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Pair dispersion of turbulent premixed flame elements
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Flame particles are mathematical points comoving with a reacting isoscalar surface in a premixed flame. In this
Rapid Communication, we investigate mean square pair separation of flame particles as a function of time from
their positions tracked in two sets of direct numerical simulation solutions of H2-air turbulent premixed flames
with detailed chemistry. We find that, despite flame particles and fluid particles being very different concepts,

a modified Batchelor’s scaling of the form 〈|�F (t) − �F (0)|2〉 = CF (〈ε〉F
0 �F

0 )2/3t2 holds for flame particle pair
dispersion. The proportionality constant, however, is not universal and depends on the isosurface temperature
value on which the flame particles reside. Following this, we attempt to analytically investigate the rationale
behind such an observation.
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I. INTRODUCTION

One of the few roots of modern turbulence research could be
traced back to the works of Taylor [1] and Richardson [2] who
studied single particle dispersion and particle pair dispersion,
respectively. Inherently, the pair dispersion problem is coupled
to turbulent mixing and diffusion, thus finding wide applica-
tions in studies on spreading and mixing of chemical species in
the ocean or atmosphere. Defining the pair separation distance
vector � = Xi − Xj , where Xi ,Xj are the position vectors of
the two particles, respectively, Richardson modeled q(s,t): the
probability density function (PDF) of � = |�|, in the inertial
range by the following diffusion equation:

∂q(s,t)

∂t
= 1

s(d−1)

∂

∂s

[
K(s)s(d−1) ∂q(s,t)

∂s

]
, (1)

where s is the sample space variable corresponding to �, d

is the spatial dimension, and K(s) is the scale dependent pair
dispersion coefficient with dimension [L2T −1] as reviewed in
[3]. The moments of � are given by

〈�p(t)〉 =
∫ ∞

0
spq(s,t)4πs2ds. (2)

The effective eddy diffusion coefficient could be defined as

Keff = 1

2d

d〈�2(t)〉
dt

. (3)

Richardson [2] found Keff ∼ 〈�2(t)〉2/3, which was used to
obtain what is now known as Richardson’s 4/3 law: K(s) =
CRs4/3, where CR is a dimensional constant later obtained by
Obukhov [4] as CR = k0〈ε〉1/3, where k0 is a dimensionless
constant and 〈ε〉 is the mean energy dissipation rate. Solving
for Eq. (1), using the 4/3 law, the “superdiffusive” behavior
of a particle pair in turbulence was predicted by the following
equation known as the Richardson-Obukhov (R-O) law:

〈�2(t)〉 = g 〈ε〉 t3. (4)

Using the K41 theory of turbulence [5], Batchelor [6]
obtained two scaling laws for pair dispersion valid in the small
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time and large time limit, respectively, and are given by

〈|�(t) − �0|2〉

= 11

3
C2(〈ε〉 �0)2/3t2 while t � t0 =

(
�2

0

〈ε〉
)1/3

(5)

and

〈|�(t) − �0|2〉 = 1144
81 k3

0 〈ε〉 t3 for t0 � t � tL, (6)

where �0 = �(t = 0), and t0 and tL are the Batchelor time
scale and the Lagrangian integral time scale, respectively. C2

is the Kolmogorov constant = 2.13 [7]. The short time limit
scaling of pair dispersion [Eq. (5)] has been recently verified
in [8] using rigorous particle tracking experiments.

In turbulent premixed combustion, the concept of turbulent
eddy diffusivity is of paramount importance and was used
by Damköhler [9] for modeling turbulent flame speed; in
Reynolds Averaged Navier Stokes (RANS) modeling of
progress variable formulation [10] or as summarized in [11]
in the context of modeling turbulent flame brush thickness.
Nevertheless, in turbulent premixed combustion, Lagrangian
description is rare except in the pioneering theoretical and
computational studies by Pope and co-workers [12,13]. At that
time detailed chemistry turbulent combustion direct numerical
simulation (DNS) was impossible with state of the art com-
putational resources, and computations on surface points were
performed in nonreacting isothermal homogeneous isotropic
turbulence (NRIHIT) with a constant or linear flame speed
model [14].

