forced us to develop diagrammatic representations of collision
integrals. In addition, to arrive at analytically solvable integrals
for the many different coupling constants, we slightly modified
the collision rule of the standard Vicsek model. Instead of the
original multiparticle alignment rule we use binary collisions
where the focal particle randomly picks a single collision
partner from the ones available in a circle of radius R around its
position. At low densities and in the absence of strong cluster-
ing, this rule becomes identical to the one of the standard VM.

A more serious issue of ring-kinetic theory is that it still
needs a closure condition to truncate the BBGKY hierarchy.
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The traditional closure consists of setting all connected n-
particle correlations with n � 3 to zero. This is reasonable in
regular gases at low density but the validity of this truncation
is far from obvious in systems of active matter.

In the current approach, we still use this traditional closure
but control it in the same way as we managed the molecular
chaos assumption in the mean-field version of the phase-space
approach: We know that for ε = R/(v0τ ) → 0 molecular
chaos becomes exact and all connected correlation functions
should become negligible. It seems plausible that there is
a range of small but nonzero ε where the two-particle
correlations dominate the three-particle and higher n-particle
correlations. This hypothesis can be justified a posteriori
through quantitative agreement between ring-kinetic theory
and agent-based simulations, something we indeed find at not
too large ε. Direct measurements of three- and four-particle
correlations in agent-based simulations confirm the existence
of such a “weak-coupling” regime and will be reported
elsewhere [54].

The main results of this paper are (i) the construction
of the repeated-ring-kinetic theory of a Vicsek-style model
that includes precollisional correlations and thus goes beyond
mean-field, (ii) the introduction of a diagrammatic expansion
of the collision operator in powers of the density, and
(iii) the demonstration of excellent quantitative agreement of
the theoretical predictions for the orientational and positional
correlations with agent-based simulations at sufficiently large
noise and mean free paths. We also provide data to explicitly
show the limitations of our current approach, which seems
to require a more sophisticated closure when the noise is
very small and both density and mean free path are also
small.

The paper is organized as follows: In Sec. II we introduce
the modified Vicsek model, which we will call the binary
Vicsek model (BVM), and derive the first two BBGKY-like
hierarchy equations for the VM and BVM in Sec. III. In
addition, the rules for the diagrammatic expansion of the
collision operator are introduced and discussed in this section.
The algorithm to solve the hierarchy equations is explained in
Sec. IV. In Sec. V the results of the numerical evaluation of
these kinetic equations are presented and compared to agent-
based simulations. A summary is given in Sec. VI. Details
concerning the evaluation of coupling integrals are relegated
to Appendix A. In Appendix B, a list of diagrams for the second
BBGKY-hierarchy equation can be found. In Appendix C, we
explore parameter regions in which discrepancies between the
current kinetic theory and microscopic simulations occur.

II. MICROSCOPIC MODEL

The standard Vicsek model consists of N point particles
with mean number density ρ0. The particles with posi-
tions xi(t) and velocities vi(t) = v0(cos(θi),sin(θi)) undergo
discrete-time dynamics with time step τ . The velocities are
uniquely characterized by the flight direction θi because the
particles move in two dimensions at the same constant speed
v0. In the so-called streaming step all positions are updated
according to

xi(t + τ ) = xi(t) + τvi(t). (1)

In the subsequent collision step, particles align with their
neighbors within a fixed distance R by updating their flight
directions. In particular, a circle of radius R is drawn around
a given particle and the average direction �i of motion of all
particles within the circle is determined according to

�i = arctan

⎡
⎣∑

{j}
sin(θj )

/ n∑
j

cos(θj )

⎤
⎦ . (2)

Then the new particle directions are determined as

θi(t + τ ) = �i + ξi, (3)

where ξi is a random number which is uniformly distributed in
the interval [−η/2,η/2]. Note that the updated positions xi(t +
τ ) [and not the old locations xi(t)] are used to determine the
average directions �i . The updates are parallel and correspond
to the so-called forward updating rule, see Refs. [38,78].

Although the kinetic formalism of Sec. III does apply to
the standard VM, a slightly modified version of the standard
algorithm is used in our practical implementations. In this
version, which we will label the BVM (the binary Vicsek
model), the calculation of the average direction �i contains
additional randomness: Instead of including all particles found
in a circle around the focal particle i into the calculation,
only one collision partner is selected with equal probability
1/(n − 1), given that there are n − 1 potential collision
partners inside the circle. At very low local densities, most
circles will only contain the focal particle, that is, n = 1, or
one additional particle corresponding to n = 2. In this case,
the binary VM is identical to the standard VM. The motivation
for introducing the BVM is twofold. First, it provides a huge
technical advantage in ring-kinetic theory because the coupling
integrals, defined in Eqs. (43), can be solved analytically for
arbitrary particle numbers n. For the standard VM, only the
cases n = 1,2 and the asymptotic situation n → ∞ appear to
be analytically solvable. Therefore, one would have to rely on
large tables of numerically calculated integrals.

The second motivation for a microscopic model with
random but strictly binary interactions comes from dense
systems of granular and active particles with volume exclusion.
In these systems, particles rattle around in cages formed by
their neighbors [48]. But even if the density is quite high,
particles will mostly be in contact with only one or two others
at a given instant because of their very short ranged interaction.
However, the frequency of these encounters will increase with
density. The binary VM tries to emulate this scenario in a very
crude way: It replaces genuine multiparticle collisions by a
stochastic sequence of binary encounters. Of course, in true
caging, the sequence of collision partners is correlated while
it is not in BVM. Nethertheless, some aspects of systems with
higher densities should be captured by this new model.

An additional technical advantage of BVM is that the
mean-field phase diagram for a homogeneous system, that
is, the dependence of the threshold noise ηC on the normalized
density M = πR2ρ0, can be calculated analytically for all
densities. The inverse relation M(ηC) is given by

M = −ln

[
γ − (4/π )

1 − (4/π )

]
with γ = ηC

2 sin(ηC/2)
(4)
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FIG. 1. (Color online) The mean-field phase diagram of a homo-
geneous system for the binary VM (blue solid line) obtained from
Eq. (4) in comparison to the standard VM (dashed-dotted line) and
the small-density approximation, Eq. (5) (green dashed line). Noise
values below a particular line, that is, at η < ηC , correspond to global
order. Note that in systems larger than a critical linear size LC ,
inhomogeneous, wavelike states occur that would alter the phase
diagram plotted here [11,14].

and shown in Fig. 1. Note that for the standard VM, analytical
results can only be obtained asymptotically for small and high
M , see Refs. [11,19], such as,

ηC =
√

48M

(
2

π
− 1

2

)
for M � 1. (5)

As expected, expanding Eq. (4) for M � 1 reproduces the
results of the standard VM, Eq. (5), see Fig. 1. The biggest
difference in the phase diagrams occur in the infinite-density
limit, M → ∞. In this limit, the critical noise for BVM does
not reach the largest possible angle of 2π as in the standard
VM [79]. Instead, one obtains the maximum critical noise
η∞ ≈ 2.345 from the transcendental equation

π = 8

η∞
sin

(
η∞
2

)
. (6)

Using agent-based simulations we have checked that phenom-
ena known from the standard VM such as the formation of
spiky soliton-like density waves [10,14,29] also occur in BVM.

A side effect of the BVM collision rule is that interactions
can become directional. For example, let us assume that
the mutual distances between three particles is less than the
interaction radius R. Now, particle 1 could pick particle 2
to align with but, at the same time, particle 2 might choose
to ignore 1 and align with particle 3 instead. This cannot
occur in the standard VM: Particle 1 has to include particle
2 in determining its new direction, and, reciprocally, particle 2
will include particle 1 in its interaction. This subtle difference
leads to more interaction possibilities and to more terms in the
diagrammatic expansion, which is discussed in Appendix A.

III. RING-KINETIC THEORY

A. Derivation of the BBGKY hierarchy

The microscopic state of a Vicsek-like model at a given
time t is fully described by the N -particle probability density
function PN (Z1,Z2, . . . ,ZN,t), characterizing the probability
of finding particles in the infinitesimal phase space volume
dZ1dZ2 · · · dZN around the phase (Z1,Z2, . . . ,ZN ). Here

Zi ≡ (Xi ,Vi) marks the position and velocity of the i-th
particle. Since the particle speed in the VM is assumed
to be constant and equal to v0, one usually uses the polar
representation (V,�i) of Vi , or simply the orientation �i

instead, to describe the motion of the particle. In this paper
we will alternatively use Vi and �i without specifying.

The general form of the evolution equation for the N -
particle distribution function that describes a Markov chain
in phase space was given by Ihle [11,19],

PN (Z′
1,Z

′
2, . . . ,Z

′
N,t + τ ) = CN ◦ PN (Z1,Z2, . . . ,ZN,t). (7)

Here Z′
i = (X′

i ,V
′
i) = (X′

i ,�
′
i) is the new coordinate of the

i-th particle after one iteration of the collision and streaming
processes. The collision operator CN takes the form

CN = 1

ηN

N∏
i=1

∫ η/2

−η/2
dξi

∫ 2π

0
d�i δ̂(�′

i − �i − ξi), (8)

where �i is the mean direction of the particles inside the colli-
sional zone of the i-th particle and ξi is the angular noise added
to the aligned orientation �i bounded in the interval [− η

2 ,
η

2 ].
The kernel of the collision operator consists of products of
the periodic Dirac delta function δ̂(x) = δ(x modulo 2π ). This
delta function gives the transition rate of the i-th particle
from its precollisional angle �i to the postcollisional angle
�′

i , which is nonzero only if the condition, �′
i = �i + ξi ,

is satisfied. To account for all ways to create a specific
postcollisional state, integrations over the precollisional angles
�i and over the angular noises ξi must be performed. We
note that the new velocities V′

i are updated via the collisional
operator CN while the new positions are obtained through the
streaming X′

i = Xi + τV′
i , which is implicitly denoted by the

argument Z′
i on the left-hand side of the kinetic equation (7).

The full description by Eqs. (7) and (8) is exact but contains
too much information for practical application. The standard
way to proceed [59,81] is to first derive a reduced S-particle
probability distribution function (PDF) by integrating the full
PDF over the coordinates ZS+1,ZS+2, . . . ,ZN ,

PS(Z1,Z2, . . . ,ZS)

=
∫

PN (Z1,Z2, . . . ,ZN ) dZS+1dZS+2 · · · dZN, (9)

to obtain a reduced S-particle kinetic equation. Usually,
the reduced S-particle equation relates the S-particle to the
(S + 1)-particle PDF. The full set of the reduced equations,
which contains the same information as the original evolution
equation, is called the BBGKY hierarchy, see, for example,
Refs. [57–59].

The hierarchy equations become useful if the macroscopic
properties can be well described already by the averages taken
with respect to the first few reduced PDF’s instead of the full
description. In general, this assumption constitutes a big leap of
faith but in our case the results of Sec. V show that there is a pa-
rameter range in the VM where this is justified. Here we derive
the first two equations of the BBGKY hierarchy for the reduced
one- and two-particle densities f1 and f2. This is done by eval-
uating the ensemble average of their microscopic counterparts,
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namely

f1(z1) =
∫

dZ(N)PN (Z1,Z2, . . . ,ZN ) �1(z1), (10)

f2(z1,z2) =
∫

dZ(N)PN (Z1,Z2, . . . ,ZN ) �2(z1,z2), (11)

where dZ(N) is short for dZ1dZ2 · · · dZN and zi ≡ (xi ,vi) ≡
(xi ,θi) denote field variables which have to be distinguished
from the particle phases Zi . For brevity, we have omitted the
time dependence of fj , PN , Zi , and �j in our notation. The
microscopic one-particle density is defined as

�1(z1) =
N∑

i=1

δ(Zi − z1), (12)

and simply gives the time-dependent density of particles in the
three-dimensional μ space of the VM. It is only nonzero if at a
given time t at least one particle happens to be at the specified
field point z1 ≡ (x1,y1,�1).

