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Random walk model of subdiffusion in a system with a thin membrane
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We consider in this paper subdiffusion in a system with a thin membrane. The subdiffusion parameters are
the same in both parts of the system separated by the membrane. Using the random walk model with discrete
time and space variables the probabilities (Green’s functions) P (x,t) describing a particle’s random walk are
found. The membrane, which can be asymmetrical, is characterized by the two probabilities of stopping a
random walker by the membrane when it tries to pass through the membrane in both opposite directions.
Green’s functions are transformed to the system in which the variables are continuous, and then the membrane
permeability coefficients are given by special formulas which involve the probabilities mentioned above. From
the obtained Green’s functions, we derive boundary conditions at the membrane. One of the conditions demands
the continuity of a flux at the membrane, but the other one is rather unexpected and contains the Riemann-Liouville
fractional time derivative P (x−

N ,t) = λ1P (x+
N ,t) + λ2∂

α/2P (x+
N ,t)/∂tα/2, where λ1, λ2 depending on membrane

permeability coefficients (λ1 = 1 for a symmetrical membrane), α is a subdiffusion parameter, and xN is the
position of the membrane. This boundary condition shows that the additional “memory effect,” represented by
the fractional derivative, is created by the membrane. This effect is also created by the membrane for a normal
diffusion case in which α = 1.
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I. INTRODUCTION

Subdiffusion is usually defined as a random walk process in
which 〈(�x)2〉 = 2Dαtα/�(1 + α), where 〈(�x)2〉 is a mean-
square displacement of a random walker, α is a subdiffusion
parameter (0 < α < 1), Dα is a subdiffusion coefficient, and �

denotes the Gamma function [1]. The process of subdiffusion
can occur in media in which the particles’ movement is
strongly hindered due to the internal structure of the medium,
as, for example, in gels [2]. Subdiffusion is usually described
by the following subdiffusion equation with the Riemann-
Liouville fractional time derivative (here 0 < α < 1) [1]

∂C(x,t)

∂t
= Dα

∂1−α

∂t1−α

∂2C(x,t)

∂x2
. (1)

The Riemann-Liouville derivative is defined as being valid for
δ > 0 (here k is a natural number which fulfills k − 1 � δ < k)

dδf (t)

dtδ
= 1

�(k − δ)

dk

dtk

∫ t

0
(t − t ′)k−δ−1f (t ′)dt ′. (2)

For α = 1 one obtains a normal diffusion equation. When one
considers subdiffusion in a system with a thin membrane,
which is treated as a partially permeable wall, a problem
arises of how to set boundary conditions at the membrane
[3–7].

The choice of boundary conditions at the membrane is a
fundamental problem in the modeling of normal diffusion or
subdiffusion in biological systems and in engineering science,
when the filtration process is considered [8–10]. In many
papers, various boundary conditions at the membrane, related
to specific processes of a particle’s translocation through
the membrane and in the vicinity of the membrane, have
been used (see, for example, Ref. [11]). In this paper we
consider subdiffusion in a system in which a thin membrane
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separates two homogeneous media having the same subd-
iffusion parameters. In such a system the most often used
boundary condition at the membrane, whose complement
demands that the flux is continuous at the membrane, reads
J (x±

N ,t) = b1C(x−
N ,t) − b2C(x+

N ,t) (b1 = b2 for a symmet-
rical membrane) or C(x−

N ,t) = kC(x+
N ,t) (see, for example,

Refs. [3,12] and the references cited therein), where xN is
the membrane location, J denotes a flux, b1, b2, and k are
parameters which control a membrane’s permeability. In the
following, the above boundary conditions will be called the
“old” boundary conditions.

We mention that diffusion in a system with a thick
membrane can be treated as diffusion in a system with two
partially permeable or partially absorbing walls, in which
each of the membrane surfaces can be treated as such a wall
[12–14]. However, in [13] it is shown that the experimentally
obtained concentration profiles coincide very well with the
theoretical profiles if the latter fulfill the following boundary
condition: C(x−

N ,t) = k(t)C(x+
N ,t), where ratio k(t) changes

exponentially over time to a constant value. To find the
concentration profile for this case a special ansatz has been
used, namely the constant parameter k has been replaced by
k(t) in the solutions of the subdiffusion equation (1) obtained
previously for the above boundary condition with a constant k.
However, such a procedure makes the functions obtained only
approximately fulfill the subdiffusion equation. This remark
shows that the above-mentioned boundary condition cannot
be treated as universal at a thin membrane when subdiffusion
is described by Eq. (1). This fact is a major incentive finding
a new boundary condition at a thin membrane in a system in
which the membrane separates two homogeneous subdiffusive
media which are characterized by the same subdiffusion
parameters.