Recently, we used the surface point concept in DNS
solutions of turbulent premixed flames with detailed chemistry
to obtain Lagrangian tracking of flame elements or flame
particles [15]. Here, flame particles are surface points that
comove with a given reacting isoscalar surface within a
premixed flame. Thus flame particles follow an isosurface in
a premixed flame by always residing on the isosurface and
are distinctly different from fluid particles which would pass
through a premixed flame. Following the notation used in [12],
the flame particle’s position vector at a time t is denoted by
XF (t) with its motion given by

VF (t) = d

dt
XF (t)

= U(XF [t] ,t) + Sd (XF [t] ,t)nF (XF [t] ,t). (7)
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TABLE I. Simulation Parameters.

Case 〈U〉 LI τI η τη urms SL,0 (T = 310 K) SL,0 (T = 500 K) δL �(grid size) τTrack �τTrack

A 500 cm/s 0.109 cm 217 μs 17 μm 14 μs 503 cm/s 185 cm/s 284 cm/s 361 μm 39.0625 μm 292 μs 2.5 μs
B 700 cm/s 0. 074 cm 133 μs 15 μm 10 μs 557 cm/s 185 cm/s 284 cm/s 361 μm 31.250 μm 208 μs 2.5 μs

Here U(XF [t] ,t) is the flow velocity at XF (t); Sd (XF [t] ,t)
being the local displacement flame speed and nF (XF [t] ,t) the
local surface normal at XF (t). It is well known that Sd ∼ √

αω̇,
where α and ω̇ are the thermal diffusivity and reaction rate with
additional dependence on local strain rate and curvature [16].
Essentially, a Lagrangian technique for analyzing turbulent
premixed flame motion from DNS solutions was established in
[15] and could be immediately applied to the problem of flame
particle pair dispersion. To delineate between fluid particle
and flame particle pair dispersion we define the latter as �F =
XF

i − XF
j , where XF

i ,XF
j are the position vectors of the ith and

j th flame particles, respectively. The presence of a premixed
flame causes gas expansion and flow acceleration. Thus, local
isotropy is lost within a premixed flame in an otherwise homo-
geneous isotropic turbulence. It is, however, crucial to investi-
gate flame particle pair dispersion as that would elucidate how
flame surface fluctuations disperse, diffuse, and propagate in a
turbulent flow field: processes ubiquitous in SI engines, gas tur-
bine engines, or supernova explosions. In this Rapid Commu-
nication, we will first attempt to demonstrate a possible scaling
of flame particle pair dispersion, applying flame particle track-
ing (FPT) in two DNS solutions of H2-air turbulent premixed
flames. Following this, we will attempt to analytically derive
the scaling for flame particle pair dispersion by an approach
very similar to that by Batchelor [6] for fluid particles.

II. COMPUTATIONS

Two DNS cases (cases A and B) were performed with the
PENCIL code for lean H2-air premixed flames with detailed
chemical reaction mechanism of [17]. PENCIL code is an
open source code designed for compressible turbulent flows
using sixth order finite difference and third order Runge-Kutta
schemes for spatial and temporal discretization, respectively.
Combustion chemistry was implemented in [18]. The well-
known axial inlet-outlet flow configuration with periodic
boundary conditions on the sides was used for simulating a near
statistically stationary and planar turbulent premixed flame
within a rectangular box of size 1 cm × 0.5 cm × 0.5 cm for
case A, corresponding to a grid size of 256 × 128 × 128 grid
points. Homogeneous isotropic turbulence solution was fed in
through the inlet with a superimposed mean flow in the axial
direction with upstream turbulence Reynolds number ReT =
252 and Damköhler number (Da = LI,inletI SL,0/urms,inletδL,0)
Da = 1.10 for case A. For case B, the rectangular box size was
set at 1.2 cm × 0.4 cm × 0.4 cm within a grid of 384 × 128 ×
128 points with ReT = 198 and Da = 0.68. Further details
about cases A and B could be found in Table I. Results on
evolution of strain rate and curvature from case A and further
details of the computations, algorithms, and DNS results could
be found in [15]. Case B DNS has been newly performed for
exploring flame particle pair dispersion in the context of flames
deep within the thin reaction regime. FPT was performed
in the postprocessing mode using ray tracing and ray-face