Similarily, the microscopic two-particle density, see, for
example, Ref. [82],

�2(z1,z2) =
N∑

i=1

N∑
j 	=i

δ(Zi − z1)δ(Zj − z2), (13)

accounts for simultaneously finding one particle at z1 and
another at z2, where δ(Zi − zj ) ≡ δ(Xi − xj )δ(�i − θj ). The
one-particle density f1 is normalized to the number of particles
N , while the two-particle function f2 is normalized to the
number of ordered pairs, N (N − 1). This differs from the
probability distribution function PS which is normalized to
unity for any S. Inserting Eqs. (12) and (13) into (10) and (11)
and using definition (9), the following relations are obtained:

f1(z1) = NP1(z1), (14)

f2(z1,z2) = N (N − 1)P2(z1,z2). (15)

To facilitate the derivation of the hierarchy equations
from the full evolution equation, Eq. (7), we expand the N -
particle distribution function by means of the Ursell expansion
which is also known as cluster expansion, see, for example,
Refs. [81,83,84]. The Ursell expansion is a set of hierarchical
expansions in terms of the so-called connected correlation
functions GS . These functions account for the excess infor-
mation beyond the product distribution and possess the so-
called cluster property: Assume a system without long-ranged
correlations and consider a group of n particles that are located
very close to each other. If a single one of these particles is
moved away from the others, Gn for these particles will go
to zero, whereas Pn would not. The first two expansions are
shown below:

P2(Z1,Z2) = P1(Z1)P1(Z2) + G2(Z1,Z2),

P3(Z1,Z2,Z3) = P1(Z1)P1(Z2)P1(Z3) + P1(Z1)G2(Z2,Z3)

+P1(Z2)G2(Z3,Z1) + P1(Z3)G2(Z1,Z2)

+G3(Z1,Z2,Z3). (16)

Accordingly, a full expansion for the N -particle distribution
function can be written down. Important conditions on GS

follow from the marginalization of PS to PS−1, Eq. (9),∫
all

dXi

∫ 2π

0
d�i GS(Z1,Z2, . . . ,ZS) = 0, i = 1,2 . . . S,

(17)

where the subscript “all” refers to a spatial integration over
the entire volume. We will call this relation “normalization
condition” because if it is violated, the N -particle probability
density PN would not be normalized to unity anymore.

In the following, we will also need spatial integration of a
particle position over the collision area which is either a circle
or a union of two circles. This integration is denoted by the
subsript “in.” The complementary operation, which consists
of an integration over all space except the collision area, is
labeled by the subscript “out.” This gives∫

all
dXi . . . =

∫
out

dXi . . . +
∫

in
dXi . . . . (18)

This integral splitting and Eq. (17) allow us to rewrite the
integration over the outside region as an integration over the
collision zone,∫

out
dXi

∫ 2π

0
d�i GS(Z1,Z2, . . . ,ZS)

= −
∫

in
dXi

∫ 2π

0
d�i GS(Z1,Z2, . . . ,ZS), (19)

which will lead to significant advantages in solving the
BBGKY equations.

Finally, in analogy to the relation between P2 and f2,
see Eq. (15), we introduce a rescaled two-particle correlation
function g2,

g2(z1,z2) = N (N − 1)G2(z1,z2). (20)

This leads to

f2(z1,z2) =
(

1 − 1

N

)
f1(z1)f1(z2) + g2(z1,z2). (21)

For a system with finite particle number N and vanishing
correlations, g2 = 0, one sees that f2 is not exactly equal to the
product of two f ′

1s. This feature is inherited from the definition
of the two-particle density �2, Eq. (13), which assumes that the
same particle cannot simultaneously be found at two different
locations x1 and x2.

To derive the reduced hierarchy equations for f1 and f2,
we first plug the Ursell expansion into the right-hand side of
the N -particle evolution equation, Eq. (7). Then we multiply
both sides with the microscopic one- and two-particle density,
respectively, and perform the marginalization procedure [(10)
and (11)],

f1(x′
1,θ

′
1,t + τ )

=
∫

dX(N) d�(N)�1(x1,θ
′
1)CN ◦ PN (X(N),�(N)), (22)

f2(x′
1,θ

′
1,x

′
2,θ

′
2,t + τ )

=
∫

dX(N) d�(N)�2(x1,θ
′
1,x2,θ

′
2)CN ◦ PN (X(N),�(N)),

(23)
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to obtain kinetic equations that do not depend on the par-
ticle phases but on field variables instead. Here the phases
(X(N),�(N)) and the densities �j on the right-hand side
are evaluated at time t . We also have x′

i = xi + τv′
i with

v′
i = v0(cosθ ′

i ,sinθ ′
i ).

B. Diagrammatic approach

To illustrate how the integrations in the first two
hierarchy equations, Eqs. (22) and (23), can be simplified
in a systematic manner, let us consider a specific term
in the Ursell expansion of a 10-particle system, namely
P1(Z1)P1(Z2)G2(Z3,Z4)G2(Z5,Z6)G2(Z7,Z8)P1(Z9)P1(Z10),
that occurs in the right-hand side of Eq. (22). This term
describes three pairs of particles that are correlated through
two-particle correlations. The rest of the particles are
uncorrelated. The outcome of a collision will depend on
where these particles are located with respect to each other.
For example, if the distance between particles 3 and 4 is
smaller than the radius R of the collision circle and all other
particle are far away from them, a correlated collision between
3 and 4 will occur. Since the collision integral, Eq. (22)
involves an integration over all particle positions, the above
situation is just one of the many possible collision scenarios
that have to be considered. The main idea to evaluate collision
integrals of this kind is to first classify all possibilities and
then to integrate over just one member of each class. The other
members, which give the same contribution, are incorporated
by combinatorial prefactors.

The microscopic density �1 is defined at one focal point,
x1, whereas the two-particle density �2 depends on two focal
points, x1 and x2. The delta functions in the definition of �1

together with the integration of the particle positions lead
to terms in Eq. (22) where one particular particle i, i =
1,2, . . . N , called the focal particle, is fixed at x1. Analogously,
in the second equation (23), we have two focal particles. In

this mathematical formalism, one focal particle has to “stay”
at x1 and the other is forced to “stay” at x2. Of course, since
all particles are identical, it does not matter which ones are the
focal ones and we just choose particle 1 to be the focal particle
in Eq. (22), and particles 1 and 2 to be the focal particles
in the second hierarchy equation. The other choices lead to
combinatorial factors of N and N (N − 1), respectively.

Once the focal particles are chosen, we have to classify
the situation with respect to the locations of the remaining
particles. For the first BBGKY equation, Eq. (22), these classes
are defined by how many of the uncorrelated particles are
located inside the collision circle around the focal particle,
how many correlated pairs are inside this circle, and how many
correlated pairs have one member of the pair outside the circle
and the other one inside. For the second hierarchy equation, the
situation is more complicated, since the collision scenario will
also depend on the distance between the two focal particles. As
shown below in Eq. (24), such a classification is much easier
to handle in terms of diagrams. In our example for Eq. (22), we
assume there is one uncorrelated particle (labeled 2) located in
the circle around particle 1. We further assume that there is one
correlated pair (consisting of particles 3 and 4) inside and one
pair (particles 7 and 8) outside the circle. The remaining pair
has one particle inside and one particle outside the circle. The
remaining degrees of freedom for this scenario are the specific
positions of particles 1,2, . . . ,5 within the collision circle and
the specific postions of the particles 6,7, . . . ,10 outside the
circle. This means that in the spatial integrations, the first
group of particles, 1,2, . . . ,5, is not allowed to “leave” the
collision circle, whereas the latter group has to “stay” outside.
Scenarios which violate this rule are not neglected but either
belong to different diagrams or to different members of the
same class.

It is straightforward to write down the contribution from
the term above to the evolution of the one-particle density f1,

1

2
3

4

5
67

8

9

10

= 10!

8

∫
dξ

η

∫
in

dX2dX3 · · · dX5

∫
out

dX6dX7 · · · dX10

×
∫

d�1d�2 · · · d�10δ̂[θ ′
1 − ξ − �1(�1,�2, · · · �5)]P1(x1,�1)P1(X2,�2)P1(X9,�9)P1(X10,�10)

×G2(X3,�3,X4,�4)G2(X5,�5,X6,�6)G2(X7,�7,X8,�8). (24)

On the left-hand side, we use a diagram to represent this
complicated equation. We use “ ” to denote the focal particle
at the selected position x1. Here this selected particle is
uncorrelated and is represented by the one-particle distribution
function P1(x1,�1). The symbols “ ” stand for independent
particles that lead to factors of P1(Zj ), while the correlated
particle pairs are represented by the link “ ” that stands
for the connected correlation function G2(Zi,Zj ). The big
circle which encloses particles inside the collision zone of the
focal particle represents angular, spatial, and noise integrations
under the restriction that particles are not allowed to cross the
circumference of the circle. The numbers in the diagram are

particle labels. They indicate just one possible realization of a
particular class and are given for reference.

We are interested in the total number of ways to form a
specific diagram. In this case, the combinatorial factor is 10!/8.
The integration of an independent particle outside the circle
yields 1 − M(x1)

N
, where M is the local average particle number

in the circle centered around x1, M = ∫
in ρ(x) dx. According

to Eq. (19), the integration of a correlated particle outside
the circle can be translated into an integral over the inside
of the circle with a negative sign. However, these transfer
particles are “virtual” in the sense that they must not participate
in the collision process of the focal particle and need to be
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distinguished from the genuine inside particles. We use the unfilled circle “◦” to denote these particles and arrive at the following
simplification:

1

2
3

4

5
67

8

9

10

=
(

1 − M(x1)

N

)2

1

2
3

4

56

7

8

, (25)

with

1

2
3

4

56

7

8

= −10!

8

1

N2

1

(N (N − 1))3

∫
dξ

η

∫
in

dx2dx3 · · · dx8

∫
dθ1dθ2 · · · dθ8δ̂[θ ′

1 − ξ − �1(θ1,θ2, · · · θ5)]

× f1(x1,θ1)f1(x2,θ2)g2(x3,θ3,x4,θ4)g2(x5,θ5,x6,θ6)g2(x7,θ7,x8,θ8). (26)

The negative sign appears because we have “brought” a total of three correlated particles to the inside of the circle. We have
furthermore replaced P1 by f1/N and P2 by f2/(N (N − 1)) and changed the particle’s variable (Xi ,�i) to the field variable
(xi ,θi). Note that the combinatorial factor is easier to count in this modified diagram. Here we choose 8 of 10 particles to form
the diagram and there are three pairs but only one is an ordered pair.

Having these diagrammatic representations and neglecting three-particle and higher correlations, we can write down the first
hierarchy equation for N → ∞:

f1(x′
1,θ

′
1,t + τ ) = e−M(x1)

∑
p,q,r,s

⎧⎪⎪⎨
⎪⎪⎩

pq

r s

+
pq

r s

+
pq

r s

⎫⎪⎪⎬
⎪⎪⎭ , (27)

where x′
1 = x1 + τv′

1. The summation goes over p dots,
q solid-solid, r solid-open, and s open-open dumbbells in
each subdiagram on the right-hand side of the equation,
where p, q, r , and s are integers running from 0 to ∞.
The factor e−M(x1) comes from the contribution of infinitely
many independent particles outside the circle according to the
limit

lim
N→∞

(
1 − M

N

)N

= e−M. (28)

The N -dependent prefactor in the diagram (26) is compen-
sated by additional factors of N and N − 1 from the left-hand
side of the hierarchy equations as well as from additional
combinatorial factors due to the different choices of focal
particles. In the limit N → ∞ and M/N → 0 these factors
converge to unity. Thus, the diagrams used in Eq. (27) and
all following equations look like the diagram of Eq. (26) but
without the N -dependent prefactor. Accordingly, in this limit,
the particle number N does not occur anymore in Eq. (27).