The methodology used in the consideration presented in
this paper is as follows. We use a simple random walk model
of a particle in a system containing a partially permeable thin
membrane in order to derive the Green’s function P (x,t ; x0)
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for this system. The Green’s function can be interpreted as
the probability density finding a particle at point x after time
t under the condition that at the initial moment t = 0 the
particle was at the point x0. This function can be also defined
as a solution to the subdiffusion equation with appropriate
boundary conditions for the following initial condition:

P (x,0; x0) = δ(x − x0), (3)

where δ denotes the Dirac-delta function. When the Green’s
function is known, one can derive the boundary conditions at
the wall. A similar methodology in which boundary conditions
were derived from the Green’s function was applied by
Chandrasekhar [15] to find boundary conditions at a fully
absorbing or fully reflecting wall for a normal diffusion
process.

The model used in this paper is based on a particle’s
random walk model on a discrete lattice. A discrete model
of random walk appears to be a useful tool in modeling
subdiffusion or normal diffusion [4–6,15–20]. We assume
that the particle performs its single jump at a discrete time
to at least the neighboring site only. It is not permitted for
a particle to stay at the site when the time of the jump
is achieved, unless the particle is stopped by the wall with
some probability; then the particle remains in its position.
The particle’s random walk in the membrane system is then
described by a set of difference equations which can be solved
by means of the generating function method [16,17,21–23].
Using the generating function obtained for these equations we
pass from discrete to continuous time and space variables by
means of the procedure presented in this paper. The choice of
such a methodology is due to the fact that a diffusion process
in a membrane system is relatively easy to model as a random
walk in a discrete system.

II. MODEL

We start our consideration with the difference equations
which describe the random walk of a particle on a lattice.
Supposing Pn(m; m0) denotes the probability of finding a
particle which has just arrived at site m at the nth step; m0 is the
initial position of the particle. The random walk is described
by the following difference equation:

Pn+1(m; m0) =
∑
m′

pm,m′Pn(m′; m0), (4)

where pm,m′ is the probability that a particle jumps from site m′
directly to site m. For subdiffusion or normal diffusion, long
jumps can occur with a relatively small probability; thus we
will take an often applied assumption [15–17] that a jump can
only be performed to neighboring sites; it is not permissible
to stay at the same site at the next moment unless a reflection
from the wall occurs.

Let us suppose the membrane be located between the N

and N + 1 sites. We assume that a particle which tries to
pass through the membrane moving from the N to N + 1
site can jump through the membrane with the probability
(1 − q1)/2, but can be stopped by the membrane with the
probability q1/2, which means that the particle does not change
its position after its “jump.” When the particle is located at
site N + 1, its jump to the N can be performed with the

FIG. 1. System with a thin membrane located between N and
N + 1 sites; a more detailed description is in the text.

probability (1 − q2)/2 and the probability that the particle can
be stopped by the wall equals q2/2 (see Fig. 1). The difference
equation describing the random walk in a membrane system
reads

Pn+1(m; m0) = 1

2
Pn(m − 1; m0) + 1

2
Pn(m + 1; m0),

m �= N,N + 1, (5)

Pn+1(N ; m0) = 1

2
Pn(N − 1; m0) + 1 − q2

2
Pn(N + 1; m0)

+ q1

2
Pn(N ; m0), (6)

Pn+1(N + 1; m0) = 1 − q1

2
Pn(N ; m0) + 1

2
Pn(N + 2; m0)

+ q2

2
Pn(N + 1; m0). (7)

The initial condition is P0(m; m0) = δm,m0 . Since the probabil-
ity of a particle’s jump from the N to N + 1 sites equals 1/2 in a
system with a removed membrane, q1 has an interpretation of a
conditional probability of stopping a particle by the membrane
under the condition that, if the membrane were removed, the
particle would take a jump from N to N + 1 site. Similar
interpretation has the probability q2.

