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Evidence of a one-step replica symmetry breaking in a three-dimensional Potts glass model
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We study a seven-state Potts glass model in three dimensions with first-, second-, and third-nearest-neighbor
interactions with a bimodal distribution of couplings by Monte Carlo simulations. Our results show the existence
of a spin-glass transition at a finite temperature Tc, a discontinuous jump of an order parameter at Tc without
latent heat, and a nontrivial structure in the order parameter distribution below Tc. They are compatible with
one-step replica symmetry breaking.
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Introduction. Mean-field spin-glass models without time-
reversal symmetry have been studied by many researchers over
the last few decades. A class of models that differ greatly from
the Sherrington-Kirkpatrick Ising spin glass [1], such as the
p-spin model and p-state Potts glass model [2,3], exhibits
two distinct phase transitions [4,5]. One is a dynamical phase
transition at a temperature Td , below which an exponentially
large number of metastable states emerge, and a spin auto-
correlation function does not decay to zero in the long time
limit. The latter is a consequence of ergodicity breaking. The
other is a purely thermodynamic transition at Tc < Td , which
is called the random first-order transition (RFOT). At Tc, the
entropy associated with the metastable states vanishes, and an
order parameter emerges discontinuously without latent heat;
below Tc, the replica symmetry is broken at the one-step level.
A particularly intriguing fact is that at the mean-field level, the
dynamical equations for a time correlation function near Td

in these models are formally identical to the mode-coupling
equations in the theory of structural glass transitions. This
fact suggests a potentially deep connection between spin-glass
models with quenched disorder and structural glasses with no
quenched disorder [6–12]. All of the phenomena described
above are called the RFOT scenario in the study of the glass
transition and are speculated to be a promising candidate for
a mean-field description of the glass transition. Thus, the
mean-field spin-glass theory has been developed in great detail,
revealing that some spin-glass models represent a prototypical
model of the RFOT scenario, at least at the mean-field level
[5,13,14].

One of the main issues to be addressed is whether these
mean-field predictions are valid in finite dimensions in which
fluctuations must be taken into account. A straightforward
way to investigate the effect of fluctuation is to examine
finite-dimensional spin-glass models that display the RFOT
in the mean-field limit. Extensive Monte Carlo studies of
the p-state Potts glass models in a three-dimensional cubic
lattice have clarified the existence of the spin-glass transition
at a finite temperature for p � 6 [15–17]. However, their
properties are somewhat compatible with those of a continuous
transition in the Ising spin-glass model, and no clear remnants
of the RFOT have been found. In the mean-field theory, the
discontinuity of the order parameter and also the difference
between Td and Tc grow with the number of states in the
p-state Potts glass model [18,19]. Hence, it might be likely that
the RFOT, if any, could be found in Potts glass models with

relatively large p in finite dimensions. In addition, for such a
large value of p, it is necessary to make most of the couplings
antiferromagnetic to prevent ferromagnetic ordering. On the
other hand, as pointed out in Ref. [20], when most of the
couplings are antiferromagnetic, Potts glass models on any
finite connectivity lattice are unfrustrated for large values
of p, in the sense that these couplings are easily satisfied
in the ground state. Thus, no glassy ordering is expected
because the frustration is considered to be a key ingredient
of the glassy behavior. Indeed, Brangian et al. found that
there was no glassy phase in the ten-state Potts glass model
with a bimodal distribution of the couplings and a small
fraction of ferromagnetic couplings [21]. Thus, it is difficult
to simultaneously avoid ferromagnetic ordering and maintain
the frustration for Potts glass models with a large p on finite
connectivity lattices. In particular, in the three-dimensional
Potts glass model with only nearest-neighbor interactions,
the low connectivity (c = 6) makes it difficult to meet this
requirement.

To avoid the above difficulties, we propose a Potts glass
model with not only the nearest-neighbor couplings, but also
second- and third-nearest-neighbor couplings, on a three-
dimensional cubic lattice. Although this model has only
short-range interactions, such a high connectivity could yield
frustration even in the antiferromagnetic case and even for
large p. Using Monte Carlo simulations of the p-state Potts
glass model with p = 7, we obtained the following results:
(1) This model shows a static spin-glass transition at a finite
temperature Tc/J = 0.421(3) in the units of the Boltzmann
constant, with the correlation length exponent ν = 0.68(9).
(2) At Tc, the order parameter appears discontinuously, but no
latent heat exists. (3) Below Tc, the order parameter distribution
has a bimodal structure.