Similarly, the second BBGKY equation can be constructed:

f2(x′
1,θ

′
1,x

′
2,θ

′
2,t + τ ) = e−M12(x1,x2)

∑
p,q,r,s

{
+ + +

+ + + + + +
}

, (29)

g2(x′
1,θ

′
1,x

′
2,θ

′
2,t + τ ) = f2(x′

1,θ
′
1,x

′
2,θ

′
2,t + τ ) −

(
1 − 1

N

)
f1(x′

1,θ
′
1,t + τ )f1(x′

2,θ
′
2,t + τ ), (30)

where M12(x1,x2) is the average number of particles inside the union collision zone of x1 and x2. The second relation (30) follows
from Eq. (21). The shaded diagram is a simplified notation which implicitly contains p dots, q solid-solid, r solid-open, and s

open-open dumbbells, for example,

≡
pq

r s

. (31)

The symbol denotes integration over the union of two collisional circles. In this notation, the left and right crosses
“ ” have coordinates z1 and z2, respectively, and correspond to the two focal particles. For each particle to be integrated,
the spatial domain of integration is divided into subregions depending on the distance between the two focal particles, d,
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TABLE I. Notations used in the diagrammatic representation. The ± sign is given by (−1)k , where k is
the number of the open circles ◦. The combinatorial factors c1 and c2 count the number of ways to form the
specific diagrams.

Symbol Function or operator

P1(zi) = 1
N

f1(zi)
±G2(zi,zj ) = ± 1

N(N−1) g2(zi,zj )

c1

∫
dξ

η

∫
in dx(n−1)

∫
dθ (n)δ̂[θ ′

1 − ξ − �1]

c2

∫
dξ1dξ2

η2

∫
in dx(n−2)

∫
dθ (n)δ̂[θ ′

1 − ξ1 − �1]δ̂[θ ′
2 − ξ2 − �2]

for example,

≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+ + for d � R

+ + for R < d � 2R

+ for 2R < d.

(32)

Particles are not allowed to cross the boundaries of the
subdomains because this might change the outcome of
the collision step and would lead to double counting of
the same proccess. We summarize the notations used in the
diagrammatic representation as follows. The symbols “ ,” “ ,”
and “ ” denote particles. A “link” between particles stands for a
binary correlation between them. The symbols “ ” and “ ”
are collisional operators which enclose particles involving in
the collisional processes. The mathematical representations
are listed in Table I. Note that in the current stage we only
consider two-particle correlation functions, which works well
for weakly correlated systems. In Appendix C, we will discuss
parameter regions of the VM where correlations beyond the
binary ones cannot be neglected anymore.

C. Low-density approximation and Fourier expansion

In this section, we perform a small-density expansion of
the BBGKY equations. This is based on the assumption that
the likelihood to find more than a few particles in a collision
circle is small when the average density ρ0 = N/V is low.
In addition, we use Fourier expansions of the distribution
functions with respect to their angular variables. This allows
us to integrate out the noise and the precollisional angles in
the collision operators. Let f ′

1(x1,θ
′
1) and g′(x1,θ

′
1,x2,θ

′
2) be

the density functions after collision but before streaming.
For the small-density expansion we use the dimensionless

number M , that is, the average number of particles in a collision
circle, as small expansion parameter. In the collision integral,
products of f and g2 are multiplied by the δ̂ kernel and are
integrated over the collision area. Since such an integral over a
single f gives M according to M = ∫

dθ
∫

circle f (x,θ ) dx, we
assume that every factor of f contributes a power of M when
counting the weight of a diagram.

Dimensional analysis of Eq. (21) reveals that g2 has units
of f 2. This suggests that every factor of g2 in the collision
integral contributes two powers of M . In terms of diagrams,

this means that each symbol which stands for a particle ( ,
, and ) carries one order of M . Thus, a diagram formed

by n particles is assumed to be of order Mn. For example,
one has O( ) ∼ M2 and O( ) ∼ M3. This naive way of
judging the order of a diagram is intuitively appealing because
in the low-density limit where M � 1 it will be more likely
to find just one particle in a circle than two or three. Thus, for

example, the diagram will be considered more relevant

than . To obtain a consistent expansion in powers of M ,

we also have to expand the exponential prefactors, such as
e−M ≈ 1 − M + M2/2 + · · · .

For N → ∞, the expansion of the first two BBGKY
equations to order M2 yields

f ′
1(x1,θ

′
1) = (1 − M) + + + (33)

and

g′
2(x1,θ

′
1,x2,θ

′
2) = + − × , (34)

where the last term comes from the expansion of
f1(x1,θ1)f1(x2,θ2) to order M2. In this and the following
equations, whenever there is a multiplication of two diagrams,
we assign the coordinate z1 to the selected particle of the left
diagram and z2 to the right.

Similarly, expanding up to order O(M3) gives

f ′
1(x1,θ

′
1) =

(
1 − M + M2

2

)

+ (1 − M)
(

+ +
)

+ + + + + + (35)

and

g′
2(x1,θ

′
1,x2,θ

′
2) = (1 − M12)

(
+

)
+ +

+ +

+ +
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− (1 − M1 − M2)
(

×
)

− × − ×

− × − ×

− × − × . (36)

For small N , one has to use (1 − M/N)N−n instead of
e−M as the coefficient of the n-particle diagram and, similarly,
(1 − M12/N )N−n instead of e−M12 for the second equation.
For example, one replaces 1 − M by 1 − M/2 in Eq. (33) for
the two-particle system. For this special case of N = 2, the
resulting two hierarchy equations become exact, because no
more particles are available to build higher-order diagrams.
For N > 2, the expansions to the order of M3 are

f ′
1(x1,θ

′
1) =

[
1 − N − 1

N
M + (N − 1)(N − 2)

2N2
M2

]

+
(

1 − N − 2

N
M

)(
+ +

)

+ + + + + + (37)

and

g′
2(x1,θ

′
1,x2,θ

′
2) =

(
1 − N − 2

N
M12

)(
+

)

+ +

+ +

+ +

−
[

1 − N − 2

N
(M1 + M2)

] (
×

)

− × − ×

− × − ×

− × − × . (38)

Our naive recipe of power counting does not take stream-
ing into account, which presumably weakens three-particle
correlations more than two-particle correlations. Note that the
current way we assign powers of M to diagrams implies that
three- and four-particle correlations would contribute at orders
O(M3) and O(M4), respectively. Since these correlations are
omitted in our current approach, we do not expect to gain much
by expanding to orders higher than O(M3). Therefore, for
particle numbers N � 3 the equations (37) and (38) should be
considered as weak-correlation approximations which assume
that two-particle correlations dominate three-particle and
higher correlations. The consistency of these expansions with
respect to conservation laws will be discussed in Sec. III E.

The Fourier expansions of the postcollisional functions are

f ′
1(x1,θ

′
1) =

∑
m

f̂ ′
m(x1)eimθ ′

1 ,

(39)
g′

2(x1,θ
′
1,x2,θ

′
2) =

∑
m,n

ĝ′
mn(x1,x2)eimθ ′

1einθ ′
2 ,

where the Fourier modes are defined as

f̂ ′
m(x1) = 1

2π

∫ π

−π

dθ ′
1f

′(x1,θ
′
1)e−imθ ′

1 ,

ĝ′
mn(x1,x2) = 1

(2π )2

∫ π

−π

dθ ′
1dθ ′

2g
′(x1,θ

′
1,x2,θ

′
2)e−imθ ′

1e−inθ ′
2 .

(40)

It is convenient to introduce the following notation for Fourier
transformations:

〈· · · 〉m ≡ 1

2π

∫ π

−π

dθ ′
1 · · · e−imθ ′

1 ,

(41)

〈· · · 〉mn ≡ 1

(2π )2

∫ π

−π

dθ ′
1dθ ′

2 · · · e−imθ ′
1e−inθ ′

2 .

Incorporating the collisional operators denoted by and
one finds〈 〉

m
= λm

2π

∫
dθ (k)

∫
dx(k−1) · · · e−im�1 ,

(42)〈 〉
mn

= λmn

(2π )2

∫
dθ (k)

∫
dx(k−2) · · · e−im�1e−in�2 ,

where dθ (k) = ∏k
i=1 dθi and dx(k−j ) = ∏k

i=j+1 dxi with k

being the number of particles enclosed by the collisional
operator. The coefficients that result from integrating over
postcollision angle(s) and the noise(s) are given by λm =

2
mη

sin( mη

2 ) for m > 0, λ0 = 1, and λmn = λmλn. We also
expand the precollisional distribution functions into series
with coefficients f̂p or ĝpq . Inserting these expansions into
the collision integrals, Eqs. (42), the integrations over the
precollisional angles can be carried out and lead to the
following coupling integrals:

kmpq = 1

(2π )2

∫
dθ1dθ2e

−im�1(θ1,θ2)eipθ1eiqθ2

kmpqr = 1

(2π )3

∫
dθ1dθ2dθ3e

−im�1(θ1,θ2,θ3)eipθ1eiqθ2eirθ3

jmnpq = 1

(2π )2

∫
dθ1dθ2e

−im�1(θ1,θ2)e−in�2(θ1,θ2)eipθ1eiqθ2

imnpqr = 1

(2π )3

∫
dθ1dθ2dθ3e

−im�1(θ1,θ3)e−in�2(θ2,θ3)eipθ1eiqθ2

× eirθ3

hmnpqr = 1

(2π )3

∫
dθ1dθ2dθ3e

−im�1(θ1,θ2,θ3)e−in�2(θ1,θ2,θ3)eipθ1

× eiqθ2eirθ3

lmnpqr = 1

(2π )3

∫
dθ1dθ2dθ3e

−im�1(θ1,θ2,θ3)e−in�2(θ1,θ2)eipθ1

× eiqθ2eirθ3 . (43)
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At first sight, the dependence of the average angles �i on up
to three precollisional angles θ1, θ2, and θ3 in Eqs. (43) seems
to imply that these definitions apply merely to the standard
Vicsek model and not to the BVM. This is because in the
BVM only a maximum of two precollisonal angles directly
contribute to the average angle. In Appendix A we explain
that this notation is to be interpreted as a symbolic notation
and specify how it can be translated such that it applies to both
standard and binary VM.