In order to solve Eqs. (5)–(7) one uses a generating function
method [22,23], with respect to a discrete time variable n,
which is defined to be

S(m,z; m0) =
∞∑

n=0

znPn(m,m0). (8)

From Eqs. (5)–(8) we get the following difference equations:

1

z
[S(m,z; m0) − δm,m0 ]

= 1

2
S(m − 1,z; m0)

+ 1

2
S(m + 1,z; m0), m �= N,N + 1, (9)

1

z
[S(N,z; m0) − δN,m0 ]

= 1

2
S(N − 1,z; m0)

+ 1 − q2

2
S(N + 1,z; m0) + q1

2
S(N,z; m0), (10)
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1

z
[S(N + 1,z; m0) − δN+1,m0 ]

= 1 − q1

2
S(N,z; m0)

+ 1

2
S(N + 2,z; m0) + q2

2
S(N + 1,z; m0). (11)

Solving Eqs. (9)–(11) by means of the generating function
method [the generating function R for Eqs. (9)–(11) is defined
to be R(u,z; m0) = ∑∞

m=−∞ umS(m,z; m0)] we get

S(m,z; m0) = [η(z)]|m−m0|
√

1 − z2

+ ([η(z)]|m−N | − [η(z)]|m−N−1|)√
1 − z2

× η(z)

1−η(z)

(q1[η(z)]|N−m0|−q2[η(z)]|N+1−m0|)
[1−(q1 + q2 − 1)η(z)]

,

(12)

where

η(z) = 1 − √
1 − z2

z
. (13)

The particular forms of the function (12), hereafter denoted as
Sij where the indices i,j denote the signs of m − N,m0 − N ,
respectively, are the following:

S−−(m,z; m0) = [η(z)]|m−m0|
√

1 − z2

+
[

q1−q2η(z)

1−(q1+q2−1)η(z)

]
[η(z)]2N−m−m0+1

√
1−z2

,

(14)

S+−(m,z; m0) = [η(z)]m−m0 [1 + η(z)](1 − q1)√
1 − z2 [1 − (q1 + q2 − 1)η(z)]

, (15)

S− +(m,z; m0) = [η(z)]m0−m[1 + η(z)](1 − q2)√
1 − z2 [1 − (q1 + q2 − 1)η(z)]

, (16)

S++(m,z; m0) = [η(z)]|m0−m|
√

1 − z2

+
[

q2−q1η(z)

1−(q1+q2 − 1)η(z)

]
[η(z)]m+m0−2N−1

√
1 − z2

.

(17)

To pass from discrete to continuous time we use the
following formula:

P (m,t ; m0) =
∞∑

n=0

Pn(m,m0)	n(t), (18)

where 	n(t) is the probability that the particle takes n jumps
in the time interval (0,t). In terms of the Laplace transform,
L[f (t)] ≡ f̂ (s) = ∫ ∞

0 e−stf (t)dt , the function 	n(t) reads [1]

	̂n(s) = 1 − ω̂(s)

s
[ω̂(s)]n , (19)

where ω̂(s) is the Laplace transform of a probability density
ω(t) which is needed for the particle to take its next step.
Combining the Laplace transform of Eq. (18) with Eqs. (8)
and (19) we get

P̂ (m,s; m0) = 1 − ω̂(s)

s
S(m,ω̂(s); m0). (20)

We assume that m0 � N . From Eqs. (13), (14), (15), and (20)
we obtain

P̂−−(m,s; m0) = 1 − ω̂(s)

s
√

1 − [ω̂(s)]2

[
[η(ω̂(s))]|m−m0|

+�(s)[η(ω̂(s))]2N−m−m0+1

]
, (21)

P̂+−(m,s; m0) = 1 − ω̂(s)

s
√

1 − [ω̂(s)]2

×M(s)[η(ω̂(s))]|m−m0|, (22)

where

�(s) ≡ q1 − q2η(ω̂(s))
1 − (q1 + q2 − 1)η(ω̂(s))

(23)

and

M(s) ≡ (1 − q1)[1 + η(ω̂(s))]
1 − (q1 + q2 − 1)η(ω̂(s))

. (24)

Further considerations are performed assuming that s is
small, which corresponds to the case of large time due to
Tauberian theorems. For small s there is

ω̂(s) = 1 − ταsα, (25)

where τα is a parameter given in the units 1/sα which,
together with α, fully characterizes time distribution ω(t).
Equations (13) and (25) provide for small s

η(ω̂(s)) = 1 −
√

2ταsα. (26)

From Eqs. (23), (24), and (26) we obtain

�(s) = λ1 + λ2

√
2ταsα, (27)

M(s) = 1 − λ1 − λ2

√
2ταsα, (28)

where

λ1 = q1 − q2

2 − q1 − q2
, λ2 = (1 − q1)(q1 + q2)

(2 − q1 − q2)2
. (29)

Supposing ε denotes the distance between discrete sites,
and supposing

x = εm, x0 = εm0, xN = εN, (30)

taking into consideration the following relation valid for small
ε:

