
PHYSICAL REVIEW E 91, 013311 (2015)

Signal inference with unknown response: Calibration-uncertainty renormalized estimator
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The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be
inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal
and simultaneously the instrument’s calibration from the same data without knowing the exact calibration, but its
covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to
start with an assumed calibration to successively include more and more portions of calibration uncertainty into the
signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solu-
tions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordi-
nary differential equations and can be identified with common resummation techniques used in field theories. We
verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration
schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able
to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.
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I. INTRODUCTION

A. Motivation

Data analysis is the link between theory and experiment,
wherein a signal has to be inferred from measured data. For this
purpose the transformation of a signal to data, the measurement
response, has to be understood precisely. The reconstruction
of this response is called calibration.

In the simplest case of a time-independent instrument
response, the calibration can be determined by measuring an
a priori well-known signal in a regime with negligible noise
level. This is commonly called external calibration. However,
the assumption of time independency cannot be accepted in
the majority of cases. Of course the time dependency caused
by, e.g., environmental factors, periodicities, and systematics,
or the signal itself, can be estimated with utmost effort. The
resulting calibration, however, has still to be extrapolated into
future time, where the real measurement will be performed
and where these influences will not be known exactly. What
might be known, however, is their statistics. The resulting
uncertainty consequently affects the signal reconstruction and
has to be taken into account.

There are methods which improve the calibration by
iteratively calibrating on a signal reconstruction and then
improving the reconstruction using the new calibration. Such
self-calibration (selfcal) schemes are widely in usage. They
can, however, be prone to systematic biases since signal and
calibration are partly degenerate, i.e., a feature in the data could
be caused by either of them and it is not guaranteed that the
selfcal scheme makes the correct choice automatically.

An improved selfcal scheme, which takes signal uncer-
tainties in the calibration step into account, was presented
in Ref. [1]. Since this new selfcal is also an approximative
solution to the complex inference problem, we ask if there is
room for further improvement using information field theory
(IFT) [2]. To this end we develop a calibration-uncertainty

*sdorn@mpa-garching.mpg.de

renormalized estimator (CURE) for a signal, which incor-
porates calibration uncertainties successively in a so-called
renormalization flow equation. In comparison to existent
approaches this method is noniterative. For a review and
discussion of previous work on existent calibration methods,
we point to Refs. [1,3].

B. Structure of the work

The remainder of this work is organized as follows. In
Sec. II we review the basics of the free and interacting IFTs
with focus on the latter. Section III represents the main part
of the paper, where the calibration problem is introduced and
the CURE method is derived. The basic ideas as well as the
main formulas of alternative selfcal schemes are also presented
within this section. In Sec. IV the performance of several
signal reconstruction methods is studied within a numerical
toy example. Results are summarized in Sec. V.

II. INFORMATION FIELD THEORY

To follow the derivation of an estimator with renormalized
calibration uncertainty in the framework of IFT one has to be
familiar with the concepts of interacting IFT (see in particular
Secs. II B and II C). Thus, a brief review might be helpful, but
can be skipped by an advanced reader. For this purpose we
basically follow Refs. [2,4], where a more detailed description
of IFT can be found.

A. Basic formalism and free theory

Typically, a signal has to be inferred from data with the
challenging question: how can this be done in an optimal1

way? To reasonably answer this question we first have to agree
on a particular data model.

Within this work we assume that the data can be expressed
by a discrete data-tuple, d = (d1, . . . ,dm)T ∈ Rm, m ∈ N,

1Optimal with respect to, e.g., minimizing the L2 error.
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which is related to a signal s by

d = Rs + n, (1)

where R is a linear response operation acting on the signal, and
n = (n1, . . . ,nm)T ∈ Rm denotes some measurement noise.
In contrast to data and noise, the signal s ≡ s(x), x ∈ U is
considered to be a continuous quantity over some Riemannian
manifold U , i.e., a physical (scalar) field. The linearity of
the signal response, which transforms the continuous signal
into data space, is valid for many physical measurements,
e.g., observations of the cosmic microwave background and
large-scale structure in astronomy (cosmology), spectroscopy
in different fields of physics, or medical imaging.

We further assume the signal and noise to be uncorrelated,
P(s,n) = P(s)P(n), and primarily Gaussian, i.e., P(s) =
G(s,S) and P(n) = G(n,N ) with related covariances S =
〈ss†〉(s|S) and N = 〈nn†〉(n|N), respectively. Here, we implicitly
introduced the notation

G(a,A) ≡ 1√|2πA| exp

(
− 1

2
a†A−1a

)
and

〈·〉(a|A) ≡
∫

Da · P(a|A), (2)

where † denotes a transposition and ∗ complex conjugation.
The appropriate inner product of two fields {a,b} is defined by
a†b ≡ ∫

U ddimUxa∗(x)b(x). If the conditions described above
(known linear response, Gaussian signal, and noise with known
covariances) are met, we term the theory a free theory.

It is often convenient and common to focus on logarithmic
probabilities by relating Bayes’ theorem [5] to statistical
physics,

P(s|d) = P(s,d)

P(d)
≡ 1

Z exp[−H(s,d)]. (3)

Here, we introduced the information Hamiltonian

H(s,d) ≡ − ln[P(s,d)] (4)

and the partition function

Z(d) ≡ P(d) =
∫

Ds exp [−H(s,d)]. (5)

Still considering the above free theory, we find

H(s,d) = H0 − j †s + 1
2 s†D−1s and

Z(d) =
√

|2πD| exp
(

1
2j †Dj − H0

)
, (6)

with the abbreviations

H0 = 1
2 ln |2πN | + 1

2 ln |2πS| + 1
2d†N−1d,

D−1 = S−1 + R†N−1R, and

j † = d†N−1R, (7)

where the so-called information propagator D and the in-
formation source j have been introduced. | · | denotes the
determinant.