intersection techniques, which yields flame particle positions
at sub-Kolmogorov time scale intervals over the tracking time.
These positions could be used for probing flame particle pair
dispersion, which has never been addressed, to our knowledge.
Visualization of the motion of all the flame particles for both
cases and relative dispersion for a particular pair belonging
to the T = 500 K isosurface in case A, can be found in the
Supplemental Material [19].

III. RESULT AND DISCUSSIONS

Figures 1(a)–1(d) and 2(a)–2(d) show the results of flame
particle pair dispersion obtained from the DNS and FPT
for cases A and B, respectively. In the FPT, flame particles
were injected on T = 500 K and T = 1000 K isosurfaces,
respectively, at a time instant when the flame was moderately
wrinkled by oncoming turbulence. We will consider this time
instant as t = 0. Only pair dispersions among flame particles
belonging to a given isosurface are considered. In practice,
this was accomplished by choosing the ith flame particle as
a reference and computing the vector � = XF

i − XF
j from

the ith to all other j flame particles. Then this process was
repeated for all j flame particles for j > i. This resulted in
125250 flame particle pairs with initial separation distance
�F

0 ranging from nearly the Kolmogorov length scale to the
domain size along the diagonal.

It was recognized in [15] that due to inherent flame surface
fluctuation dissipation mechanisms such as kinematic restora-
tion [20], Markstein diffusion [21], and island formation, a
flame particle has a finite lifetime denoted by τF,L unlike
a fluid particle which has an infinite lifetime. The relative
dispersion tracking for a given pair was therefore performed
till any member of that pair gets lost due to the annihilation of
its resident surface.

Figures 1(a) and 1(b) show the scaled, mean of pair separa-

tion distance squared: 〈|�F (t) − �F
0 |2〉r/[ 11

3 C2(〈ε〉F0 �F
0 )

2/3
]

versus t for flame particle pairs separated within the inertial
range 50η � �F

0 � 242η belonging to T = 500 K and T =
1000 K isosurfaces, respectively, for case A. 〈ε〉F0 is the energy
dissipation rate averaged over the corresponding isosurface
on which the flame particles were embedded, at t = 0 s.
Such a scaling is considered to check the validity of Eq. (5)
in the context of flame particles. First, flame particle pairs
with 50η � �F

0 � 242η were sorted into 100 bins based on
their initial separation �F

0 . |�F (t) − �F
0 |2 were averaged over

individual bins denoted by 〈〉r , followed by scaling and plotting
with t to produce the individual curves shown in Figs. 1(a)
and 1(b). In both Figs. 1(a) and 1(b) we see that the data
corresponding to different initial separations nearly collapse
on a single straight line. Hence it is possible that, for flame

particles 〈|�F (t) − �F
0 |2〉r/[ 11

3 C2(〈ε〉F0 �F
0 )

2/3
] ∼ t2 similar

to Batchelor scaling, i.e., Eq. (5) for fluid particles. These
results are not intuitive as flame particles considered here
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FIG. 1. (Color online) Scaled, mean
squared flame particle pair separation vs time
in seconds for flame particles belonging to the
isosurface (a) T = 500 K and (b) T = 1000 K
for case A. Compensated mean squared flame
particle pair separation vs time normalized
with Kolmogorov time scale for flame particles
belonging to the isosurface (c) T = 500 K and
(d) T = 1000 K for case A.

reside on reacting isosurfaces accompanied by heat release
and dilatation which would render the flow locally anisotropic.
Though (urms/Sd )T =T0 , heat release rate and dilatation are
quite different at the two isosurfaces: T = 500 K and T =
1000 K, they do not greatly affect the pair dispersion scaling.
The (urms/Sd,0)T =T0 varies within 1 � (urms/Sd,0)T =500 K �
1.8 and 0.5 � (urms/Sd,0)T =1000 K � 1 over the entire tracking
time. Of course, due to density effects: Sd,0@T =1000 K >