P (m,t ; m0)

ε
≈ P (x,t ; x0), (31)

and the following definition of the subdiffusion coefficient

Dα = ε2

2τα

, (32)
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we pass from a discrete to a continuous space variable
assuming ε −→ 0. However, a new problem arises within
this limit. Namely, the mean number of steps 〈n(t)〉 over
time interval [0,t] is given by the following formula 〈n(t)〉 =
ω̂(s)/{s[1 − ω̂(s)]}, which together with Eqs. (25) and (32)
provides 〈n(t)〉 −→ ∞ when ε −→ 0. Thus, for a very small
ε, 〈n(t)〉 takes anomalous large values. Then, the probability
that a particle which tries to pass the partially permeable wall
“infinite times” in every finite time interval passes through the
wall is equal to one. In order to avoid such a situation we
assume that q1 and q2 are the functions of the parameter ε

which fulfill q1(0) = q2(0) = 1. For a small ε we suppose that

q1(ε) = 1 − εσ

γ1
, q2(ε) = 1 − εσ

γ2
, (33)

where σ is a positive number as yet to be determined; γ1 and
γ2 are reflection membrane coefficients. From Eqs. (26)–(29)
and (33), taking into account the relation (32), we get

�(s) = γ1 − γ2

γ2 + γ1
+ (2 − wγ εσ )sα/2

γ1
√

Dαw2
γ

ε1−σ , (34)

M(s) = 2γ2

γ2 + γ1
− (2 − wγ εσ )sα/2

γ1
√

Dαw2
γ

ε1−σ , (35)

where wγ = 1/γ1 + 1/γ2. The only value of σ which ensures
that the functions �(s) and M(s) are finite and depend on the
wall’s reflection parameters for any γ1 and γ2 (including the
case of a symmetrical wall for which γ1 = γ2) within the limit
ε −→ 0 is σ = 1. Thus, for small ε, the reflection probabilities
read

q1(ε) = 1 − ε

γ1
, q2(ε) = 1 − ε

γ2
. (36)

Functions q1(ε) and q2(ε) are assumed to be decreased
functions of ε and q1(ε),q2(ε) −→ 0 when ε −→ ∞. This
seems to be a good choice

q1(ε) = e
− ε

γ1 , q2(ε) = e
− ε

γ2 . (37)

These functions have the interpretation that a relative change of
reflection probability is proportional to the change of distance
of a particle from the wall, dqi(ε)/qi(ε) = −dε/γi , i = 1,2.
From Eqs. (34) and (35) we obtain for σ = 1 in the limit
ε −→ 0

�(s) = κ1 + κ2
sα/2

√
Dα

, (38)

M(s) = 1 − κ1 − κ2
sα/2

√
Dα

, (39)

where

κ1 = γ1 − γ2

γ1 + γ2
, κ2 = 2/γ1

(1/γ1 + 1/γ2)2
. (40)

The inverse formulas to (40) read

γ1 = 2κ2

(1 − κ1)2
, γ2 = 2κ2

1 − κ2
1

. (41)

The parameters γ1 and γ2 have a relatively simple interpreta-
tion due to Eq. (37). However, to shorten the notation, hereafter
we will use the parameters κ1 and κ2 in the Green’s functions

and flux equations; the other equations and the description of
the plots contain the parameters γ1 and γ2. From Eqs. (21),
(22), (25), (30)–(32), and (38)–(40), we obtain in the limit
ε −→ 0

P̂−−(x,s; x0) = s−1+α/2

2
√

Dα

[
e
− |x−x0 |sα/2

√
Dα

+
(

κ1 + κ2
sα/2

√
Dα

)
e
− (2xN −x−x0)sα/2

√
Dα

]
, (42)

P̂+−(x,s; x0) = s−1+α/2

2
√

Dα

e
− (x−x0)sα/2

√
Dα

×
(

1 − κ1 − κ2
sα/2

√
Dα

)
. (43)

Applying the following formula [24]:

L−1
[
sνe−asβ ] ≡ fν,β(t ; a)

= 1

tν+1

∞∑
k=0

1

k!�(−kβ − ν)

(
− a

tβ

)k

, (44)

where a,β > 0 (the function fν,β can be treated as a special
case of the Fox function), the inverse Laplace transform of
Eqs. (42) and (43) reads

P−−(x,t ; x0) = 1

2
√

Dα

[
fα/2−1,α/2

(
t ;

|x − x0|√
Dα

)

+ κ1fα/2−1,α/2

(
t ;

2xN − x − x0√
Dα

)]