Using the coupling constants from Eq. (43) significantly
simplifies the postcollisional terms. For example,〈 〉

m
= N (N − 1)

N2
2πλm

∑
pq

kmpqf̂p(x1)
∫

O1

dx2f̂q(x2),

(44)

where O1, the domain of the integration, is the area of the
collision circle centered around x1 with radius R. We will
also frequently encounter the following special integrals. First,
terms are needed, which involve an integration over the area
inside the collision circle,

F̄m(x1) ≡
∫

O1

dx′
1f̂m(x′

1). (45)

We also encounter cases where Fourier coefficients are
integrated over the intersect of two circles centered around
x1 and x2 separately. We denote this integral as

�F̄m(x1,x2) ≡
∫

O1∩O2

dx′
1f̂m(x′

1) = �F̄m(x2,x1). (46)

Therefore the integration over the area O1 but without O2 (that
takes the shape of a half-moon) is∫

O1\O2

dx′
1f̂m(x′

1) = F̄m(x1) − �F̄m(x1,x2). (47)

Second, regarding integrals that involve the two-particle
correlation function, we define the first argument to be fixed at
position x1, that is, x′

1 = x1, but integrate the second argument
x′

2 over the circle centered around x2 as

Ḡmn(x1,x2) ≡
∫

O2

dx′
2ĝmn(x1,x′

2) (48)

and over the intersection of the two circles

�Ḡmn(x1,x2) ≡
∫

O1∩O2

dx′
2ĝmn(x1,x′

2). (49)

Note that by definition �Ḡmn(x1,x2) 	= �Ḡmn(x2,x1). This
differs from �F̄m(x1,x2), where the symmetry of interchange-
ing the variables x1 and x2 exists. With the above definitions
the following expressions can be derived:∫

O1

dx′
2 ĝmn(x1,x′

2) = Ḡmn(x1,x1), (50)

∫
O2\O1

dx′
2 ĝmn(x1,x′

2) = Ḡmn(x1,x2) − �Ḡmn(x1,x2), (51)

∫
O1\O2

dx′
2 ĝmn(x1,x′

2) = Ḡmn(x1,x1) − �Ḡmn(x1,x2). (52)

Last, we define the integration of both the variables over O1,

¯̄Gmn(x1) ≡
∫

O1

dx′
1

∫
O1

dx′
2 ĝmn(x′

1,x
′
2). (53)

With all integrations defined, we give now a full list of the
postcollisional Fourier modes for the individual diagrams up to
order O(M3). For brevity, we only list the equations in the limit
of N → ∞. For small N on has to restore the combinatorial
and normalization factors, see Eqs. (14) and (15). The Fourier
modes for the first BBGKY equation are given in digrammatic
form as 〈 〉

m
= λmf̂m(x1), (54)

〈 〉
m

= 2πλm

∑
pq

kmpqf̂p(x1)F̄q(x1), (55)

〈 〉
m

= 2πλm

∑
pq

kmpqḠpq(x1,x1), (56)

〈 〉
m

= −2πλmḠm0(x1,x1), (57)

〈 〉
m

= 1

2
(2π )2λm

∑
pqr

kmpqr f̂p(x1)F̄q(x1)F̄r (x1), (58)

〈 〉
m

= (2π )2λm

∑
pqr

kmpqrḠpq(x1,x1)F̄r (x1), (59)

〈 〉
m

= 1

2
(2π )2λm

∑
pqr

kmpqr f̂p(x1) ¯̄Gqr (x1), (60)

〈 〉
m

= −(2π )2λm

∑
pq

kmpqḠp0(x1,x1)F̄q(x1), (61)

〈 〉
m

= −(2π )2λm

∑
pq

kmpqf̂p(x1) ¯̄Gq0(x1), (62)

〈 〉
m

= 1

2
(2π )2λmf̂m(x1) ¯̄G00(x1). (63)

To obtain the Fourier modes for the second BBGKY
equation, three cases must be distinguished. For the strong-
overlap case with d = |x2 − x1| � R, the focal particles are
within each others collision circle. For example, 〈 〉mn is
a diagram for strong overlap. The subscripts m and n denote
Fourier labels related to the postcollisional angles.

The weak-overlap scenario with R < d � 2R occurs if the
focal particles cannot collide directly but could simultaneously
interact with a third particle that is located between them.
Finally, for d > 2R there is no overlap of the two collision
circles. The digrams 〈 〉mn and 〈 〉mn are examples
for weak- and no-overlap diagrams, respectively. A full list of
all relevant diagrams for the second BBGKY equation up to
order O(M3) is given in Appendix B.

D. Physical quantities

In this section we relate relevant physical observables to
the Fourier modes of the density distributions. In Sec. V, these
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relations will be used to compare kinetic theory predictions
with agent-based simulation. First, we consider the local
number density at x, which by definition is the average of the
one-particle microscopic density integrated over the angular
variable θ ,

〈ρ(x)〉 ≡
∫

dX(N)
∫

d�(N)PN (X(N),�(N))
∫

�1(x,θ ) dθ

= N

∫
dθP1(x,θ ) = 2πf̂0(x). (64)

Next, we represent the velocity at x by the complex number
v0e

iθ whose real and imaginary part provide its x and y

components, respectively. Then the averaged velocity field at x
follows from the average of v0e

iθ with respect to the N -particle
probability,

〈v(x)〉
v0

≡
∫

dX(N)
∫

d�(N)PN (X(N),�(N))
∫

dθ eiθ�1(x,θ )

= N

∫
dθP1(x,θ )eiθ = 2πf̂1(x). (65)

We also consider spatial correlation functions for the densities,

〈ρ(x1)ρ(x2)〉 ≡
∫

dX(N)
∫

d�(N)PN (X(N)�(N))

×
∫

dθ1dθ2 �2 (x1,θ1,x2,θ2)

= N (N − 1)
∫

dθ1dθ2P2(x1,θ1,x2,θ2)

= (2π )2

[(
1 − 1

N

)
f̂0(x1)f̂0(x2) + ĝ0,0(x1,x2)

]
,

(66)

and for the velocities,

〈v(x1)v(x2)〉
v2

0

≡
∫

dX(N)
∫

d�(N)PN (X(N)�(N))

×
∫

dθ1dθ2Re(eiθ1e−iθ2 )�2(x1,θ1,x2,θ2)

= N (N − 1)
∫

dθ1dθ2Re(eiθ1e−iθ2 )P2(x1,θ1,x2,θ2)

= (2π )2

[(
1 − 1

N

)
f̂1(x1)f̂−1(x2) + f̂−1(x1)f̂1(x2)

2

+ ĝ1,−1(x1,x2) + ĝ−1,1(x1,x2)

2

]
. (67)

Here we used the representation of the dot product of two
velocities by Re[v(x)v∗(y)] where v∗ is complex conjugated
to v. For large N , one finds that the connected correlation
function is simply

〈ρ(x1)ρ(x2)〉c ≡ 〈ρ(x1)ρ(x2)〉 − 〈ρ(x1)〉〈ρ(x2)〉
= 4π2ĝ0,0(x1,x2) (68)

for the densities and

〈v(x1)v(x2)〉c ≡ 〈v(x1)v(x2)〉 − 〈v(x1)〉〈v(x2)〉
= 2π2v2

0[ĝ1,−1(x1,x2) + ĝ−1,1(x1,x2)] (69)

for the velocities. For homogeneous states where translational
invariance applies, one defines the integrated correlation
function

∫
all dx〈φ(x)φ(x + r)〉. One can also calculate the

“specific” correlation function, the correlation normalized by
the number of ordered pairs, by dividing the correlation by
N (N − 1). This will allows us to closely compare systems
composed of different number of particles. In experiments, it
is quite often that the velocity correlation function measured is
usually not weighted by the density correlation as defined here.
To achieve the nonweighted velocity correlation, we divide the
velocity correlation by the density correlation.

Next we consider global quantities. We define a complex
order parameter � for a single realization of the system at a
given time,

� ≡ 1

N

N∑
j=1

eiθj . (70)

where we sum up the normalized complex velocities of all
particles. The ensemble average of � follows as

〈�〉 =
∫

dx(N)dθ (N)�PN (x(N),θ (N))

= 2π

N

∫
dxf̂1(x). (71)

The norm of the order parameter squared is

|�|2 = ��∗

= 1

N
+ 1

N2

∑
j 	=k

ei(θj −θk ) (72)

and its ensemble average

〈|�|2〉 = 1

N
+ N − 1

N
〈�〉〈�∗〉

+ (2π )2

N2

∫
dx1dx2

ĝ1,−1(x1,x2) + ĝ−1,1(x1,x2)

2
.

(73)

The second term comes from the average taken with
respect to the first term in the Ursell expansion,
P1(z1) · · · P1(zj ) · · · P1(zk) · · · P1(zN ), while the last term
comes from P1(z1) · · · G2(zj ,zk) · · · P1(zN ). For large N , the
variance of the order parameter becomes

〈|�− 〈�〉|2〉 = (2π )2

N2

∫
dx1dx2

ĝ1,−1(x1,x2) + ĝ−1,1(x1,x2)

2
.

(74)

From Eq. (71), we see that the averaged order parameter is
related to the first mode of the one-particle density distribution.
It is zero if the total momentum vanishes and reflects nothing
about local orientational or positional order. The variance
contains information about pairwise correlations. The lowest
order of the local organization is revealed by this quantity,
which is not necessarily zero in the disordered state. According
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to Eq. (69), the equal-time connected velocity correlation
function is given by the Fourier coefficients ĝ±1,∓1. Thus, the
variance of the order parameter, Eq. (74), can be interpreted as
the spatial integral over the connected velocity correlations.

E. Conservation laws

We have seen in the previous section that f̂0(x1) is given
by the local density at x1 and that ĝ00(x1,x2) is proportional
to the connected density correlation at x1 and x2. These two
quantities should be conserved by the collision operator. This is
because instantaneous collisions only change velocities but not
the positions of particles. Thus, densities and their correlations
can only change in the streaming step. We now inspect the
conservation laws regarding these two quantities. The coupling
constants, Eqs. (43), have the general form

w(m1,m2, . . . ,p1,p2, . . . ) =
∏
k

∫
dθk

2π
eipkθk

∏
j

e−imj �j ,

(75)

where mj is the mode number with respect to the postcollision
angle, whereas pj refers to the precollision angle. When all
the mj ’s are zero, all precollisional mode numbers must also
vanish,

w(m1 = 0,m2 = 0 . . . ,p1,p2 . . . ) =
∏
k

δpk,0. (76)

Hence, one has a relatively simple postcollision formula,
where for both f̂ ′

0(x1) and ĝ′
0,0(x1,x2) only the zero modes

f̂0(x1) and ĝ00(x1,x2) contribute. According to Eq. (17), one
also has ∫

all
dx2ĝ00(x1,x2) = 0. (77)

This condition eliminates all those terms in the series ex-
pansion, Eqs. (27) and (29), that involve at least one spatial
integration of ĝ00(x1,x2). For N → ∞, one eventually arrives
at

f̂ ′
0(x1) = e−M(x1)

∞∑
p=0

N !

p!(N − p)!

(
M

N

)p

f̂0(x1) = f̂0(x1),

(78)

because N !/(N − p)! → Np for N → ∞ and
∑∞

p Mp/p! =
eM . Similarly, one finds

ĝ′
00(x1,x2) = ĝ00(x1,x2). (79)

This means that if we were to sum diagrams to infinite order,
the conservation laws would be fulfilled. However, our low-
density expansions, Eqs. (35) and (36), include only a limited
number of diagrams and expand the exponential prefactors. It
turns out that even these truncated expressions do not violate
the conservation laws as long as the expansion is consistent,
that is, all terms up to a given order S in MS are included.
In this case, terms that would violate the conservation laws
cancel each other exactly at each order in M . Therefore, the
conservation laws provide a consistency test of the low-density
expansions.

Now let us inspect the conservation law for finite N for
the first hierarchy equation. The generalization to the second
equation can be done using a similar approach. For finite N ,
Eq. (78) turns into

f̂ ′
0(x1) =

N∑
p=0

N !

p! (N − p)!

(
M

N

)p(
1 − M

N

)N−p

f̂0(x1).

(80)

Because of the binomial formula

1 = 1N =
(

1 − M

N
+ M

N

)N

=
N∑

p=0

N !

p! (N − p)!

(
M

N

)p(
1 − M

N

)N−p

, (81)

the conservation law is fulfilled, f̂ ′
0(x1) = f̂ ′

0(x1). Similarly to
the case of infinite N , it is easy to see that the conservation
laws remain fulfilled if one truncates the BBGKY equations
in a consistent way [85], that is, by including all terms up to
given order O(M/N)S and neglecting the rest.

IV. NUMERICS

A. Algorithm

In this section we outline the numerical solution of the
BBGKY-hierarchy equations. Analytical solutions will be left
for future work. Here we focus on spatially homogenous
solutions. For homogeneous states, the coefficients f̂p are
independent of position and the coefficients for the two-
particle correlations depend only on the difference of the
spatial arguments,

ĝmn(x1,x2) ≡ ĝmn(z), with z = x2 − x1. (82)

This reduces the dimensionality of the space for ĝmn from four
to two. We also assume isotropic states, where f̂0 = ρ0/(2π )
and f̂k = 0 for k � 1 [86]. This solves the first BBGKY
equation exactly, and we only have to deal with the second
hierarchy equation.