To exploit the whole machinery of statistical physics we
additionally include a moment-generating term J †s into the
partition function,

Z(d,J ) =
∫

Ds exp [−H(s,d) + J †s]. (8)

The last definition permits the connected correlation functions
(the cumulants) of a probability density function (PDF) to be
expressed via functional derivatives [2],

〈s(x1) · · · s(xn)〉c(s|d) ≡ δn ln[Z(d,J )]

δJ (x1) · · · δJ (xn)

∣∣∣∣
J=0

. (9)

Since we consider a Gaussian signal, its mean is equivalent to
the well-known Wiener filter [6] solution,

〈s〉(s|d) = Dj ≡ mw. (10)

Its two-point correlation function describes the uncertainty of
the reconstruction, 〈ss†〉c(s|d) = 〈(s − mw)(s − mw)†〉(s|d) = D,
and all cumulants with n > 2 vanish. Therefore, the posterior
is Gaussian and given by

P(s|d) = G(s − mw,D). (11)

B. nth-order perturbation theory

Within the free theory we required the noise and in
particular the signal to be Gaussian. However, this requirement
cannot be met in some cases, e.g., in the cases where noise or
response is signal dependent, or simply for a nonlinear signal
field. In the framework of IFT these scenarios can often2 be
described by a Taylor-expanded Hamiltonian [2] composed of
a free part, Hfree [Eq. (6)] and a so-called interacting part Hint,

H = Hfree +
∞∑

n=0

1

n!
�(n)[s(n)]

︸ ︷︷ ︸
≡Hint

, (12)

where the deviation from Gaussianity is encoded in the anhar-
monic terms [n > 2]. The term �(n)[s(n)] denotes a complete,
fully symmetric,3 contraction between the rank-n tensor �(n)

and the n fields s(n) = (s1, . . . ,sn). If a decent estimate m0

is known, one should Taylor-expand the Hamiltonian around
this reference field m0 in terms of residuals φ ≡ s − m0. An
estimate that works well is, for instance, the Wiener filter
solution of the free theory, Eq. (10). Using this reference
field expansion often permits earlier truncation of the Taylor
expansion, since the anharmonic terms become smaller.

Analogously to the free theory, we define the partition
function

Z(d,J ) =
∫

Ds exp [−H(s,d) + J †s]

=
∫

Ds exp[−Hint] exp [−Hfree + J †s]

= exp

(
−Hint

[
δ

δJ

]) ∫
Ds exp [−Hfree + J †s]

≡ exp

(
−Hint

[
δ

δJ

])
Zfree

=
(

1 − Hint

[
δ

δJ

]
+ 1

2!
H2

int

[
δ

δJ

]
− · · ·

)
Zfree.

(13)

2See Sec. II C for cases in which such a treatment is not sufficient.
3�(n) ≡ (1/n!)

∑
π �

(n)
π (x1,...,xn), with π representing every permuta-

tion of {1, . . . ,n}.
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In principle, Eqs. (9) and (13) enable the calculation of all
correlation functions of a PDF perturbatively. These calcula-
tions, however, are very difficult and lengthy. Fortunately, there
exists a well-known diagrammatic treatment in analogy to
quantum field theory and thermal field theory [2]. For example,
including the first two correction terms, the signal mean m is
given by

mx = + + + . . .

= Dxy

(
jy − 1

2
Λ(3)

yzvDzv − 1
2
Λ(3)

yzv(Dj)z(Dj)v

)
+ . . . ,

(14)
where the ordering of diagrams corresponds to those of the
equations and the ellipses (· · · ) representing the residual
Feynman series of correction terms. The external dots (•)
represent source terms, the internal dots vertices (the tensors
�(n)), and the lines (—) propagator terms, respectively.
Repeated indices are to be integrated over.

The Feynman rules used in this work, which are necessary
to switch between the mathematical expressions and the
corresponding diagrams, can be found in Appendix A.

C. Uncertainty renormalization

1. Motivation

The approach of perturbative diagrammatic expansion is
supposed to work well if the Hamiltonian is dominated by
linear and quadratic terms. That in turn means that the tensors
�(n) describing the deviation from Gaussianity are sufficiently
small for the Feynman series to converge. This is, however,
not always the case, e.g., within the calibration problem where
the signal response cannot be known exactly due to some
potential time dependencies or uncontrolled systematics. This
calibration uncertainty can lead to large, nonvanishing terms
�(n) as we show in Sec. III A of this paper.

Following the concept of Ref. [4], we can circumvent
this problem by including successively more and more small
portions of, e.g., calibration uncertainty into a signal inference
equation. The basic idea is to include only a sufficiently small
amount of uncertainty per step to ensure that the non-Gaussian
(interaction) terms are weak. Finally, this process results in a
renormalized propagator D̃ and information source j̃ . This
process is called uncertainty renormalization [4].