+ κ2

2Dα

fα−1,α/2

(
t ;

2xN − x − x0√
Dα

)
, (45)

P+−(x,t ; x0) = 1 − κ1

2
√

Dα

fα/2−1,α/2

(
t ;

x − x0√
Dα

)

− κ2

2Dα

fα−1,α/2

(
t ;

x − x0√
Dα

)
. (46)

III. BOUNDARY CONDITIONS AT THE MEMBRANE

The functions (45) and (46), which have been derived from
the random walk model, fulfill the subdiffusion equation (1).
To check this, one can use the Laplace transform of Eq. (1).
Since for 0 < δ < 1 and for a bounded function f the Laplace
transform of Eq. (2) is

L
[

dδ

dtδ
f (t)

]
= sδf̂ (s), (47)

the Laplace transform of Eq. (1) reads

sĈ(x,s) − C(x,0) = s1−αDα

∂2Ĉ(x,s)

∂x2
. (48)

It is easy to check that the functions (42) and (43) fulfill
Eq. (48).

The subdiffusive flux generated by the solution to Eq. (1),
C(x,t), is defined as

J (x,t) = −Dα

∂1−α

∂t1−α

∂C(x,t)

∂x
. (49)
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We note that combining this flux with the continuity equation
∂C/∂t = −∂J/∂x one gets the subdiffusion equation (1).
Using (47) we get the Laplace transform of the flux (49)

Ĵ (x,s) = −Dαs1−α dĈ(x,s)

dx
. (50)

From Eqs. (42), (43), and (50) we get

Ĵ−−(x,s; x0) = 1

2
sgn(x − x0)e− |x−x0 |sα/2

√
Dα

− 1

2

(
κ1 + κ2

sα/2

√
Dα

)
e
− (2xN −x−x0)sα/2

√
Dα , (51)

Ĵ+−(x,s; x0) = 1

2

(
1 − κ1 − κ2

sα/2

√
Dα

)
e
− (x−x0)sα/2

√
Dα , (52)

where the flux Jij , i,j = ±, is generated by the function Pij ,
and sgn denotes the signum function. From Eqs. (42), (43),
(51), and (52) we obtain the following Laplace transform of
boundary conditions at the thin membrane:

P̂−−(xN,s; x0) =
(

γ1

γ2
+ γ1

sα/2

√
Dα

)
P̂+−(xN,s; x0), (53)

Ĵ−−(xN,s; x0) = Ĵ+−(xN,s; x0). (54)

The inverse Laplace transform of Eqs. (53) and (54) provides
the following boundary conditions at a thin membrane:

P−−(xN,t ; x0) = γ1

γ2
P+−(xN,t ; x0)

+ γ1√
Dα

∂α/2P+−(xN,t ; x0)

∂tα/2
, (55)

J−−(xN,t ; x0) = J+−(xN,t ; x0). (56)

The membrane’s presence means that the passing of
particles through the membrane should be treated as a process
with a long memory (despite the fact that subdiffusion is the
“long-memory” process itself), which is due to the last term in
the right-hand side of Eq. (55); this term is due to the presence
of the last terms (containing κ2) in Eqs. (42), (43) and (45),
(46). Since a small s corresponds to the large time t , the above
mentioned terms can be omitted for a very large time; then the
boundary condition (55) takes the form

P−−(xN,t ; x0) = γ1

γ2
P+−(xN,t ; x0). (57)

It is easy to check that the solutions of the subdiffusion
equation (1) with the initial condition (3) and boundary
conditions (56) and (57) are

P−−(x,t ; x0) = 1

2
√

Dα

[
fα/2−1,α/2

(
t ;

|x − x0|√
Dα

)

+ κ1fα/2−1,α/2

(
t ;

2xN − x − x0√
Dα

) ]
, (58)

P+−(x,t ; x0) = 1 − κ1

2
√

Dα

fα/2−1,α/2

(
t ;

x − x0√
Dα

)
. (59)

The plots of Green’s functions are presented in Figs. 2–6.
We focus our attention mainly on observing the difference

FIG. 2. Solid lines with filled symbols represent the functions
(45) and (46); dotted lines with open symbols represent the functions
(58) and (59) for γ1 = γ2 = 0.3 and times given in the legend; the
additional description is in the text.