Using the reduced space variable z = x2 − x1, the second
BBGKY equation can be written symbolically as

g2(z,θ1,θ2,t + τ ) = C(z′,θ1,θ2,t), (83)

where C denotes the collision integral evaluated at the “back-
streamed” position z′ = z − τ [v2(θ2) − v1(θ1)]. We solve this
equation numerically by a method that is related to the one
from Ref. [14]. The main idea is to explicitly perform the
streaming step for the function g2 on a cubic grid while the
collision operator is evaluated in angular Fourier space,

C(z′,θ1,θ2) =
∑
m,n

Ĉmn(z′)eimθ1einθ2 . (84)

The Fourier coefficients Ĉmn follow from the Fourier transfor-
mation of the diagrammatic equation, Eq. (36). Thus, Ĉmn is a
composed of diagrams such as, for example, 〈 〉mn for the

strong-overlap case with |z′| � R, 〈 〉mn for R < |z′| �
2R, or 〈 〉mn for the no-overlap region, |z′| > 2R.
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The reduced space variable z is discretized on a grid
with L × L points and periodic boundary conditions. Its
x and y coordinates run from −L/2 to L/2, respectively.
Typical values for L were between 36 and 100 lattice units.
In our algorithm, the Fourier modes ĝp,q of the connected
two-particle correlation function are stored at every point of
the grid. We mostly used Fourier series up ±11 modes, i.e., we
include all modes with −11 � m,n � 11, but in a few cases
with very small noise ±21 modes were used. The results are
tested to be converged to the series where higher modes were
included. At the beginning of each iteration, at every grid point
the corresponding diagrams from Appendix B are calculated.
For example, for all grid points z that are closer to the origin
than the radius R, the diagrams with strong overlap are needed.

To evaluate the diagrams, the quantities Ḡmn, �Ḡmn,
and ¯̄Gmn, see Eqs. (48), (49), and (53), must be calculated.
This requires spatial integrations of ĝmn over circles and
intersections of circles. The integrals are found by interpreting
them as spatial averages over these domains. For example,
according to Eq. (48), and since ĝmn(x1,x′

2) is equivalent to
ĝmn(x′

2 − x1), we obtain �Ḡmn(z) by integrating over a circle
which is centered around the reduced location z = (x,y):

�Ḡmn(z) =
∫

�
ĝmn(z′) dz′ ≈ πR2

N1

∑
(i−x)2+(j−y)2�R2

ĝmn,ij .

(85)

Here the integral is evaluated by summing up values from
all grid points (i,j ) that are inside a circle of radius R. This
sum is divided by the number N1 of these grid points and
multiplied with the area πR2 of the domain. To ensure accurate
integration, R must be large enough. We used values of R

ranging from 3 to 24 lattice units. Once all diagrams have
been determined, the coefficients Ĉmn are calculated. The goal
of an iteration step is to determine the new coefficients ĝm,n.
To do this, we first obtain g2 in real space, that is, g2(z,θ1,θ2).
Both angles θ1 and θ2 are discretized into P = 64 equidistant
points on the interval [0,2π ]. For a given grid point z and for
every value of the allowed angles, we “back-stream” to the
point z′ = z − τ [v2(θ2) − v1(θ1)]. At this off-lattice point, we
obtain the coefficients Ĉmn by interpolation from the known
values at adjacent grid points. Using Eq. (84), we reconstruct
the real space value of the collision operator and, following
Eq. (83), we equate this with g2(z,θ1,θ2,t + τ ). Once this is
done for all permitted back-stream vectors for a particular
location z, the updated coefficents ĝm,n(z,t + τ ) are extracted
via angular Fourier transformation. Note that this procedure
involves an angular filtering, because we implicitly set higher
Fourier modes with |m|,|n| > 11 to zero.

The algorithm can be accelerated by using the assumed
homogeneity and isotropy of the system. In this case, one
can show that only the coefficients ĝn,−n are nonzero, which
significantly reduces the number of modes to be updated.
To eliminate the buildup of eventual discretization errors,
after every iteration we explicitly enforce the normalization
condition, Eq. (17). In terms of Fourier modes, this amounts to
applying tiny homogeneous shifts to the coefficients ĝ00, ĝ0n,
and ĝn0, n = 1,2, . . ., such that their integrals over the entire
simulation box vanish.

Initializing the system with an uncorrelated, ideal gaslike
state where all ĝm,n vanish, one first observes the buildup of
correlations inside the collision zone |z| � R. These correla-
tions are then spreading outside the zone due to streaming
and correlated collisions will continue to happen until a
stationary state is reached. Applications of this algorithm will
be presented in Sec. V.

B. Measurements and verification

To verify the numerical approach and to test the general
validity of the ring-kinetic formalism, we perform detailed
comparisons with agent-based simulations. To enable mean-
ingful comparisons, one has to identify appropriate parameter
ranges and highly diagnostic observables. For example, the
order parameter � and its variance were defined in Sec. III D
such that, on one hand, they have a simple relation to
the lowest Fourier coefficients of the kinetic theory and,
on the other hand, can be easily measured in agent-based
simulations.

Natural systems of self-propelled particles such as swarms
of fish, bird, insects, or bacteria have small particle numbers
of order 101 to 104. For example, the wild swarms of midges
recently investigated by Attanasi et al. [87] only contain 100 to
600 midges. Studying swarms of Chironomus riparius midges,
Puckett and Ouellete [88] even found that once the swarms
contain order 10 individuals, all statistics saturate and the
swarms enter an asymptotic regime.

Thus, the idea of the thermodynamic limit N → ∞ which,
in regular statistical mechanics, is motivated by the large
number of atoms, >1023, in condensed matter systems is
not always useful here. Therefore, investigating the effects
of small particle numbers in active matter systems is worth-
while. Furthermore, practical limitations of the kinetic theory
algorithm also force us to run agent-based simulations at small
particle numbers, 2 � N � 100, and to put more emphasis on
the variance of the order parameter � [defined in Eq. (70)]
instead of 〈�〉. This is because, on one hand, in the numerical
algorithm for the BBGKY equations, the radius R must be
well discretized by a sufficiently large number of grid points.
On the other hand, the ratio L/R must also be sufficiently large
in order to minimize artifacts to the periodic boundaries and
to enable the observation of possible power-law decay of the
correlations. We use L/R = 3 . . . 33. This fixes the choice of
the linear system size L. However, choosing L too large will
be computationally unfeasible. As a compromise we arrive at
maximum lengths around L = 100.

Another restriction is imposed by the low-density expansion
which requires that the average partner number M should
be small. Given that the restrictions are coupled via M =
πR2ρ = πN (R/L)2, we find that the total particle number
must be quite small, N � 50, to ensure sufficient accuracy at
realistic computational times on an eight-core CPU. Therefore,
agent-based simulations with small particle numbers must be
performed to allow for direct comparison. When N is small,
even if there is strong global order and all particles are more or
less aligned, the direction of the total momentum vector will
rather rapidly fluctuate in the agent-based simulations. Time
or ensemble averaging � will eventually lead to 〈�〉 = 0 and
hence f̂1 = 0.
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This differs from the thermodynamic limit N → ∞ and
agent-based simulations at very large particle numbers. At
large N , the direction of collective motion is usually pinned
by the underlying square simulation box and goes into the
(±1,0), (0,±1), or (±1,∓1) directions. The probability for
the global direction to switch within the simulation time is
small, and time averages in the ordered phase will lead to
nonzero 〈�〉 and f̂1 	= 0. Hence, in our case of small N , we
use the variance of � to describe global order. If 〈�〉 = 0,
then the variance becomes var(�) = 〈|�|2〉, which remains an
informative quantity down to N = 2.

To obtain more detailed insight than a global quantity like
� can deliver, we also measure the following correlation
functions according to the definitions of Sec. III D. First,
we define the connected integrated correlation function per
ordered pair for the density

Cρ(r) ≡ 1

N (N − 1)

∫
all

dx〈ρ(x)ρ(x + r)〉c

= 4π2

N (N − 1)

∫
all

dxĝ0,0(x,x + r) (86)

and for unit velocity

Cv(r) ≡ 1

N (N − 1)v2

∫
all

dx〈v(x)v(x + r)〉c

= 2π2

N (N − 1)

∫
all

dx[ĝ1,−1(x,x + r) + ĝ−1,1(x,x + r)].

(87)

We also define the nonweighted connected integrated correla-
tion function for unit velocity

Gv(r) =
∫

all dx〈v(x)v(x + r)〉c∫
all dx〈ρ(x)ρ(x + r)〉

=
∫

all dx[ĝ1,−1(x,x + r) + ĝ−1,1(x,x + r)]

2v2
∫

all dx
[(

1 − 1
N

)
f̂0(x)f̂0(x + r) + ĝ0,0(x,x + r)

] .
(88)

V. RESULTS

In this section we give numerical results for the ring-kinetic
theory and compare with agent-based simulations. We begin
by studying a two-particle system because the theory is
supposedly exact for N = 2. Using the collision terms given
diagrammatically by Eq. (38) we follow the algorithm outlined
in Sec. IV A: Eq. (83) for the two-particle correlation function
g2 is iterated numerically until a stationary state is reached.
The lowest Fourier-modes ĝ0,0, ĝ1,−1, and ĝ−1,1 are extracted
from g2 by means of Eq. (40) and then used to calculate the
integrated correlation functions Cρ , Cv , and Gv according
to Eqs. (86)–(88). In addition, agent-based simulations of
Eqs. (1)–(3) in a square box with periodic boundary conditions
were also performed.

Measurements of the correlation functions were taken after
the streaming step, e.g., in the precollisional state, in order to
match the kinetic theory predictions. For zero particle velocity
in Figs. 2 and 3, these measurements were ensemble averaged
over 4 × 109 realizations, whereas for nonzero speed averages

0.0 0.1 0.2 0.3 0.4 0.5r

-0.5

0.0

0.5

1.0

C ρ

a=0.00
a=0.25
a=0.50
a=0.75

FIG. 2. (Color online) The connected density correlation func-
tion defined in Eq. (86) for systems with two particles. The kinetic
theory results are obtained by an iteration algorithm for the two-
particle correlation function g2 as described in Sec. IV A. The lines
show the results of numerical evaluation of the theory and the open
symbols the agent-based simulations. The system’s linear size is 72
lattice units and rescaled to L = 1 in the plot. Other parameters
are M = 2π/9 = 0.6981, η = 1.0, and R/L = 1/3. The ratios of
the mean free path to the collisional radius a = τv0/R are given in
the legend. For the v0 = 0 case, in the agent-based simulations the
initial locations of the particles are randomly chosen and an ensemble
average over the different initializations is performed. In Sec. III E
we argue that ĝ00(z′

1,z
′
2) = ĝ00(z1,z2). We initialized ĝ00(z1,z2) to

be zero, which corresponds to a Poissonian particle distribution. In
both simulation and theory, ĝ00(z1,z2) cannot adjust at exactly zero
speed.

over 1011 realizations were performed. The error bars in
Figs. 2–4 are smaller than the size of the symbols. As shown
by these figures, the predictions of kinetic theory are in perfect
quantitative agreement with agent-based simulations. The
results of the connected density correlation function for various
mean free paths are shown in Fig. 2. Comparing cases where
v > 0 with the case of vanishing speed, v = 0, we see that
streaming induces clustering: The particles develop a tendency
to stay closer to each other than in an uncorrelated gas. This
effect shows as a positive density correlation Cρ inside the
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FIG. 3. (Color online) The connected velocity correlation func-
tion, Eq. (87), fortwo-particle systems. The parameters are the same
as Fig. 2.
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FIG. 4. (Color online) The nonweighted connected velocity cor-
relation function, Eq. (88), for two-particle systems. The system’s
parameters are the same as Fig. 2. The inset shows the correlation for
short distance.

collision circle (r � R) and Cρ < 0 outside (r > R). Note
that negative density correlations are necessary to compensate
for the positive ones, since the integral of ĝ00 over the entire
volume must be zero to fulfill the normalization requirement,
Eq. (17).