Model and numerical details. The p-state Potts glass model
we studied is defined by the Hamiltonian

HJ (σ ) = −
∑
(i,j )

Jij δ(σi,σj ), (1)

where the Potts spin σi on site i takes 0,1, . . . ,p − 1, and
the summation is over the nearest, second-nearest, and third-
nearest neighbors on a three-dimensional cubic lattice of
size N = L3 with periodic boundaries. Each of the sites has
connectivity c = 26, and a set of coupling constants J = {Jij }
consists of quenched random variables chosen from a bimodal
distribution P (Jij ) = xδ(Jij − J ) + (1 − x)δ(Jij + J ), where
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x denotes the fraction of ferromagnetic couplings. To prevent
a ferromagnetic transition, we set x = (1 − 1/

√
2)/2 � 0.15

and J = √
2J0. Then, the mean and variance of the couplings

are −1 and 1, respectively, measured in units of J0. This
means that most of the couplings are antiferromagnetic in
this model. Note that because all the spins in the smallest
cube with L = 2 interact with each other through up to the
third-nearest-neighbor couplings, a finite frustration remains
for p � 7 even in the purely antiferromagnetic case. In this
Rapid Communication, we focus on the case of p = 7.

Since spin-glass simulations are hampered by extremely
slow relaxation dynamics, we use the replica exchange Monte
Carlo method [22]. The linear sizes are L = 4–10 for most of
the observables explained below and L = 14 for the energy
density and specific heat, which are relatively easy to evaluate.
The number of samples averaged over is 256–4096 depending
on the system size. The total number of Monte Carlo sweeps
(MCS) used on each lattice size is 106–108. We examined
equilibration by monitoring the Monte Carlo average of the
observables while doubling the number of MCS for successive
measurements. The data are regarded as equilibrium values
when the last two data agree within their error bars.

Observables.It is convenient to represent the Potts variables
using the simplex representation [23], in which the spin vari-
able Si of site i takes one of p unit vectors {e(α)}pα=1 pointing to
the corner of the simplex in (p − 1)-dimensional space. These
vectors satisfy the relations e(α) · e(β) = (pδα,β − 1)/(p − 1).
Some observables calculated in our simulations are expressed
as those in vector spin glasses using the simplex representation.
To study the spin-glass transition, we define a spin-glass
order parameter as an overlap between two replicas. For two
independent replica configurations, denoted as {S(1)

i }Ni=1 and
{S(2)

i }Ni=1 with the same disorder, the wave-number-dependent
overlap between them for the Potts glass model is defined by
the tensor qab(k):

qab(k) = 1

N

N∑
i=1

S
a,(1)
i S

b,(2)
i eik·Ri , (2)

where the superscripts a and b are indices of the simplex
vector component, and Ri is a displacement vector at site i. A
rotational invariant scalar overlap is also defined as

q(k) =
√√√√p−1∑

a,b

|qab(k)|2. (3)

Then, the wave-number-dependent spin-glass susceptibility
χSG(k) is given by an expectation value

χSG(k) = N [〈q2(k)〉(T )]av, (4)

where [· · · ]av and 〈· · · 〉(T ) represent an average over the
quenched disorder and a thermal average at temperature T ,
respectively. The dimensionless correlation length ξL/L is
useful for estimating the critical temperature Tc because it
is independent of L at Tc. Thus, the intersection temperature
in the plot of ξL/L for various L values gives an estimate of Tc.
The finite-size correlation length ξL is estimated from χSG(k)

as [24]

ξL = 1

2 sin (|kmin|/2)

√
χSG(0)

χSG(kmin)
− 1, (5)

where kmin = (2π/L,0,0) is the smallest nonzero wave vector.
Another dimensionless quantity is the Binder parameter, which
is defined as

g4 = (p − 1)2

2

(
1 + 2

(p − 1)2
− [〈q4(0)〉(T )]av

[〈q2(0)〉(T )]2
av

)
. (6)

This quantity is known to exhibit peculiar behavior for systems
with a one-step replica symmetry breaking (1RSB) transition
[25–27], while it is expected to exhibit intersection at a
conventional second-order transition temperature.

One of the most important quantities for studying the
phase space structure of the spin-glass phase is the overlap
distribution function

P (T )(Q) = [〈δ [Q − q(0)]〉(T )]av, (7)

which is accessible from Monte Carlo simulations. The overlap
distribution function has a nontrivial structure if RSB occurs.
In particular, two separate peaks appear in P (T )(Q) at and be-
low Tc for a 1RSB system, which is similar to the order param-
eter distribution found in systems with a first-order transition.