between the functions (45), (46), represented by solid lines
with filled symbols and (58), (59), represented by dotted lines
with open symbols; the vertical line located in x = 0 represents
the membrane. In all cases we take α = 0.9, Dα = 0.001,
x0 = −0.5, xN = 0; plots in Figs. 2–4 are performed for
various times given in the legend and in three cases concerning
the relation between γ1 and γ2 parameters. In general, the
values of the parameters and variables are given in arbitrarily
chosen units. However, if we assume that the time unit is
second and the space variable unit is a millimeter, then the
parameter Dα is close to the real value of the subdiffuson
coefficients of sugars in a water agarose solution [2] for which
α = 0.9. For the normal diffusion of ethanol in a water solvent
in a system with artificial nucleopore membrane the values of
γ1 and γ2 are of the order 10−1 ÷ 1 [25]. We assume that similar
values of the nucleopore membrane reflecting coefficients are
also valid for subdiffusive systems (the problem of extracting
the membrane reflecting parameters from experimental data
will be considered elsewhere [25]). Therefore, we treat the
values of parameters which are taken to calculation as quite

FIG. 3. Similar situation as in Fig. 2 but for γ1 = 0.8 and γ2 =
0.3.
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FIG. 4. Similar situation as in Fig. 2 but for γ1 = 0.3 and
γ2 = 0.8.

realistic. In Figs. 2–6 we observe the differences between the
Green functions (45), (46) and (58), (59). These differences,
which decrease over a large time, are mostly visible in the near
membrane region. For a symmetrical membrane (for which
γ1 = γ2 and κ1 = 0) the “simplified” boundary condition
Eq. (57) provides the Green’s function just like with the system
without a membrane. This fact testifies that a “new” boundary
condition at the membrane Eq. (55) should be taken into
account. The last term in brackets on the right-hand side of
Eq. (53) [and consequently in Eq. (55)] can be omitted if
γ1/γ2 � γ1s

α/2/
√

Dα . Since the condition asβ � 1 provides
t � a1/β , a,β > 0, the boundary condition (57) and the Green
functions (58) and (59) are valid for t � (γ2/

√
Dα)2/α . As far

as we know, the membrane permeability coefficients γ1 and
γ2 have not been considered for a subdiffusive system yet,
at least in relation with an experiment; thus the estimation
of time, for which Eqs. (57)–(59) are valid, is unsure at this
moment. However, taking into account the “realistic” values
of the parameters briefly discussed above, we note that for a
time of the order of 104 s Eqs. (45), (46), and (55) should be
used instead of Eqs. (57)–(59). This conclusion is probably

FIG. 5. Green’s functions for various parameters γ1 and γ2 given
in the legend; t = 200.

FIG. 6. Similar situation as in Fig. 5 but for t = 2000.

not universal, but we expect that for a lot of real membrane
systems it works.

Using the procedure presented in this paper we obtain the
following Green’s functions for the case x0 > xN :

P++(x,t ; x0) = 1

2
√

Dα

[
fα/2−1,α/2

(
t ;

|x − x0|√
Dα

)

− κ1fα/2−1,α/2

(
t ;

x + x0 − 2xN√
Dα

)]

+ 1 + κ1

1 − κ1

κ2

2Dα

fα−1,α/2

(
t ;

x + x0 − 2xN√
Dα

)
,

(60)

P−+(x,t ; x0) = 1 + κ1

2
√

Dα

fα/2−1,α/2

(
t ;

x0 − x√
Dα

)

− 1 + κ1

1 − κ1

κ2

2Dα

fα−1,α/2

(
t ;

x0 − x√
Dα

)
. (61)

The functions (60) and (61) fulfill the following boundary
conditions:

P++(xN,t ; x0) = γ2

γ1
P−+(xN,t ; x0)

+ γ2√
Dα

∂α/2P−+(xN,t ; x0)

∂tα/2
, (62)

J++(xN,t ; x0) = J−+(xN,t ; x0). (63)

Thus one of the boundary conditions at the membrane
depends on the position of the initial point x0 and can be
written in a compact form as follows:

P±i(xN,t ; x0) = γi

γ̃i

P∓i(xN,t ; x0)

+ γi√
Dα

∂α/2

∂tα/2
P∓i(xN,t ; x0), (64)

where i = +,−, γi is the membrane reflection coefficient
which controls the probability of stopping a particle by the
membrane when a particle tries to pass the membrane from
a region of its initial location to the opposite region, and
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γ̃i is a membrane reflection coefficient when the particle
moves in the opposite direction; there is γ− = γ1, γ̃− = γ2

and γ+ = γ2, γ̃+ = γ1. In the next section, we present the
procedure of involving the above boundary conditions in
solving the subdiffusion equation for a case when an initial
condition is given by an arbitrarily chosen function which can
take nonzero values in both parts of the system.