2. Concept

For reasons of clarity and comprehensibility we skip
the most general derivation and justification of uncertainty
renormalization, which can be found in Ref. [4], and focus
more on the pragmatic procedure thereof. In the following
we consider the Taylor-expanded, effective Hamiltonian to
be of the form of Eq. (12). To suppress the strength of the
non-Gaussian contributions we include a so-called expansion
parameter δt 	 1, into the Hamiltonian,

H = Hfree + δt

∞∑
n=0

1

n!
�(n)[s(n)], (15)

and concentrate on this new Hamiltonian for a moment.
For an appropriately small δt the interaction terms become
sufficiently small and the diagrammatic expansion of Sec. II B
is justified again. Hence, by including the first correction terms
into the propagator, D → D̃δt , and into the information source,
j → j̃δt , we obtain

D̃δt = + δt

(

+ + . . .
)

+ O(δt2),

Dj̃δt = + δt

(

+ + . . .
)

+ O(δt2),

(16)

where the ellipses (· · · ) represent all diagrams of order O(δt),
i.e., all possible one-vertex diagrams. In this way, t ∈ [0,1]
can be identified with a pseudotime, which measures the accu-
mulated uncertainty correction to the information propagator
and source, and the expansion parameter δt represents the time
step in which D and j are increased from their intermediate
values Dt and jt to their one-step-renormalized (but not final)
values Dt+δt and jt+δt , i.e.,

Dt → Dt+δt and jt → jt+δt . (17)

We want to emphasize that δt cannot simply be set to unity
to obtain the fully renormalized propagator D̃, because this
step would violate the justification of our perturbative expan-
sion (see Sec. II C 1). However, a single step of this analytical
resummation can be infinitesimally small, permitting for the
formal definition of the derivatives [4]

dDt

dt
≡ lim

δt→0

Dt+δt − Dt

δt
and

djt

dt
≡ lim

δt→0

jt+δt − jt

δt
, (18)

whereby the renormalization flow equations can be formu-
lated,

dDt

dt
= + + . . .

D
djt

dt
= + + . . . ,

(19)

which is a system of coupled differential equations for
operators with boundary values Dt=0 = D and jt=0 = j . By
solving these equations one obtains the fully renormalized
quantities D̃ = Dt=1, j̃ = jt=1, and the renormalized Wiener
filter formula

m̃ = D̃j̃ . (20)

This means that by solving Eq. (19) we finally calculate a
Gaussian approximation to the correct posterior mean of s,
P (s|d) ≈ G(s − m̃,D̃).
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III. SELF-CALIBRATION

Now we address the calibration problem, i.e., how to infer a
physical signal field given a data set without precise knowledge
of the signal response. We consider the case in which an
external calibration is not possible (see Sec. I). Thus, the
instrument has to be self-calibrated during the measurement
process. If we had absolutely no information about the
signal response (how a measurement device transforms the
signal into data) there would be absolutely no chance to
infer the signal appropriately. However, if we have some
information about the statistics of the response, e.g., the
two-point correlation function, this task becomes solvable.
For this purpose we introduce the CURE method in the
framework of IFT (Sec. III A) and review already existing
methods (Sec. III B) to compare it against.

The aim is to calculate an optimal4 estimator for the signal
(or in general the moments 〈s · · · s〉(s|d)) given the data without
exact information of the calibration. A way to approach
this challenge is to consider the unknown calibration as a
nuisance parameter, i.e., to marginalize over the calibration
when calculating the signal posterior,

P(s|d) =
∫

DγP(s,γ |d) =
∫

DγP(d,γ |s)︸ ︷︷ ︸
P(d|s)

P(s)

P(d)
, (21)

which involves the calculation of the calibration marginalized
likelihood. To do so, we assume the response to be a linear
function in the calibration coefficients γa with Gaussian
statistics, i.e., Rγ ≈ R0 + ∑

a γaR
a . The assumption of Gaus-

sianity is appropriate as long as we have a priori no information
about higher moments of γ , 〈γ1 · · · γn〉(γ ) with n > 2. The
linearity can be considered as a first-order approximation
around γ0 = 0 in γ ,

Rγ = R(γ0) + ∂R(γ )

∂γa

∣∣∣∣
γ=γ0

(γ − γ0) + O(γ 2)

= R0 +
∑

a

γaR
a + O(γ 2). (22)

Under these assumptions one obtains [1,7]

P(d|s) =
∫

DγP(d|s,γ )P(γ )

=
∫

DγG
[
d −

(
R0 +

∑
a

γaR
a

)
s,N

]
G (γ,�)

= G
(

d − R0s,N +
∑
ab

�abR
ass†Rb†

)
. (23)

The data variance of this Gaussian likelihood, Eq. (23),
depends on the correlation structure of the calibration, � =
〈γ γ †〉(γ |�), as well as on the signal s. This, in turn, results
in a non-Gaussian posterior P(s|d) ∝ P(d|s)P(s), such that
calculations of moments cannot be done analytically anymore.
In principle one can adapt posterior sampling techniques like
Markov chain Monte Carlo (MCMC) methods to calculate,

4Optimal in the sense of minimizing the L2 error.

e.g., the posterior mean, mMCMC. These approaches, however,
are usually very expensive, which increases the attractivity of
developing (semi)analytical methods.