Numerical results. First, to investigate the critical properties
of the Potts glass model, we examine the finite-size correlation
length ξL scaled by L. As shown in Fig. 1, a clear intersection
is observed around T/J � 0.4, though it shifts slightly to
low temperature with increasing L. The intersection for an
asymptotically large L provides evidence of a spin-glass
phase transition at the temperature. The Potts glass model
for p = 7 with nearest-neighbor interactions has no glassy
phase down to very low temperature, possibly down to zero
with the present fraction of ferromagnetic couplings. The
second- and third-nearest-neighbor couplings increase the
spin-glass transition temperature significantly. To determine
Tc and ν, we perform a finite-size scaling analysis in which
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FIG. 1. (Color online) Temperature dependence of the dimen-
sionless correlation length ξL/L. Inset shows enlarged view around
the transition temperature.
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FIG. 2. (Color online) Scaling plot of the finite-size correla-
tion length ratio ξL/L according to Eq. (8) using Tc/J = 0.421,

ν = 0.68, a = 1, and ω = 3. Inset shows magnified view.

the dimensionless correlation length is assumed to follow the
scaling form up to the leading correction term,

ξL

L
= X̃[(T − Tc)L1/ν](1 + aL−ω), (8)

where ν is the correlation length exponent, ω is an exponent of
the leading correction, and X̃ is a universal scaling function.
The scaling parameters such as Tc and ν are determined
by requiring all the curves of ξL/[L(1 + aL−ω)] against
(T − Tc)L1/ν to collapse on a single curve near Tc. A recently
developed Bayesian scaling analysis [28] is used to perform
the scaling analysis systematically. Figure 2 shows the scaling
plot of ξL/L, which is obtained by

Tc/J = 0.421(3), ν = 0.68(9). (9)

The value of ν is consistent with 2/d, where d is the spatial
dimension, which was derived by a heuristic scaling argument
based on the RFOT [29], suggesting that the overlap function
has a finite jump at Tc. This is in contrast with the fact that the
value of ν is slightly larger than 2/d in three-dimensional Potts
glass models with the nearest-neighbor couplings [15–17].

Figure 3 shows the temperature and system-size depen-
dence of P (T )(Q). At high temperatures, the distribution
function has a single Gaussian-like peak near Q � 0. The peak
position is expected to approach zero in the thermodynamic
limit. On the other hand, below Tc another peak at a larger value
of Q, corresponding to the Edwards-Anderson order parameter
qEA, emerges and coexists with the other peak at lower Q.
The lower panel in Fig. 3 shows the size dependence of
P (T )(Q) at T/J = 0.2970, which is well below the estimated
Tc. The peaks at Q = qEA and Q � 0 tend to grow in height
and become narrower with increasing L. Further, the weight
between these two peaks is strongly suppressed with L. These
behaviors imply that the bimodal structure in P (T )(Q) remains
in the thermodynamic limit, providing clear evidence of the
1RSB nature of the spin-glass phase.
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FIG. 3. (Color online) Overlap distribution function of a Potts
glass model in three dimensions (a) for various temperatures with
L = 9 and (b) for different sizes at T/J = 0.2970 below Tc.

While Fig. 3(a) suggests that the overlap emerges discon-
tinuously at Tc, the peak of P (T )(Q) near Tc is rounded by
the finite-size effect. Additional evidence of the discontinuous
jump is found, however, in the temperature dependence of
the Binder parameter g4. As shown in Fig. 4, g4 exhibits a
negative dip near Tc with a negatively divergent tendency for
large L. Note that g4 → −∞ at Tc when a 1RSB transition
with a finite jump of qEA occurs in the mean-field glass models
[25,27], in contrast to a continuous full RSB transition and also
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FIG. 4. (Color online) Temperature dependence of the Binder
parameter g4 of a Potts glass model in three dimensions.
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FIG. 5. (Color online) Temperature dependence of (a) energy
density and (b) specific heat.

an ordinary second-order phase transition. Thus, this divergent
behavior implies that qEA appears discontinuously at Tc.

Finally, Fig. 5 shows the temperature dependence of
the energy density and specific heat. No discontinuity in
the energy density, and hence no divergent tendency in the
specific heat, are observed at around Tc. Instead, the specific
heat for various sizes has an intersection near Tc. This might
indicate that in the thermodynamic limit the specific heat has
a discontinuous jump at Tc, as expected from some mean-field
spin-glass models with the RFOT. Further study is required to
clarify this point.

Conclusions. In this Rapid Communication, the seven-
state Potts glass model with the nearest-, second-nearest-,

and third-nearest-neighbor interactions was proposed as a
candidate for displaying the RFOT in finite dimensions. A
key aspect is the maintenance of both a large number of
Potts states and frustration. All of our equilibrium numerical
results suggest that the present model in three dimensions
shares many features of the RFOT, namely, a spin-glass
transition at finite temperature, a jump in the spin-glass order
parameter at Tc without latent heat, and a bimodal overlap
distribution below Tc, as expected from 1RSB. Thus, we
conclude that this is a realization of a finite-dimensional
statistical-mechanical model that mimics the static part of the
entire RFOT scenario. Another important aspect of the RFOT
scenario is its dynamical properties, which are believed to be
modified in finite dimensions from the mean-field predictions.
This model provides a promising test bed for further examining
the validity of the RFOT scenario in finite dimensions, which
remains to be investigated.
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