IV. METHOD OF SOLVING A SUBDIFFUSION EQUATION
FOR AN ARBITRARILY CHOSEN INITIAL CONDITION

As an example, we solve the subdiffusion equation for the
following initial condition:

C(x,t) =
{
C0, x < xN,

0, x > xN.
(65)

We add that the initial condition (65) often occurs when
an experimental study of subdiffusion or normal diffusion
in a membrane system is conducted; see [2,13,26] and the
references cited therein.

Let us denote

C(x,t) =
{
C−(x,t), x < xN,

C+(x,t), x > xN.
(66)

Using the integral formula

C±(x,t) =
∫ xN

−∞
P±−(x,t ; x0)C(x0,0)dx0, (67)

from Eqs. (45), (46), and (65), we obtain

C−(x,t) = C0κ1 + (1 − κ1)CF−(x,t)

+C0κ2PF (x,t ; xN ), (68)

C+(x,t) = (1 − κ1)CF+(x,t)

−C0κ2PF (x,t ; xN ), (69)

where PF is the Green’s function for the homogeneous system
without a membrane

PF (x,t ; x0) = 1

2
√

Dα

fα/2−1,α/2

(
t ;

|x − x0|√
Dα

)
, (70)

CF denotes the solution to Eq. (1) for the initial condition (65)
for the system without a membrane,

CF−(x,t) = C0 − C0

2
f−1,α/2

(
t ;

xN − x√
Dα

)
, (71)

for x < xN , and

CF+(x,t) = C0

2
f−1,α/2

(
t ;

x − xN√
Dα

)
, (72)

for x > xN . The functions (68) and (69) fulfill the following
boundary conditions at the membrane:

C−(xN,t) = γ1

γ2
C+(xN,t)

+ γ1√
Dα

∂α/2C+(xN,t)

∂tα/2
, (73)

J−(xN,t) = J+(xN,t), (74)

FIG. 7. Plots of the functions (68), (69) (solid lines with filled
symbols) and (76), (77) (dashed lines with open symbols) for times
given in the legend, γ1 = 0.4, γ2 = 0.3, and C0 = 1; the values of
other parameters are the same as in previous figures.

where J± is the flux generated by C±. The boundary conditions
Eqs. (73) and (74) can also be obtained combining Eqs. (55),
(56) and Eq. (67). As in the case of the boundary condition
(55), over a long time the boundary condition (73) takes the
following form:

C−(xN,t) = γ1

γ2
C+(xN,t). (75)

The solutions of the subdiffusion equation for the boundary
conditions (74) and (75) read

C−(x,t) = C0κ1 + (1 − κ1)CF−(x,t), (76)

C+(x,t) = (1 − κ1)CF+(x,t). (77)

The plots of functions (68), (69) and (76), (77) are presented
in Fig. 7 and Fig. 8. It seems that the differences between
the solutions obtained for the boundary condition (73) and the
ones obtained for (75) are larger than the differences observed
between the relevant Green’s functions presented in Figs. 2–6,
especially over a long time.

FIG. 8. Similar situation as in Fig. 7 but for γ1 = γ2 = 0.3.
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The boundary condition (55) is valid when x0 < xN ;
similarly (62) is valid when x0 > xN . It is not possible
to find a compact form of the boundary condition for an
initial condition which is nonzero in both parts of the system
separated by the membrane. In order to find the solution C(x,t)
of the subdiffusion equation for an arbitrarily chosen initial
condition, we will find solutions for the above-mentioned parts
of the system separately. The function C− is a superposition
of a particle’s concentration C−n generated by the particles
initially located in the interval (−∞,xN ) and a particle’s
concentration C−p generated by the particles initially located
in the interval (xN,∞); a similar superposition can be assumed
for the function C+. Thus we have

C−(x,t) = C−n(x,t) + C−p(x,t), (78)

C+(x,t) = C+n(x,t) + C+p(x,t), (79)

where

C±n(x,t) =
∫ xN

−∞
P±−(x,t ; x0)C−(x0,0)dx0, (80)

C±p(x,t) =
∫ ∞

xN

P±+(x,t ; x0)C+(x0,0)dx0. (81)

It is possible to find boundary conditions at the membrane for
functions C+n and C−n alone; a similar remark concerns the
functions C+p and C−p. From Eqs. (55), (56), and (80), we get

C−n(xN,t) = γ1

γ2
C+n(xN,t)

+ γ1√
Dα

∂α/2C+n(xN,t)

∂tα/2
, (82)