A. Calibration-uncertainty renormalized estimator

Now, we apply the concept of uncertainty renormalization
to the selfcal problem. According to Sec. II C we introduce an
expansion parameter δt 	 1 in the ansatz:

P(s|d) ∝ G
(

d−R0s,N+δt
∑
ab

�abR
ass†Rb†

)
P(s). (24)

To simplify the notation we define an auxiliary parameter 	 ≡∑
ab �abR

ass†Rb† and assume a Gaussian signal prior P(s) =
G(s − s0,S), with the a priori mean s0 ≡ 〈s〉(s).

The Hamiltonian becomes

H(d,s) = − lnP(d,s)

= − ln[G(d − R0s,N + δt	)G(s − s0,S)]

= 1
2 ln |2πS| + 1

2 ln |2π (N + δt	)|
+ 1

2 (d − R0s)†(N + δt	)−1(d − R0s)

+ 1
2 (s − s0)†S−1(s − s0). (25)

We can use the fact that the expansion parameter δt is small,
i.e., δt	 	 N (spectrally5), whereby the approximations

ln |2π (N + δt	)| ≈ ln |2πN | + tr(δt	N−1) and

(N + δt	)−1 ≈ N−1 − N−1δt	N−1 (26)

can be made. Use of Eqs. (25) and (26) yields

H(d,s) = Hfree + δt

4∑
n=2

1

n!
λ(n)[s(n)] (27)

with

Hfree = H0 + 1

2
s†D−1s − j †s,

λ(2)[s,s] =
∑
ab

�ab(s†Mbas − ja†ss†jb) + 1 perm,

λ(3)[s,s,s] =
∑
ab

�ab

(
1

2
ja†ss†Mb0s + c.c.

)
+ 5 perm,

λ(4)[s,s,s,s] =
∑
ab

�ab

(
− 1

2
s†M0ass†Mb0s

)
+ 23 perm,

(28)

with permutations (perm) with respect to s and the abbrevia-
tions

H0 = 1
2 ln |2πN | + 1

2 ln |2πS| + 1
2d†N−1d + 1

2 s
†
0S

−1s0,

D−1 = (S−1 + R0†N−1R0),

j † = d†N−1R0 + s
†
0S

−1,

5Meaning that ξ †δt	ξ 	 ξ †Nξ ∀ ξ ∈ Rm\0.
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Mab = Ra†N−1Rb,

ja† = d†N−1Ra. (29)

Terms higher than fourth order in the signal are dropped by
making the approximation of Eq. (26).

1. Zero-point expansion

Since the information Hamiltonian [Eqs. (27), (28), and
(29)] has the structure of Eq. (15), we can start to derive

the renormalization flow equations. First, we consider (also
for pedagogical reasons) the special case, in which the a
priori signal mean is zero but the signal two-point statis-
tic is known, i.e., we use a zero-centered, Gaussian prior
P(s) = G(s,S).

Following Sec. II C, the interaction terms of Eq. (27)
[Eq. (28)] can be absorbed in a so-called renormalized
information propagator D̃δt and information source j̃δt of
order δt . Including this (first) correction these quantities
read

(
D̃δt

)
xy

= Dxy + δt

(
−Dxzλ

(2)
zv Dvy − Dxzλ

(3)
zvu(Dj)vDuy − 1

2
Dxzλ

(4)
zvurDvuDry − 1

2
Dxzλ

(4)
zvur(Dj)v(Dj)uDry

)

+ O δt2
)

= + δt

(
+ + +

)
+ O δt2

)
,

Dxy j̃δt

)
y

= Dxy

[
jy + δt

(
− 1

2
λ(3)

yzvDzv − λ(2)
yz (Dj)z −

1
2
λ(3)

yzv(Dj)z(Dj)v − 1
2
λ(4)

yzvuDzv(Dj)u

− 1
3!

λ(4)
yzvu(Dj)z(Dj)v(Dj)u

)]
+ O δt2

)

= + δt

(
+ + + +

)

+ O δt2
)
.

(30)

Just as a reminder, the vertices (internal dots) are multiplied by δt while the source terms (external dots) are independent of δt .
In the diagrammatic expansions Eq. (30), we place δt outside the parentheses to underline this dependency. Therefore, to include
all corrections up to order δt , we have to include all possible one-vertex diagrams. It is crucial to realize that δt cannot simply
be set to 1 in order to obtain the fully renormalized propagator D̃, because this step would violate Eq. (26). Apart from this it
might also break down the perturbative expansion. However, instead of setting δt = 1 we can interpret t ∈ [0,1] as a pseudotime,
which measures the accumulated correction to the information propagator and source (see Sec. II C), Dt+δt and jt+δt . Thereby
we can formulate the renormalization flow equations,

dDt

dt
= lim

δt→0

Dt+δt − Dt

δt

= +

+ + ,

D
djt

dt
= D

(
lim

δt→0

jt+δt − jt

δt

)

= + +

+ + ,

(31)

which is a system of coupled differential equations for operators with boundary values Dt=0 = D and jt=0 = j . By solving these
equations one obtains the fully renormalized quantities D̃ = Dt=1, j̃ = jt=1, and the renormalized Wiener filter formula

m̃ = D̃j̃ . (32)

013311-5



DORN, ENßLIN, GREINER, SELIG, AND BOEHM PHYSICAL REVIEW E 91, 013311 (2015)

However, instead of solving the coupled differential equa-
tions of Eq. (31) we could also solve the system where dDt/dt

is replaced by an equivalently valid equation for dD−1
t /dt

leading to the new differential system

dD−1
t,xy

dt
= λ(2)

xy + λ(3)
xyz(Dtjt )z + 1

2
λ(4)

xuryDt,ur

+ 1

2
λ(4)

xvuy(Dtjt )v(Dtjt )u,

djt,y

dt
= −1

2
λ(3)

yzvDt,zv − 1

2
λ(3)

yzv(Dtjt )z(Dtjt )v

− λ(2)
yz (Dtjt )z − 1

2
λ(4)

yzvuDt,zv(Dtjt )u

− 1

3!
λ(4)

yzvu(Dtjt )z(Dtjt )v(Dtjt )u. (33)

Solving these equations might simplify the numerical effort in
some cases. Afterwards we invert D−1

t=1 ≡ D̃−1 to finally solve
Eq. (32).