One also observes that the smaller the speed, the larger
the correlation inside the collision circle. This is because the
particles with larger speeds have a higher chance of escaping
from each other and hence clusters are more likely to break
apart. This also implies that the case of very small speed differs
qualitatively from zero speed. At small speeds, correlations
and clusters will build up very slowly but finally become large
in the steady state, whereas clusters can never form when parti-
cles are not permitted to move at all. Figure 2 is thus consistent
with the conjecture expressed by many researchers, see, for
example, Refs. [26,37], that the v0 = 0 case is a singular limit:
There seems to be no smooth transition from the equilibrium
Heisenberg-like model at v0 = 0 to the nonequilibrium VM at
v0 > 0. Note that even though the normalized density M is not
small in Figs. 2–4, agreement is still perfect. This is because
no density expansion is necessary for N = 2; all diagrams are
included and the higher n-particle correlations such as G3 are
naturally zero. For the connected velocity correlation function
(see Fig. 3), we see that streaming “switches on” correlations
outside the collision circle. This means the information
has been spread out. The larger the speed, the further the
information is spread and the stronger the correlations can
be built up outside the collision zone. The payoff is that the
correlation within the interaction range R is reduced for large
speed. This means that subsequent collisions (that only take
place among particles within interaction range) will be less
correlated. This is consistent with our hypothesis that large
ratios τv0/R will make the behavior more mean field like.

Comparing results with and without streaming, we find
that streaming dramatically increases the velocity correlations
inside the circle. We suspect that this is again caused by clus-
tering which increases the probability of finding one particle
inside the collision circle of the others. Therefore, particles
“see” a local environment corresponding to a system of higher
density. This means that even at M � 1, most particles have
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FIG. 5. (Color online) The nonweighted connected velocity cor-
relation function, Eq. (88), for systems with N = 5. The lines show
the results of numerical evaluation of the theory and the symbols the
agent-based simulations. The system’s noise is η = 1.5. The system
size is 100 lattice units for the cyan and red curve and 150 lattice
units for the blue curve but was rescaled to L = 1 in the plot. The
ratio of collisional radius to the system’s linear size b = R/L, and the
mean free path to the radius a = τv/R are indicated by the legend.
For b = 0.06, M = πNb2 is equal to 0.0565, while for the run with
b = 0.03 we have M = 0.0141. The inset shows the same data but in
log-log scale.

several potential partners they travel and repeatedly collide
with instead of only occasionally capturing a partner which
would lead to a quick decorrelation of velocities after the
particles have left the interaction range. To directly calculate
the velocity correlation of two particles without taking into
account the possibility of finding them in specified locations,
we look at the nonweighted correlation function (Fig. 4). This
plot clearly shows that the nonweighted velocity correlation
cannot be larger than the one of immobile but interacting agents
(the black dashed line and symbols for r � R). The decrease
of Gv inside the collision zone is a result of the influx of
particles from outside the interaction range, as seen from the
point of view of the focal particle. The most efficient way
of decreasing the correlation is through the head-on collision
of two particles. This means that the correlation in a region
which extends a distance 2τv = 2aR from the circumference
inward will be reduced when streaming is turned on. By
inspecting carefully the inset of Fig. 4, we see that our results
quantitatively confirm this reduction effect. The red curve
which corresponds to 2τv = R/2 starts to decrease below the
v = 0 curve at r = R/2, and the cyan curve, where 2τv = R,
starts decreasing already at r = 0.

Next, we look at the results for a five-particle systems with
a relatively small R/L ratio in Fig. 5. Again, the theory excel-
lently agrees with the simulations, although, due to the low-
density expansion, diagrams with four and five particles are ne-
glected. Remember that the multiparticle correlations G3, G4,
and G5, which do exist in a N = 5 system, are also neglected in
our theory. Therefore, Fig. 5 is the first indication that the ring-
kinetic theory for Vicsek-like models can deliver quantitatively
correct results, at least in not too strongly correlated regimes.
For large τv/R, the long-distance correlations show small
oscillations (see the red and cyan curves) which are well
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FIG. 6. (Color online) The nonweighted connected velocity cor-
relation function, Eq. (88), for 10-particle and 20-particle systems.
The system’s parameters are are η = 1.5, R/L = 0.03, and τv/R =
2. The inset shows the same data but in log-log scale. The system size
is fixed to 100 lattice units but rescaled to L = 1 in the plot.

reproduced by kinetic theory. This effect is usually observed
when τv � R. The oscillation becomes more apparent as the
noise is increased although the overall correlation is reduced.
For small τv/R (blue), there is a maximum correlation near
the boundary of the collision circle. We hypothesize that both
the oscillations and the maximum of the correlation functions
could be resonance effects which are caused by the fixed
distance λ all particles travel in each iteration.

We also compare the velocity correlation function for
systems with a different number of particles but with the same
R/L and τv/R ratio (Fig. 6). The long-distance behavior for
the velocity correlation function are found to collapse into
a master curve. As observed in Fig. 3 (and also Fig. 4),
where the velocity correlation function decreases inside but
increases outside the collision circle as the speed of the
particle increases, there might be a optimized τv/R ratio
where the correlation can be spread most effectively across
the system. To have a better understanding regarding this
aspect we studied more global aspects of velocity correlation.
As discussed in Sec. III D, the integrated velocity correlation
function is proportional to the variance of the order parameter.
We define two related quantities here: The connected velocity
correlations integrated over all space,

μ = (2π )2

N2

∫
all

dx1

∫
all

dx2ĝ1,−1(x1,x2),

and integrated only over the collision circle,

μc = (2π )2

N2

∫
all

dx1

∫
O1

dx2ĝ1,−1(x1,x2).

The results for agent-based simulations for N = 5, η = 1.5,
and M = 0.0565 are shown in Fig. 7. Equation (5) gives
the mean-field prediction for the critical noise, ηC(M =
0.0565) ≈ 0.61, which is an upper bound of the actual
critical noise. Since we have η = 1.5 > ηC we know that
the system investigated here corresponds to the disordered
state [89]. Nevertheless, the variance of the order parameter
indicates that there is still some degree of local ordering.

1 2
τv/R

0.09

0.10

μ

0 0.5 1

1

2

4

8

μ c

1 2 4
τv/R

FIG. 7. (Color online) Agent-based simulations for five-particle
systems showing the connected velocity correlations integrated over
all space, μ (left panel), and integrated over the collision zone μc

(right panel). Note that on the right panel the x axis change from
normal scale to log scale at τv = R while the y axis is in log scale.
The two solid lines proportional to e−0.905τv/R for τv/R � 1 and
(τv/R)−1.101 for τv/R � 1 are plotted for comparison. Parameters:
M = 0.0565, η = 1.5, R/L = 0.06.

The maximum μ is found for systems with τv = R. For
systems with τv > R, although the system strongly spreads
the correlation to the outside of the collision circle, the variance
decays with increasing τv0/R. This is because the source
where correlations are generated—the collision zone—was
also greatly disturbed by incoming particles and by the
departure of previous collision partners. However, decreasing
the ratio τv0/R to below unity reduces the variance due to the
inability to effectively transport correlations to the outside of
the collision zone. We next look at the variance μc, which is
calculated with respect to the collision circle. The data indicate
that μc seems to decay exponentially for τv < R. However,
for τv > R there is a sudden qualitative change: The decay of
μc becomes consistent with a power law.

To judge to what extent calculations with very small
particle numbers predict the behavior of larger systems, we
perform additional agent-based simulations, see Figs. 8 and 9.
These figures show how the correlation function scales as
we increase the system’s size and the particle number but
keep the normalized density M constant as well as the τv/R

ratio and the noise. We see a strong finite-size effect altering
the correlation functions. For large-enough systems such as
N = 100 and N = 200, the data are consistent with an initial
power-law decay for the velocity correlation function Cv

followed by an exponential decay. This indicates that there
exists a finite correlation length. From Fig. 8 we read off
a correlation length which is about an order of magnitude
larger than both the interaction range R and the mean free
path λ = τv0. This is interesting because at η = 1 we are deep
into the disordered phase, quite far away from the onset of
global collective motion. This is consistent with the precursor
phenomenon, reported in Ref. [17].

We also see that the correlation functions for different
system sizes plotted as a function of r/R roughly fall on top
of each other, leading to a universal master curve. For small
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FIG. 8. (Color online) The velocity correlation function for the
agent-based simulations with various N . The parameters M = 0.05,
τv/R = 1, and η = 1.0 are fixed for all the systems. A power-law
decay function (dashed line) with exponent −1.8 is plotted for
comparison. The inset shows the same data but in log-normal scale
with a dashed line proportional to e−0.156r/R .

systems, the tail of the correlation function bends upward due
to the boundary condition. The short distance behavior is then
affected and therefore deviates from the master curve.

In equilibrium spin systems at criticality, spin-spin corre-
lations decay with distance r according to ∼r−d+2−η, where
d is the spatial dimension and η is a critical exponent which
is usually quite small, 0 � η � 0.25. Identifying spins with
the velocity vectors vi of self-propelled agents, analogies
can be drawn. For example, in a Vicsek-like system with an
inner repulsion zone [90,91], an exponent of η ≈ 0.75 was
found right at the threshold to collective motion. Cavagna
et al. [92] investigated the velocity-velocity correlations inside
three-dimensional flocks of starlings. These measurements
correspond to the highly ordered regime, deep in the ordered
phase. They found a very weak decrease of the correlations,
compatible with a power law ∼r−0.19, a logarithmic decay,
or even no decay, ∼r0. In contrast, here we are deep in the
disordered phase, and the corresponding exponent ≈1.8 shown
in Fig. 8 is far from the previously observed or anticipated
values of η at the transition point. Note that the results given

0.1 1.0 10.0
r/R

10-3

10-2

10-1

100

G
v

N=5
N=20
N=40
N=100
N=200

FIG. 9. (Color online) Same as Fig. 8 but with a nonweighted
velocity correlation function.

by Toner, Tu, and Ulm [93,94] were mostly for density and
velocity correlations in the strongly ordered regime and thus
cannot be related to our observations.

VI. CONCLUSION

Very recently, it was discovered that correlation effects
are not only important for a better quantitative description
of active colloidal systems but also essential for global phase
ordering [17,65]. It is likely that correlations play a similar
important role in other experimental systems such as actin
filaments [43] or microtubules [44] driven by molecular motors
and vibrated polar disks [45]. So far, almost nothing specific is
known about correlations in active systems near the threshold
to collective motion. In this paper, we obtain orientational
and spatial correlations from first principles for a Vicsek-style
model. This model serves as an archetype of active matter and
is easier to treat analytically than the experimental systems
mentioned above. In particular, we derive a repeated-ring-
kinetic theory for Vicsek-style models of self-propelled agents.

The approach starts with an exact evolution equation
for a Markov chain in phase space that incorporates the
microscopic collision rules. In contrast to our earlier ap-
proaches [11,12,19,33] and to most kinetic theories of active
matter, we do not use the most severe approximation of
kinetic theory—the molecular chaos assumption. Instead of
neglecting the connected two-particle correlations we derive an
evolution equation for it: the second equation of a BBGKY-like
hierarchy. Therefore, our theory goes beyond mean-field and
is able to describe precollisional correlations as well as cluster
formation in a self-consistent way. Both effects are important
to correctly describe order-disorder transitions in Vicsek-style
models at realistic physical parameters. A correlated closure
of the hierarchy is applied by neglecting connected three- and
higher multiparticle correlations. By obtaining quantitative
agreement between agent-based simulations and ring-kinetic
predictions for several correlation functions, we demonstrate
that there is a weak-coupling regime in Vicsek-like models,
where ring-kinetic theory gives correct results. This justifies
the truncation of the BBGKY hierarchy after the second
equation in certain parameter ranges.