Sd,0@T =500 K. However, (urms/Sd,0)T =T0 ∼ O(1) precludes the
hypothesis that the current observation is an artifact of
asymptotic passive scalar behavior when urms,T0 � Sd0,T0 .
Clearly, the flame particle and fluid particle motions are not
synonymous due to the inherent displacement flame speed, i.e.,
the second term of Eq. (7) arising out of diffusion and reaction

in a premixed flame. Sd directed normal to the surface (Sdn)
changes both the magnitude and direction of the flame particle
motion with respect to the velocity of a fluid particle sharing the
same position at the same time instant. Such differences are,
however, manifested in the pair dispersion scaling of Figs. 1(a)
and 1(b): not in the exponent but in the proportionality
constants. To explore this further, we plot the compensated

scaling of 〈|�F (t) − �F
0 |2〉r/[(〈ε〉F0 �F

0 )
2/3

t2] versus t/tη in
Figs. 1(c) and 1(d) for T = 500 K and T = 1000 K, respec-
tively. We clearly see that the data collapse on a horizon-

tal narrow band proving that indeed, 〈|�F (t) − �F
0 |2〉r ∼

(〈ε〉F0 �F
0 )2/3t2. The proportionality constants are nearly 3.0

and 1.5 in Figs. 1(c) and 1(d) for T = 500 K and T = 1000 K,
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FIG. 2. (Color online) Scaled, mean
squared flame particle pair separation vs time
in seconds for flame particles belonging to the
isosurface (a) T = 500 K and (b) T = 1000 K
for case B. Compensated mean squared flame
particle pair separation vs time normalized
with Kolmogorov time scale for flame particles
belonging to the isosurface (c) T = 500 K and
(d) T = 1000 K for case B.
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FIG. 3. (Color online) Compensated structure functions for case
A corresponding to different terms of Eq. (15) at t = 0 for (a)
T = 500 K and (b) T = 1000 K. The symbols represent the range of
50η � �F

0 � 242η which was used for flame particle pair dispersion
(PD) scaling reported in Figs. 1(a)–1(d).

respectively. In NRIHIT the corresponding proportionality
constant for fluid particles is 11C2/3 = 7.81. Case B results
are shown in Figs. 2(a) and 2(b), which show the scaled,

mean of pair separation distance squared: 〈|�F (t) − �F
0 |2〉r/

[ 11
3 C2(〈ε〉F0 �F

0 )
2/3

] versus t for flame particle pairs separated
within the inertial range 50η � �F

0 � 200η belonging to
T = 500 K and T = 1000 K isosurfaces, respectively.

Clearly, the scaling holds for case B as well, with pro-
portionality constants similar to that observed in case A for
T = 500 K and T = 1000 K, respectively.

Thus, we have observed that despite very different proper-
ties of flame and fluid particles, it appears from case A and
case B DNS and FPT results shown in Figs. 1 and 2 that their
relative dispersion scaling may be quite similar, albeit with
different proportionality constants between flame and fluid
particles. Following [6] we attempt to analytically investigate
the rationale behind such an observation.

The velocity of the ith flame particle is given by

VF
i (t) = d

dt
XF

i (t)

= U
(
XF

i [t] ,t
) + Sd

(
XF

i [t] ,t
)
nF

(
XF

i [t] ,t
)
. (8)

Then the flame particle relative dispersion distance vector
�F can be defined as

�F (t) = XF
i (t) − XF

j (t). (9)
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FIG. 4. (Color online) Compensated structure functions for case
B corresponding to different terms of Eq. (15) at t = 0 for (a)
T = 500 K and (b) T = 1000 K. The symbols represent the range of
50η � �F

0 � 200η which was used for flame particle pair dispersion
(PD) scaling reported in Figs. 2(a)–2(d).