2. Reference field expansion

There is also the option to introduce a residual field
φ = s − m0 with respect to a reference field, e.g., m0 = Dj 0,
the Wiener filter solution without information of the proper
calibration [Eq. (10)]. By deriving a Hamiltonian of φ the
perturbative expansion gets more exact while the non-Gaussian
terms become smaller. The Hamiltonian then reads

H(d,φ) = H′
0 + 1

2
φ†D−1φ + δt

4∑
n=1

1

n!
�(n)[φ(n)], (34)

where H′
0 includes all φ-independent terms6 and �(n) denotes

the new (vertex) tensor. Due to the fact that now already the
source term is of O(δt), the diagrammatic expansion up to
order δt reduces to a sum of Feynman diagrams containing
only a single source and single vertex term, given by

(
D̃δt

)
xy

= Dxy

+ δt

(
−DxzΛ(2)

zv Dvy − 1
2
DxzΛ(4)

zvurDvuDry

)

= + δt

(
+

)
,

Dxy j̃δt

)
y

= Dxy

[
δt

(
− Λ(1)

y − 1
2
Λ(3)

yzvDzv

)]

= δt

(
+

)
.

(35)
After restoring the original signal s by replacing the source

term jδt → jδt + D−1
δt mt , mt ≡ Dtjt [1], this leads in analogy

6Note that among the φ-independent terms of H′
0 are terms,

collected in �(0), that depend on δt . These terms, however, only
shift the Hamiltonian by a constant value but do not influence its
shape or structure.

to the previous section to the renormalization flow equations,

dDt,xy

dt
= − Dxz�

(2)
zv Dvy − 1

2
Dxz�

(4)
zvurDvuDry,

or, alternatively,

dD−1
t,xy

dt
= �(2)

xy + 1

2
�(4)

xuryDt,ur , and

djt,y

dt
= − �(1)

y + �(2)
yz (Dtjt )z

− 1

2
�(3)

yzvDt,zv + 1

2
�(4)

yzvuDt,zv(Dtjt )u,

(36)

with boundaries jt=0 = j 0 and D−1
t=0 = D−1. Note that the

positive terms in the differential equation of jt arise from the
restoration of the original signal.

Further note that the simplicity gained in the diagrammatic
expansion has turned into a higher complexity of the vertex
structure. The explicit structure of these vertices can be found
in Appendix B. These are also implemented for our numerical
example; see Sec. IV and Fig. 1. The effect of the resummation
process (involving absolute calibration measurements; see
Sec. IV) on the information propagator is illustrated by Fig. 2.

3. Approach optimization

Until now, the vertex tensors �(n) were pseudotime inde-
pendent [see, for instance, Eq. (B2)]. However, the CURE
approach can in principle be improved if we replace the
residual field φ = s − m0 after every time step by φ̃t = s −
mt = s − Dtjt . In this way the support point of the expansion
is always chosen optimally so that the first term of �(1) does
still vanish [see Eq. (B2)] and the definition of time derivatives,
Eq. (31), remains valid.

FIG. 1. (Color online) Signal, data, and signal reconstruction
(considering unknown calibration) with related 1σ uncertainty
according to Eq. (36) for the numerical example described in Sec. IV.
For comparison to other methods see Fig. 3. Calibration and its
reconstructions are shown in Fig. 4.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (Color online) Explicit structure of propagator operators for the realization shown in Figs. 1, 3, and 4. (a)–(c),(e) refer to the
propagators Dmethod with the method naive (a),CURE (b),cheat (c), and MCMC (e) according to Eq. (10) with unknown calibration set to zero,
Eq. (36), and Eq. (10) with known calibration, respectively. Upper panels and lower middle panel: The renormalized propagator exhibits the
same diagonal structure as the MCMC propagator. Lower panels (left, right): Comparison of the renormalized propagator to the MCMC result
[CURE vs MCMC, (d)] and explicit structures of the propagator diagonals [denoted by D̂method, (f)]. Emerging from the process of resummation
(involving absolute calibration measurements; see Sec. IV), Eq. (36), the renormalized propagator obtains a nondiagonal structure due to the
complex, nonlocal vertex structure of the non-Gaussian contributions to the Hamiltonian; see, in particular, Eq. (B2).

B. Self-calibration schemes

To compare the derived CURE method not only to the
Wiener filter solution without information about calibration
(which is the starting value of CURE) but also to two other
iterative self-calibration (selfcal) schemes we review the basic
ideas of the latter briefly. A full description of the following
methods can be found in Ref. [1]. The response is still
considered to be linear, Rγ = R0 + ∑

a γaR
a .