J−n(xN,t) = J+n(xN,t), (83)

and from Eqs. (62), (63), and (81) we obtain

C+p(xN,t) = γ2

γ1
C−p(xN,t)

+ γ2√
Dα

∂α/2C−p(xN,t)

∂tα/2
, (84)

J+p(xN,t) = J−p(xN,t). (85)

Thus the procedure for solving the equation in a system
with a thin membrane for an initial condition

C(x,0) =
{
C−(x,0), x < xN,

C+(x,0), x > xN,
(86)

can be presented at the following points.
(1) Find the following function:

Cn(x,t) =
{
C−n(x,t), x < xN,

C+n(x,t), x > xN,
(87)

by solving the subdiffusion equation with the boundary
conditions (82), (83) and the following initial condition:

Cn(x,0) =
{
C−(x,0), x < xN,

0, x > xN.
(88)

(2) Find the following function:

Cp(x,t) =
{
C−p(x,t), x < xN,

C+p(x,t), x > xN,
(89)

by solving the subdiffusion equation with the boundary
conditions (84), (85) and the following initial condition:

Cp(x,0) =
{

0, x < xN,

C+(x,0), x > xN.
(90)

(3) In order to obtain the solution of the subdiffusion
equation, given in the form of Eq. (66), use Eqs. (78)
and (79).

V. FINAL REMARKS

In this paper we find the new boundary condition at a
thin membrane which contains a fractional time derivative;
this derivative is present also in the boundary condition
at a thin membrane located in a system in which normal
diffusion occurs. The “new” boundary condition Eq. (55) can
be obtained from the “old” boundary condition (57) (which
assumes the constant ratio of the solutions defined at both of the
membrane surfaces), adding to the latter a term which contains
a fractional time derivative; this additional term vanishes over
a long-time limit. We briefly describe the procedure of solving
the subdiffusion equation when the new boundary condition is
taken into consideration. We briefly discuss the time domain
in which a new boundary condition should be used, as well as
the differences between the solutions of subdiffusive equations
obtained for both of the above-mentioned boundary conditions.
We also show that the random walk model appears to be a
useful tool in modeling subdiffusion in a system with partially
permeable walls.

The main conclusions are the following. The boundary
condition (55) can be approximated by the old one (57)
over the limit of a very long time. For a smaller time,
which—as we argued earlier—corresponds to a time of the
order of 104 s for “typical” parameters, the additional term
in the boundary condition should be taken into account. This
term provides the occurrence of a fractional derivative, which
creates an additional “memory effect” on the membrane. This
effect should evidently be taken into account for the case of
symmetrical membrane; otherwise, putting γ1 = γ2 we get a
function for the system without membrane. The differences
between the solutions obtained for new boundary condition
(55) and the ones obtained for the old boundary condition (57),
observed in the plots in Figs. 2–8, are similar for both a system
with symmetrical membrane and a system with asymmetrical
membrane. Thus it seems to be reasonable to assume that
the additional term in the boundary condition should also be
taken into account for a system in which the membrane is
asymmetrical.

The consideration presented in this paper is also valid for
the normal diffusion case, substituting α = 1 in the above
presented functions and equations. We obtain an unexpected
result in that a fractional time derivative of the order 1/2 is
involved in the boundary condition at a thin membrane in a
normal diffusion model. Thus normal diffusion in a membrane
system appears to be a process with a “long memory” which
is created by the membrane.
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The diffusion model used in this paper leads to some
surprising results. The crossing of the particle through the thin
membrane turns out to be a process with a “long memory.”
This process means the boundary condition at the membrane
depends on the nature of the transport of molecules in the
system, and is dependent on parameter α. The “long memory
membrane effect” is not caused by the accumulation of a
substance in a thin membrane. This effect is caused by
molecules waiting an anomalously long time in the vicinity
of the membrane to perform a jump through the membrane; it
becomes negligible over a “very long-time” limit. This causes
the Green’s functions to have an interesting interpretation for

some initial conditions. For example, for a system in which
a homogeneous solution is separated by a membrane from a
pure solvent at the initial moment, Eq. (65), the solution of
the subdiffusion equation is a combination of the solution of
the equation for a system without a membrane (this part is
controlled by parameter κ1) and the Green’s function obtained
for a homogeneous system without a membrane which is inter-
preted as a source point of particles [positive or negative; see
Eqs. (68) and (69)] controlled by parameter κ2. We note that the
membrane system described above is suitable for experimental
study that can check the results presented in this work (as
examples of similar experimental studies, see [2,13,26]).
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