In order to facilitate the derivation of kinetic equations for
self-propelled particle systems, we perform a small-density
expansion and introduce a novel diagrammatic technique to
systematically account for terms in the collision integrals. We
construct a lattice-Boltzmann-like algorithm and numerically
solve the ring-kinetic equations. The biggest difference to
similar algorithms is that we propagate the two-particle
correlation function in reduced space instead of merely dealing
with the one-particle distribution. We perform a detailed
analysis of various density and orientational correlation func-
tions by using both agent-based simulations and numerical
solutions of ring-kinetic theory. Our results indicate significant
precollisional correlations, unexpected oscillations, and a quite
large correlation length already in the disordered phase, quite
far from the threshold to collective motion. This could mean
that, at least at small mean free paths, one might have to
reinterpret the transition to collective motion in self-propelled
particles as a transition from an orientationally correlated
liquid to an even stronger correlated but ordered liquid [17,95].
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The observations of significant correlations in the disordered
phase are consistent with the precursor phenomenon found in
soft active colloids [17].

Our results for the disordered phase are also reminiscent
of recent experiments on swarms of midges [87] which show
strong correlations despite a lack of global order. We found
that the spatial behavior of the velocity correlation function
is consistent with an initial power-law decay with exponent
≈−1.8, followed by an exponential decay. More research
needs to be done to better understand this behavior. Using
the diagrammatic kinetic formalism and the numerical results
presented in this paper, we hope to soon replace the numerical
approach to the BBGKY equations by an analytical solution.
This should allow us to explore larger system sizes and to verify
possible power-law regimes of the correlation functions.

We also discuss deviations between agent-based simula-
tions and ring-kinetic theory at very small noise and mean free
path. One of the reasons for the discrepancies appears to be the
existence of a strong-coupling regime where three-particle and
higher multiparticle correlations dominate. Finding a suitable
closure relation of the BBGKY hierarchy for this case is related
to the hardest problem of kinetic theory. This problem might
be impossible to solve and is left for future research.

The methods proposed in this paper could be extended to
more realistic models of self-propelled particles, for example,
to the Vicsek-like model recently introduced by Lu et al. [96]
to explain experiments on the collective behavior of Bacillus
subtilis in the presence of a photosensitizer. Furthermore, our
systematic derivation of correlation effects for a simplified
model could also be beneficial for calculations and an
improved understanding of these effects in more complex
experimental systems which cannot be faithfully described
by Vicsek-style models. Finally, Vicsek-like models and
models of granular matter are somewhat similar with regard
to the fact that the relative velocities of two particles are
reduced during collisions by either alignment or inelastic
interactions, respectively. Therefore, one can hope that the
kinetic formalism for active matter proposed in this paper
might also, in some way, become useful for granular matter.
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APPENDIX A: COUPLING CONSTANTS

In this Appendix, we give the integrals defined in Eq. (43)
of Sec. III C. For the standard VM interaction rule and for arbi-
trary mode numbers, it is only possible to analytically calculate
those coupling integrals which involve at most two particles
per collision circle, for example, kmpq , jmnpq , and imnpqr .
Apart from a few exceptions, coupling integrals involving
three or more particles per collision zone have to be evaluated
numerically. This leads to intractable computational problems
for large mode numbers. However, the BVM interaction rule,
where the focal particle randomly picks only one of their
neighbors, allows us to break down the kernel of the integrand.
For example, in kmnpqr , the formal expression e−im�(θ1,θ2,θ3)

translates into (e−im�(θ1,θ2) + e−im�(θ1,θ3))/2 because in BVM
the focal particle (labeled 1) picks one of the two available
particles 2 and 3 with equal probability, 1/2.

In this way one can write down the analytical form of
coupling constants for all interactions with more than two
particles per collision zone, provided that the basic units—the
binary couplings—are given. In Table II, we summarize the
coupling integrals for both the standard (VM) and BVM
interaction rules.

Note that the constant hmnpqr decomposes into four terms
for the BVM. This is because the two focal particles have two
possible choices each to pick a collision partner.

For binary collisions, the average angle is given by

�(θ1,θ2) =
{

θ1+θ2
2 for 0 � |θ1 + θ2| < π

θ1+θ2
2 + π otherwise

. (A1)

TABLE II. The coupling constants for the VM and BVM. In this table 〈· · · 〉 denotes 1/(2π )2
∫

dθ1dθ2 · · · eipθ1eiqθ2 for binary interactions
and 1/(2π )3

∫
dθ1dθ2dθ3 · · · eipθ1eiqθ2eirθ3 for three-particle interactions. The first column shows an example of a diagram to which the coupling

constant applies.

Diagram coupling Standard Vicsek model Binary Vicsek model

kmpq 〈e−im�(θ1,θ2)〉
kmpqr 〈e−im�(θ1,θ2,θ3)〉 1

2 〈e−im�(θ1,θ2) + e−im�(θ1,θ3)〉
jmnpq 〈e−im�(θ1,θ2)e−in�(θ1,θ2)〉
imnpqr 〈e−im�(θ1,θ3)e−in�(θ2,θ3)〉
hmnpqr 〈e−im�(θ1,θ2,θ3)e−in�(θ1,θ2,θ3)〉 1

4 〈e−im�(θ1,θ2)e−in�(θ2,θ1)

+e−im�(θ1,θ2)e−in�(θ2,θ3)

+e−im�(θ1,θ3)e−in�(θ2,θ1)

+e−im�(θ1,θ3)e−in�(θ2,θ3)〉
lmnpqr 〈e−im�(θ1,θ2,θ3)e−in�(θ1,θ2)〉 1

2 〈e−im�(θ1,θ2)e−in�(θ2,θ1)

+e−im�(θ1,θ3)e−in�(θ2,θ1)〉
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By switching the variables α = (θ1 + θ2)/2 and β = (θ1 −
θ2)/2, the coupling kmpq becomes

kmpq = 1

2π2

∫ π

−π

dα

∫ π/2

−π/2
dβ e−imαeip(α+β)eiq(α−β), (A2)

where the Jacobian, a factor of 2, has been multiplied to the
equation. We also changed the domain of the integration such
that �(θ1,θ2) = α is continuous in the region and arrive at the
following form:

kmpq = sin[(m − p − q)π ]

(m − p − q)π

sin[(p − q)π/2]

(p − q)π/2
. (A3)

We notice that the first factor is nothing but the Kronecker delta
function δm−p−q,0 since m, p, and q are all integers. Defining

S(x) ≡ sinc

(
πx

2

)
= 2

πx
sin

(
πx

2

)
, (A4)

Eq. (A3) becomes

kmpq = S(p − q)δm,p+q . (A5)

The third coupling integral defined in Eq. (43) of Sec. III C is
related to the first one by replacing m by m + n and can be
written down immediately,

jmnpq = S(p − q)δm+n,p+q . (A6)

The remaining coupling from Eq. (43) that only involves two
particles per circle, the quantity imnpqr , can be calculated by
realizing that the coupling integral kmpq is actually the angular
Fourier transform of the factor e−im�(θj ,θk ). Therefore, we plug
e−im�(θj ,θk ) = ∑

p,q kmpqe
−ipθj e−iqθk into the definition of the

integral,

imnpqr = 1

(2π )3

∫
dθ1dθ2dθ3e

ipθ1eiqθ2eirθ3

×
(∑

a,b

kmabe
−iaθ1e−ibθ3

)(∑
c,d

kncde
−icθ2e−idθ3

)

=
∑

a,b,c,d

kmabkncdδp,aδq,cδr,b+d

=
∑

b

km,p,r−bkn,q,b. (A7)

This way, imnpqr can be seen as a convolution of the coupling
constant kmpq with itself.

Using Eq. (A5), we have

imnpqr = S(m − 2p)S(n − 2q)δm+n,p+q+r . (A8)

For the BVM, all the other couplings can be derived from the
three fundamental two-particle couplings (see Table II):

kmpqr = 1
2 [S(p − q)δm,p+qδr,0 + S(p − r)δm,p+r δq,0]

hmnpqr = 1
4 [S(p − q)δm+n,p+qδr,0

+ S(m − 2p)S(n − 2q)δm+n,p+q+r

+ S(m − 2p)S(n − 2r)δm+n,p+q+r (A9)

+ S(m − 2r)S(n − 2q)δm+n,p+q+r ]

lmnpqr = 1
2 [S(p − q)δm+n,p+qδr,0

+ S(m − 2r)S(n − 2q)δm+n,p+q+r ].

For the standard Vicsek interaction the quantity kmpqr needs to
be evaluated numerically. Then one can obtain hmnpqr by use
of the following relation:

hmnpqr = km+n,p,q,r . (A10)

The coupling lmnpqr can be derived using the Fourier expansion
of e−im�(θj ,θk) and of e−im�(θj ,θk,θl ) similarly to the way we
derived the coupling imnpqr and arrive at

lmnpqr =
∑

b

km,p−b,q+b−n,rS(n − 2b). (A11)

The result is further simplified to

lmnpqr =
{ ∑

odd bkm,p− n−b
2 ,q− n+b

2 ,rS(b) for odd n

km,p− n
2 ,q− n

2 ,r for even n
. (A12)

Note that Eqs. (A10)–(A12) are general results that also apply
to the BVM.

APPENDIX B: DIAGRAMS FOR THE SECOND
BBGKY-HIERARCHY EQUATION

Here we consider contributions to the collision operator of
the second hierarchy equation in Fourier space as introduced
in Sec. III B. The complete list of terms for a low-density
expansion to order O(M3) in diagrammatic form is as follows:

Strong overlap:

〈 〉
mn

= λmn

∑
pq

jmnpq f̂p(x1)f̂q(x2), (B1)

〈 〉
mn

= λmn

∑
pq

jmnpq ĝpq(x1,x2), (B2)

〈 〉
mn

= 2πλmn

∑
pqr

lmnpqr f̂p(x1)f̂q(x2)[F̄r (x1) − �F̄r (x1,x2)], (B3)

〈 〉
mn

= 2πλmn

∑
pqr

lnmqpr f̂q(x2)f̂p(x1)[F̄r (x2) − �F̄r (x2,x1)], (B4)

〈 〉
mn

= 2πλmn

∑
pqr

hmnpqr f̂p(x1)f̂q(x2)�F̄r (x1,x2), (B5)
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〈 〉
mn

= 2πλmn

∑
pqr

lmnpqr ĝpq(x1,x2)[F̄r (x1) − �F̄r (x1,x2)], (B6)

〈 〉
mn

= 2πλmn

∑
pqr

lnmqpr ĝqp(x2,x1)[F̄r (x2) − �F̄r (x2,x1)], (B7)

〈 〉
mn

= 2πλmn

∑
pqr

hmnpqr ĝpq(x1,x2)�F̄r (x1,x2), (B8)

〈 〉
mn

= 2πλmn

∑
pqr

lmnpqr [Ḡpr (x1,x1) − �Ḡpr (x1,x2)]f̂q(x2), (B9)

〈 〉
mn

= 2πλmn

∑
pqr

lnmqpr [Ḡpr (x1,x2) − �Ḡpr (x1,x2)]f̂q(x2), (B10)

〈 〉
mn

= 2πλmn

∑
pqr

hmnpqr�Ḡpr (x1,x2)f̂q(x2), (B11)

〈 〉
mn

= 2πλmn

∑
pqr

lmnpqr f̂p(x1)[Ḡqr (x2,x1) − �Ḡqr (x2,x1)], (B12)

〈 〉
mn

= 2πλmn

∑
pqr

lnmqpr f̂p(x1)[Ḡqr (x2,x2) − �Ḡqr (x2,x1)], (B13)

〈 〉
mn

= 2πλmn

∑
pqr

hmnpqr f̂p(x1)�Ḡqr (x2,x1), (B14)

〈 〉
mn

= −2πλmn

∑
pq

jmnpq[Ḡp0(x1,x1) − �Ḡp0(x1,x2)]f̂q(x2), (B15)