1. Classical selfcal

Classical selfcal is an iterative method, alternately inferring
the signal while assuming the calibration to be known and
vice versa until a fixpoint is reached. The respectively inferred
quantities s
 and γ 
 are often maximum a posterori (MAP)
estimators. This procedure of simultaneously estimating s and

γ can be identified with searching for the maximum of the joint
posterior P(γ,s|d), or equally for the minimum of the joint in-
formation Hamiltonian [1] H(d,γ,s) = − ln[P(d,γ,s)], given
by

∂H(d,γ,s)

∂γa

∣∣∣∣
γ=γ 


= 0 and
∂H(d,γ,s)

∂s

∣∣∣∣
s=s


= 0. (37)

The resulting equations [Eq. (39) with T = 0] must be iterated
until convergence.

2. New selfcal

The new selfcal method is based on the above-described
idea of classical selfcal. However, in marked contrast to
the latter, new selfcal uses the signal marginalized posterior
to infer the calibration, and determines a signal estimate

013311-7



DORN, ENßLIN, GREINER, SELIG, AND BOEHM PHYSICAL REVIEW E 91, 013311 (2015)

FIG. 3. (Color online) Signal reconstructions and related errors of different approaches. The following terminology is used: Naive, Wiener
filter with unknown calibration set to zero; classic, classical selfcal [Eq. (43), T = 0]; CURE [Eqs. (36) and (B2)]; selfcal, new selfcal [Eq. (43),
T = 1]; cheat, Wiener filter with known calibration; MCMC, Markov chain Monte Carlo sampling. The gray shaded region represents the 1σ

uncertainty of the CURE method.

under the usage of the resulting calibration estimate and its
uncertainty afterwards. Therefore, the gradient and Hessian
of the Hamiltonian H(d,γ ) = − ln

∫
DsP(d,γ,s) have to be

calculated to find the MAP estimate γ 
 and its uncertainty �,
given by

∂H(d,γ )

∂γa

∣∣∣∣
γ=γ 


= 0 and
∂2H(d,γ )

∂γa∂γb

∣∣∣∣
γ=γ 


≡ �−1
ab . (38)

By following Ref. [1], but skipping here the full derivation, we
obtain the resulting calibration formula,

γ 
 = �h,

�−1
ab = �−1

ab + tr[(mm† + T D)Mab] and

hb = m†jb − tr[(mm† + T D)Mab] with

T =
{

1 for new selfcal,
0 for classic selfcal. (39)
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Note that the Wiener filter signal estimate m = m(γ 
) and
its uncertainty D = D(γ 
) still depend on the calibration and
thus � of Eq. (39) is not exactly the one of Eq. (38) [1]. For
further details, as well as an extensive discussion of the selfcal
methods, we want to point to Ref. [1].

IV. NUMERICAL EXAMPLE

A. Setup and results

To demonstrate the efficiency of the derived CURE ap-
proach we address the illustrative, simplistic, one-dimensional
example used in Ref. [1] and perform a direct comparison to
the selfcal schemes and MCMC sampling (see, e.g., Ref. [8]).
There, a measurement device with a perfect pointlike response
scans a signal field s over a (periodic) domain � = {x}x =
[0,1) ⊂ R within a time t ∈ [0,1) ⊂ R, but with a time-
dependent calibration uncertainty, given by the calibration
coefficients γt . This instrument exhibits a sampling rate7

of 1/τ = 80 so that the ith data point, measured at time
t = iτ , is related to the signal at position xt = iτ . During
the measurement process spatial and temporal coordinates are
aligned and the data are given by

dt = Rtxsx + nt = (1 + γt )δ(x − xt )sx + nt , (40)

where the signal, measurement noise nt , and calibration
coefficients γt are Gaussian with G(s,S), G(n,N ), and G(γ,�)
the corresponding PDFs with related covariance matrices S,N ,
and �. These are assumed to be known8 and might be described
by their respective power spectra in Fourier space. Following
Ref. [1] we use

Ps(k) = as

[1 + (k/ks)2]2
,

Pγ (w) = aγ

[1 + (w/wγ )2]2
, and

Pn(w) = an. (41)

By Eq. (41) the amplitudes as = σ 2
s λs , aγ = σ 2

γ τγ , and an =
σ 2

n τn with related variances σ 2
s,γ,n and correlation lengths λs =

4/ks , τγ = 4/ωγ , and τn = τ have been introduced. Within the
numerical implementation we use the values σs = 1, σγ = 0.3,
σn = 0.5, λs = 0.3, and τγ = 1.5. This means we get a unit
variance signal with calibration uncertainty of 30% and noise
of 50%, which is still white (percentage values with respect to
the typical signal strength).

Relating to Ref. [1], we also introduce so-called absolute
calibration measurements to have additional information about
the calibration that is beneficial to break the global degeneracy
of the data with respect to signal and calibration variations.
This means, we switch off the signal for four particular times

7Since this work is supposed to be a proof of concept we work with
explicit matrices and tensors, whereby we have to limit the size of the
problem for computational reasons. Further investigations are needed
on how to transform this into a method using implicit tensors, and
therefore suitable for “big data” problems.

8In case they are unknown there exist well-known methods which
are able to extract the correlation structure simultaneously from data;
see, e.g., Ref. [4].

ti ∈ {0,0.25,0.5,0.75}, where the calibration has the strength
c = 4. Here, the data point d ′

ti
is given by

d ′
ti

= (1 + γti )c + n′
ti
. (42)

During these measurements we assume the same noise
statistics as before, n′ ←↩ G(n′,N ).