Using (8) and (9) we define the flame particle relative
dispersion velocity VF

�(t):

VF
�(t) = VF

i (t) − VF
j (t) = d�F (t)

dt

⇒ �F (t) = �F (0) +
∫ t

0
VF

�(t ′)dt ′. (10)

Then the dispersion coefficient for flame particles is given
by

3KF
eff = 1

2

d〈|�F (t)|2〉
dt

=
〈
�F (t)

d�F (t)

dt

〉
. (11)

Putting Eq. (10) in Eq. (11) we get

3KF
eff =

〈
�F (0)

d�F (t)

dt

〉
+

〈(∫ t

0
VF

�(t ′)dt ′
)

VF
�(t)

〉
. (12)

Once again using the definition of KF
eff we can write

1

2

d〈|�F (t)|2〉
dt

−
〈
�F (0)

d�F (t)

dt

〉
=

∫ t

0

〈
VF

�(t ′)VF
�(t)

〉
dt ′.

(13)

If t is small, we can approximate the correlation function
〈VF

�(t ′)VF
�(t)〉 ≈ 〈VF

�(0)VF
�(0)〉 which yields

1

2

d〈|�F (t)|2〉
dt

−
〈
�F (0)

d�F (t)

dt

〉
= 〈

VF
�(0)VF

�(0)
〉
t. (14)
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Integrating we get 〈|�F (t) − �F (0)|2〉 = 〈VF
�(0)VF

�(0)〉t2.
Now, 〈

VF
�(0)VF

�(0)
〉 = 〈∣∣[UF

i (0) − UF
j (0) + SF

d,i(0)nF
i (0) − SF

d,j (0)nF
j (0)

]∣∣2〉
⇒ 〈

VF
�(0)VF

�(0)
〉

︸ ︷︷ ︸
L1

= 〈∣∣UF
i (0) − UF

j (0)
∣∣2〉

︸ ︷︷ ︸
R1

+ 〈∣∣SF
d,i(0)nF

i (0) − SF
d,j (0)nF

j (0)
∣∣2〉

︸ ︷︷ ︸
R2

+ 2
〈[

UF
i (0) − UF

j (0)
][

SF
d,i(0)nF

i (0) − SF
d,j (0)nF

j (0)
]〉

︸ ︷︷ ︸
R3

. (15)

As shown in Eq. (15) above, the structure functions of
Vf ; U; Sdn; U and Sdn at t = 0 are identified as L1, R1, R2,
and R3, respectively. We can also denote RS = R1 + R2 +
R3 such that by checking L1 = RS the structure function
calculations could be verified.

Figures 3(a) and 3(b) show the variation of L1, R1, R2,
R3, and RS for T = 500 K and T = 1000 K, respectively,
corresponding to case A. We observe that the compensated
structure function L1 of Vf is nearly constant in the inertial
range of interest 50η � �F

0 � 242η. This structure function
is closely followed by the more well-known fluid velocity
structure function R1. L1 closely follows R1, as in both cases
R2 and R3 tend to cancel each other due to similarity in mag-
nitude trends, but opposite signs. Similar behavior of the above
structure functions is observed for case B, shown in Figs. 4(a)
and 4(b) for T = 500 K and T = 1000 K, respectively.

Therefore the following approximation holds:

〈
VF

�(0)VF
�(0)

〉 ∼ CF

(〈ε〉F0 �F
0

)2/3
. (16)

This leads to

〈|�F (t) − �F (0)|2〉 = CF

(〈ε〉F0 �F
0

)2/3
t2, (17)

which is the most important finding of this Rapid Communi-
cation.

IV. CONCLUSIONS

In this Rapid Communication we find that a modified
version of Batchelor’s pair dispersion scaling is valid for flame
particles. However, unlike for fluid particles in NRIHIT, the
proportionality constants for flame particles, CF , is not univer-
sal but depends on the temperature value of the isotemperature
surface to which the flame particles belong. The difference or
nonuniversality in the coefficients could be attributed to the
increased kinematic viscosity and anisotropy effects resulting
from gas expansion in the mean flow direction caused by
localized heat release due to combustion. Nevertheless, in
complex turbulent flows further complicated by chemical
reactions, heat release, and dilatation, the existence of such
simple scaling laws offers encouraging signs towards possible
unified viewpoints.
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