〈 〉
mn

= −2πλmn

∑
pq

jmnpq[Ḡp0(x1,x2) − �Ḡp0(x1,x2)]f̂q(x2), (B16)

〈 〉
mn

= −2πλmn

∑
pq

jmnpq�Ḡp0(x1,x2)f̂q(x2), (B17)

〈 〉
mn

= −2πλmn

∑
pq

jmnpq f̂p(x1)[Ḡq0(x2,x1) − �Ḡq0(x2,x1)], (B18)

〈 〉
mn

= −2πλmn

∑
pq

jmnpq f̂p(x1)[Ḡq0(x2,x2) − �Ḡq0(x2,x1)], (B19)

〈 〉
mn

= −2πλmn

∑
pq

jmnpq f̂p(x1)�Ḡq0(x2,x1). (B20)

Weak overlap:

〈 〉
mn

= λmnf̂m(x1)f̂n(x2), (B21)〈 〉
mn

= λmnĝmn(x1,x2), (B22)〈 〉
mn

= 2πλmn

∑
pr

kmpr f̂p(x1)[F̄r (x1) − �F̄r (x1,x2)]f̂n(x2), (B23)

〈 〉
mn

= 2πλmn

∑
qr

knqr f̂m(x1)f̂q(x2)[F̄r (x2) − �F̄r (x2,x1)], (B24)

〈 〉
mn

= 2πλmn

∑
pqr

imnpqr f̂p(x1)f̂q(x2)�F̄r (x1,x2), (B25)

〈 〉
mn

= 2πλmn

∑
pr

kmpr ĝpn(x1,x2)[F̄r (x1) − �F̄r (x1,x2)], (B26)
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〈 〉
mn

= 2πλmn

∑
qr

knqr ĝmq(x1,x2)[F̄r (x2) − �F̄r (x2,x1)], (B27)

〈 〉
mn

= 2πλmn

∑
pqr

imnpqr ĝpq(x1,x2)�F̄r (x1,x2), (B28)

〈 〉
mn

= 2πλmn

∑
pr

kmpr [Ḡpr (x1,x1) − �Ḡpr (x1,x2)]f̂n(x2), (B29)

〈 〉
mn

= 2πλmn

∑
qr

knqr [Ḡmr (x1,x2) − �Ḡmr (x1,x2)]f̂q(x2), (B30)

〈 〉
mn

= 2πλmn

∑
pqr

imnpqr�Ḡpr (x1,x2)f̂q(x2), (B31)

〈 〉
mn

= 2πλmn

∑
pr

kmpr f̂p(x1)[Ḡnr (x2,x1) − �Ḡnr (x2,x1)], (B32)

〈 〉
mn

= 2πλmn

∑
qr

knqr f̂m(x1)[Ḡqr (x2,x2) − �Ḡqr (x2,x1)], (B33)

〈 〉
mn

= 2πλmn

∑
pqr

imnpqr f̂p(x1)�Ḡqr (x2,x1), (B34)

〈 〉
mn

= −2πλmn[Ḡm0(x1,x1) − �Ḡm0(x1,x2)]f̂n(x2), (B35)〈 〉
mn

= −2πλmn[Ḡm0(x1,x2) − �Ḡm0(x1,x2)]f̂n(x2), (B36)〈 〉
mn

= −2πλmn�Ḡm0(x1,x2)f̂n(x2), (B37)〈 〉
mn

= −2πλmnf̂m(x1)[Ḡn0(x2,x1) − �Ḡn0(x2,x1)], (B38)〈 〉
mn

= −2πλmnf̂m(x1)[Ḡn0(x2,x2) − �Ḡn0(x2,x1)], (B39)〈 〉
mn

= −2πλmnf̂m(x1)�Ḡn0(x2,x1). (B40)

No overlap:〈 〉
mn

= λmnf̂m(x1)f̂n(x2), (B41)〈 〉
mn

= λmnĝmn(x1,x2), (B42)〈 〉
mn

= 2πλmn

∑
pr

kmpr f̂p(x1)F̄r (x1)f̂n(x2), (B43)

〈 〉
mn

= 2πλmn

∑
qr

knqr f̂m(x1)f̂q(x2)F̄r (x2), (B44)

〈 〉
mn

= 2πλmn

∑
pr

kmpr ĝpn(x1,x2)F̄r (x1), (B45)

〈 〉
mn

= 2πλmn

∑
qr

knqr ĝmq(x1,x2)F̄r (x2), (B46)

〈 〉
mn

= 2πλmn

∑
pr

kmprḠpr (x1,x1)f̂n(x2), (B47)

〈 〉
mn

= 2πλmn

∑
qr

knqrḠmr (x1,x2)f̂q(x2), (B48)

〈 〉
mn

= 2πλmn

∑
pr

kmpr f̂p(x1)Ḡnr (x2,x1), (B49)

〈 〉
mn

= 2πλmn

∑
qr

knqr f̂m(x1)Ḡqr (x2,x2), (B50)

〈 〉
mn

= −2πλmnḠm0(x1,x1)f̂n(x2), (B51)〈 〉
mn

= −2πλmnḠm0(x1,x2)f̂n(x2), (B52)〈 〉
mn

= −2πλmnf̂m(x1)Ḡn0(x2,x1), (B53)〈 〉
mn

= −2πλmnf̂m(x1)Ḡn0(x2,x2). (B54)

APPENDIX C: LIMITATIONS OF THE RING-KINETIC
APPROACH

In this Appendix we show some results with discrepancies
between theory and agent-based simulations. Some deviations
have a simple numerical origin and could be remedied by
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FIG. 10. (Color online) Correlation functions for a five-particle system with η = 0.6, M = 0.0565, R/L = 0.06, and τv/R = 1. The blue
dots show the numerical evaluation of the kinetic theory, and red denotes agent-based simulations. The system size is 100 lattice units.

using more CPU time and memory. Others are due to the
fundamental limitations of a low-density expansion or the
neglect of connected three-particle and higher multiparticle
correlations. We notice that in some cases there might be
significant errors in the density correlation Cρ and the velocity
correlation Cv , whereas the agreement for the nonweighted
velocity correlation Gv is still very good, see, for example,
Fig. 11. Therefore, to discuss the limitations of the theory,
one has to carefully inspect all three quantities, Cρ , Cv ,
and Gv .

In Fig. 10 we take the parameters of the five-particle system
shown in Fig. 5 (cyan squares) and reduce the noise from 1.5 to
η = 0.6. We observe that the kinetic theory now overestimates
the value of Gv outside the collision zone by up to 25%.
Furthermore, we see that the agent-based simulations (red
dots) give larger values for both Cρ and Cv near the center
of the collision circle.

Comparing Fig. 5 with Gv from Fig. 10, it is clear that
precollisional correlations are now stronger. This is because
the smaller noise makes particles stay together longer after
a collision. According to the discussion in Ref. [19], it is
fair to assume that also the three- four- and five-particle
correlations have gained in strength. Therefore, a plausible

source of the discrepancy in Fig. 10 is the neglect of these
higher multiparticle correlations in our theory. Note that to
rule out another reason for deviations, for this calculation
we truncated the angular Fourier modes after the 21st mode
instead of the typical truncation after ±11 modes. This is
because, on average, particles come out of a collision with
directions inside an angular cone of width η. For small noise
this corresponds to a rather sharp peak in angular space. To
resolve it, at least approximately 2π/η modes are needed. For
η = 0.6 this gives 11 as minimum mode number, which is
much lower than the 21 we used here. Note that, currently,
solving both BBGKY equations simultaneously and lowering
the noise to values around the transition threshold for collective
motion is not feasible due to numerical instabilities. A possible
reason is that for the low densities M � 1 to which our kinetic
approach is restricted, the critical noise ηC ∼ √

M is too small
to be represented by 21 Fourier modes. Work to extend the
approach to larger density is underway [54].

To investigate the effects of small mean free path, starting
again from the five-particle system of Fig. 5, we reduce
the mean-free-path ratio λ/R from 2/3 to 1/3. Figure 11
shows that while there are no discrepancies in Gv , the theory
underestimates Cv and Cρ at small distances by up to 15%.
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FIG. 11. (Color online) Correlation functions for a five-particle system with τv/R = 1/3, η = 1.5, M = 0.0565, and R/L = 0.06. The
blue dots show the numerical result for theory and red agent-based simulations. The system size is 100 lattice units.
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FIG. 12. (Color online) Correlation functions for a 40-particle system with M = 0.2182, R/L = 0.0417, η = 1.5, and τv/R = 2. The blue
dots show the numerical result for theory and red the agent-based simulation. The system size is 72 lattice units but rescaled to L = 1 in the
plot.

In Ref. [19] it was shown that at small mean free path,
clustering becomes strong. That is, even at very small densities,
M � 1, there is a large likelihood to find more than two
particles in a collision circle. Thus, again, a likely source
of the deviations is that the kinetic theory neglects higher
multiparticle correlations. Another possible source of the
devations is that at small mean-free-path ratios λ/R, the mean
free path is usually discretized by only a few lattice units, in
this case by only 2 lattice units. In other tests (not shown)

we observed discretization errors when, depending on noise
strength, λ was discretized by less than three to four lattice
units.

Finally, in Fig. 12 we explore the limits of the low-density
expansion and study a system with M = 0.2182. The small
discrepancies in all three functions Cv , Cρ , and Gv look
qualitatively different than in Figs. 10 and 11 and are likely
caused by neglecting diagrams of higher order than O(M3) in
our diagrammatic expansion.

[1] T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep. 517,
71 (2012).

[2] S. Ramaswamy, The mechanics and statistics of active matter,
Annu. Rev. Condens. Matter Phys. 1, 323 (2010).

[3] M. C. Marchetti et al., Hydrodynamics of soft active matter,
Rev. Mod. Phys. 85, 1143 (2013).

[4] J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative
theory of flocking, Phys. Rev. E 58, 4828 (1998).

[5] H. J. Bussemaker, A. Deutsch, and E. Geigant, Mean-field
analysis of a dynamical phase transition in a cellular automaton
model for collective motion, Phys. Rev. Lett. 78, 5018 (1997).

[6] D. Helbing and M. Treiber, Gas-kinetic-based traffic model
explaining observed hysteretic phase transition, Phys. Rev. Lett.
81, 3042 (1998).

[7] E. Bertin, M. Droz, and G. Grégoire, Boltzmann and hydrody-
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on Ihle, “Towards a quantitative kinetic theory of polar active
matter,” Eur. Phys. J. Spec. Top. 223, 1419 (2014).

[24] O. Chepizhko and V. Kulinskii, The hydrodynamic description
for the system of self-propelled particles: Ideal Vicsek fluid,
Physica A 415, 493 (2014).

[25] T. Vicsek et al., Novel type of phase transition in a system of
self-driven particles, Phys. Rev. Lett. 75, 1226 (1995).

[26] A. Czirok, H. E. Stanley, and T. Vicsek, Spontaneously ordered
motion of self-propelled particles, J. Phys. A: Math. Gen. 30,
1375 (1997).

[27] M. Nagy, I. Daruka, and T. Vicsek, New aspects of the
continuous phase transition in the scalar noise model (snm) of
collective motion, Physica A 373, 445 (2007).

[28] F. Peruani, A. Deutsch, and M. Bär, A mean-field theory
for self-propelled particles interacting by velocity alignment
mechanisms, Eur. Phys. J. Spec. Top. 157, 111 (2008).

[29] M. Aldana, H. Larralde, and B. Vazquez, On the emergence of
collective order in swarming systems: a recent debate, Int. L.
Mod. Phys. B 23, 3661 (2009).

[30] L. Peng et al., Consensus of self-driven agents with avoidance
of collisions, Phys. Rev. E 79, 026113 (2009).

[31] A. B. T. Barbaro et al., Discrete and continuous models of
the dynamics of pelagic fish: Application to the capelin, Math.
Comput. Simul. 79, 3397 (2009).
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