Including the absolute calibration measurements, the itera-
tive selfcal equations [Eq. (39)] become [1]

γ 
 = �h,

�−1
t t ′ = �−1

t t ′ + σ−2
n δtt ′

(
qt + c2

∑
i

δtti

)
,

ht = σ−2
n

(
dtmxt

− qt + c2
∑

i

δtti d
′
i

)
, and

qt = m2
xt

+ T Dxtxt
with

T =
{

1 for new selfcal,
0 for classic selfcal. (43)

To apply the CURE approach including the absolute calibra-
tion measurements we have to solve the ordinary differential
equation of first order, according to Eq. (33) or Eq. (36), de-
pending on whether the zero-point or reference field expansion
is used. We present here the more general, but more complex,
version of the reference field expansion, Eqs. (35) and (B2),

FIG. 4. (Color online) Calibration reconstructions and related
errors of different approaches using Eq. (43). The terminology used
follows Fig. 3. The gray shaded region represents the 1σ uncertainty
of the CURE method. The reconstruction of the cheat method is not
perfect, because Eq. (43) uses the Wiener filtered data (assuming
the correct calibration, but non-negligible noise). The relatively good
result of the naive method is a pure coincidence.
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because this version is constructed to deal with a larger
uncertainty of the calibration than the zero-point expansion.
To solve Eq. (36) we use the ordinary differential equation
solver of SCIPY [9] with integrator settings: VODE, method =
ADAMS. All numerical calculations have been performed using
NIFTY [10,11].

Figures 3 and 4 show typical results for signal and
calibration reconstruction, respectively.

Figure 5 and Tables I, II, and III show the squared error
averages of the different calibration methods according to
Eq. (44) at a given number of realizations9 for signal and

9Note that for the statistics of 500 realizations we use a four times
coarser sampling rate.

FIG. 5. (Color online) Squared error averages according to Eq. (44) at a given number of realizations for signal (upper panel) and calibration
(lower panel). The best and worst results for signal and calibration yield the cheat and naive methods, respectively. In the signal domain (upper
panel) all three advanced methods are very close to each other, although there is a slight preference for the CURE and selfcal methods followed
by MCMC and classic methods. The results of the naive method are beyond the range of the upper panel. For the inference of calibration
(lower panel) the CURE and selfcal methods perform clearly better than the classic and very similarly to MCMC calculations (see Tables I, II,
and III).
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TABLE I. Squared errors of signal and calibration for all methods,
averaged over 500 realizations; see Fig. 5.

i �s
i �

γ

i

naive 0.1635 0.1968
cheat 0.1300 0.1316
classic 0.1343 0.1873
selfcal 0.1338 0.1637
CURE 0.1338 0.1635
MCMC 0.1342 0.1638

calibration, where the following terminology is used:

�s
i ≡〈(s − mi)

†(s − mi)〉(d,s,γ ),

�
γ

i ≡〈(γ − γi)
†(γ − γi)〉(d,s,γ ),

(44)

where i indicates naive, cheat, classic, selfcal, CURE, or
MCMC, referring to the Wiener filter methods without and
with information about calibration, the classical and new
selfcal schemes, the CURE scheme, and MCMC sampling,
respectively.

B. Discussion

As Figs. 3, 4, and in particular Fig. 5 with the related
Tables I, II, and III illustrate, the CURE and new selfcal
(selfcal) approach prevail against classical selfcal (classic)
and Wiener filtering with unknown calibration (naive) and
perform similarly to the MCMC method. The last represents in
principle the best method by avoiding any approximations, but
it is also the most expensive one. Its small underperformance
in comparison to CURE and selfcal has its origin in using
still insufficient samples for the MCMC chains10 to converge
fully. Increasing their number, however, would increase the
numerical effort significantly.

The upside of CURE is that it is not iterative since it
involves only the solution of a single system of coupled
ordinary differential equations (ODEs). For ODEs, in turn,
there exist a number of numerical solvers with adaptive
step-size control that work well, which might save significant

10For each signal realization we have to run a separate chain. In
the numerical example used in this work, a single chain consists of
2 × 103 independent samples.

TABLE II. Improvements of the methods’ signal squared errors
with respect to the naive method, averaged over 500 realizations.

i �s
naive − �s

i Improvement

naive 0.0000 0.00%
cheat 0.0335 100.00%
classic 0.0292 87.16%
selfcal 0.0297 88.86%
CURE 0.0297 88.66%
MCMC 0.0293 87.46%

TABLE III. Improvements of the methods’ calibration squared er-
rors with respect to the naive method, averaged over 500 realizations.

i �γ
naive − �

γ

i Improvement

naive 0.0000 0.00%
cheat 0.0652 100.00%
classic 0.0095 14.57%
selfcal 0.0331 50.77%
CURE 0.0333 51.07%
MCMC 0.0330 50.61%

amounts of computational time.11 This is, however, only true
if one finds a clever implementation or sparse representation
of �(3), because the term �(3)

yzvDzv required in Eq. (35) might
become a bottleneck within a calculation due to its complex
correlation structure (in contrast to the �(4) term). Another
downside is the higher level of complexity in comparison to
the new selfcal that naturally arises with a renormalization
calculation.

V. CONCLUDING REMARKS

We derived a calibration-uncertainty renormalized estima-
tor method to infer a signal and consequently a calibration
without knowledge of the calibration but of its covariance.
The basic idea of the CURE method is to perform a
perturbation calculation around a reference field, an a priori
determined reconstruction of the signal without knowledge of
the calibration. “Perturbatively” means that we successively
take into account higher-order terms of calibration uncertainty.
In this way, the problem of signal reconstruction without
knowledge of the calibration, which is often solved by iterative
or brute-force sampling methods, becomes a single system of
ordinary differential equations.

We applied the method to a mock example and compared
it against other existent calibration methods. For this example
we found that the CURE method performs extremely similarly
to the new selfcal and MCMC sampling, and clearly beats
the Wiener filter without calibration as well as the classical
selfcal method in terms of reconstruction accuracy. Although
it obviously performs well, a recommendation to favor this
method over the new and classical selfcal methods depends
on the particular problem at hand as well as on the numerical
implementation, as discussed in Sec. IV B. Therefore it serves
as an alternative to them.
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APPENDIX A: FEYNMAN RULES

The Feynman rules originally stated in and inherited from
Ref. [4] read as follows:

(1) Open ends of lines in diagrams correspond to external
coordinates and are labeled by such. Since the partition sum
in particular does not depend on any external coordinate,
it is calculated only from summing up closed diagrams.
However, the field expectation value m(x) = 〈s(x)〉(s|d) =
δ ln[Z(d,J )]/δJ (x)|J=0 and higher-order correlation func-
tions depend on the coordinates and therefore are calculated
from diagrams with one or more open ends, respectively.

(2) A line with coordinates x ′ and y ′ at its ends represents
the propagator Dx ′y ′ connecting these locations.

(3) Vertices with one leg get an individual internal, inte-
grated coordinate x ′ and represent the term jx ′ + Jx ′ − �

(1)
x ′ .

(4) Vertices with n legs represent the term −�
(n)
x ′

1...x
′
n
, where

each individual leg is labeled by one of the internal coordinates
x ′

1, . . . ,x
′
n. This more complex vertex structure, as compared

to quantum field theory, is a consequence of nonlocality in
IFT.

(5) All internal (and therefore repeatedly occurring) coor-
dinates are integrated over, whereas external coordinates are
not.

(6) Every diagram is divided by its symmetry factor, the
number of permutations of vertex legs leaving the topology
invariant, as described in any book on field theory.

APPENDIX B: RENORMALIZATION FLOW EQUATIONS INCLUDING ABSOLUTE CALIBRATION MEASUREMENTS

This section derives the generalization of the renormalization flow equations in the presence of absolute calibration
measurements. These measurements can be included in the prior knowledge of the calibration coefficients, P(γ ) = G(γ −
mγ ,Dγ ), with (mγ )a the Wiener filter solution for γ with uncertainty Dγ using the absolute calibration measurements only.
Hence, the likelihood becomes

P(d|s) =
∫

DγP(d|s,γ )G(γ − mγ ,Dγ ) = G
(

d − Řs,N +
∑
ab

D
γ

abR
ass†Rb†

)
,

Ř ≡ R0 +
∑

a

(mγ )aR
a. (B1)

Compared to the result without measurements of absolute calibration, Eq. (23), the response R and the calibration covariance
have been replaced by Ř and Dγ , respectively. This means that the response became modified by new, additional, information
from the absolute calibration measurements and associated with the uncertainty Dγ , which is not diagonal anymore. The resulting
reference field expansion of the Hamiltonian, Eq. (34), yields the following assignments:

Ď = (S−1 + Ř†N−1Ř)−1, ǰ = Ř†N−1d, m̌ = Ďǰ , Mx̌ ≡ Ř†N−1Rx,

�(1)φ = 1

δt
(m̌†Ď−1 − ǰ †)︸ ︷︷ ︸

=0

φ +
∑
ab

D
γ

ab

{
m̌†Mabφ − 1

2
ja†(φm̌† + m̌φ†)jb − 1

2
m̌†Mǎ(φm̌† + m̌φ†)Mb̌m̌

− 1

2
m̌†Mǎm̌m̌†Mb̌φ + ja†m̌m̌†Mb̌φ + 1

2
ja†(φm̌† + m̌φ†)Mb̌m̌ + 1

2
m̌†Mǎ(φm̌† + m̌φ†)jb

}
,

�(2)[φ,φ] = 1

2

∑
ab

D
γ

ab{φ†Mabφ − ja†φφ†jb − φ†Mǎm̌m̌†Mb̌φ − m̌†Mǎφφ†Mb̌m̌ − φ†Mǎ(φm̌† + m̌φ†)Mb̌m̌

− m̌†Mǎ(φm̌† + m̌φ†)Mb̌φ + ja†(φm̌† + m̌φ†)Mb̌φ + φ†Mǎ(φm̌† + m̌φ†)jb

+ ja†φφ†Mb̌m̌ + m̌†Mǎφφ†jb} + 1 perm,

�(3)[φ,φ,φ] = −
∑
ab

D
γ

ab

{
1

2
φ†Mǎ(φm̌† + m̌φ†)Mb̌φ + 1

2
m̌†Mǎφφ†Mb̌φ + 1

2
φ†Mǎφφ†Mb̌m̌

− 1

2
ja†φφ†Mb̌φ − 1

2
φ†Mǎφφ†jb

}
+ 5 perm,

�(4)[φ,φ,φ,φ] = −1

2

∑
ab

D
γ

abφ
†Mǎφφ†Mb̌φ + 23 perm. (B2)
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