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We introduce variable focused local search algorithms for satisfiabiliity problems. Usual approaches focus
uniformly on unsatisfied clauses. The methods described here work by focusing on random variables in unsatisfied
clauses. Variants are considered where variables are selected uniformly and randomly or by introducing a bias
towards picking variables participating in several unsatistified clauses. These are studied in the case of the random
3-SAT problem, together with an alternative energy definition, the number of variables in unsatisfied constraints.
The variable-based focused Metropolis search (V-FMS) is found to be quite close in performance to the standard
clause-based FMS at optimal noise. At infinite noise, instead, the threshold for the linearity of solution times
with instance size is improved by picking preferably variables in several UNSAT clauses. Consequences for
algorithmic design are discussed.
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I. INTRODUCTION

Focused local search algorithms have been found to be fairly
efficient in solving random instances of the Boolean satisfia-
bility problem (K-SAT), a famous NP-complete problem for
K � 3 [1]. This means that any solution to this problem can be
verified quickly, in polynomial time, but that no efficient way to
find a solution is known. The simplest, but still very interesting,
such algorithm is the one introduced by Papadimitriou in
1991 [2] where variables are flipped randomly, independently,
and at a rate proportional to how many unsatisfied clauses they
each participate in. Randomness and greediness in focused
local search were combined in the Walksat algorithm of
Selman, Kautz, and Cohen [3], and several other variants in
this direction have been developed and investigated [4–9]. A
physics-based outlook on the question of finding solutions
follows from considering K-satisfiability as a diluted three-
spin Ising model with disorder [10,11]. The variables of SAT
formulas are then considered as spins, and the clauses, which
consist each of K literals (i.e., variables or their negations), are
local energy terms. This glassy model has been analyzed by
usual techniques and its phase diagram worked out. However,
focused local search does not obey detailed balance since
all zero-energy states are left unchanged by this family of
algorithms, and equilibrium considerations may therefore not
be very relevant for the behavior or design of such algorithms.
Indeed, it is well known that the equilibrium phase diagram of
random K-SAT does not determine when focused local search
works or does not work, and such information, although very
important in itself, has not given much of a hint on how to
proceed with the development of efficient local algorithms.

In this focused Metropolis search (FMS) and its variants
[6–8] have been a main empirical step forward. These
algorithms display a linear scaling of the solution times
with instance size even in the immediate proximity of the

*remilemoy@gmail.com
†mikko.alava@aalto.fi
‡eaurell@kth.se

SAT-UNSAT transition [6,8], identified by the ratio α = M/N

of the number of clauses M to the number of variables N [12].
Similarly to the Walksat algorithm, focusing on unsatisfied
clauses during the search is an important ingredient of this
success. It is implemented as in Ref. [2], where first a random
choice is made among unsatisfied clauses, and then among the
variables participating in the chosen clause.

Thus in the FMS the rate of picking a variable is not
uniform among the set of variables participating in unsatisfied
clauses, but is biased towards variables participating in many
unsatisfied clauses. In this work, we introduce the symmetric
approach of uniform focusing on variables in unsatisfied
clauses. This is a natural choice since it means a uniform
measure on the subset of spins that contribute to the energy. We
also consider the dynamics of another quantity that describes
the number of variables in unsatisfied clauses.

We investigate the variable-based focused Metropolis
search, i.e., V-FMS, which picks variables in unsatisfied
clauses uniformly. The idea is to explore the difference
of various sampling ideas (clause or variable based). We
test in particular the idea of showing that upon using an
intuitive rescaling of solution times it performs at least as
well as the usual FMS on 3-SAT. We also study an algorithm
which has a larger bias than FMS towards selecting variables
which participate in many unsatisfied clauses: square-focused
Metropolis search (S-FMS) (see also [13]), which picks
variables proportionally to the square of the number of
unsatisfied clauses they participate in.

These variants are also tried in the large temperature limit.
It transpires that there are fundamental differences in the
(empirical) phase space as regards the maximum constraint
density where solutions are found in linear time. The fact
that the kind of sampling is mostly irrelevant for random
3-SAT at optimal noise and a number of other observations
should be of importance for choosing further directions in
statistical physics-based algorithms: their development and
understanding both empirically and theoretically.

The structure of the rest of this work is as follows.
Below, we present in pseudolanguage the variable-based
focused Metropolis search, i.e., V-FMS as an example of
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variable-based focusing. Then, we demonstrate in Sect. III
the differences in the high-temperature behavior. On the other
hand we also show that the algorithm can be compared directly
to the FMS results utilizing earlier data for FMS published
in Ref. [6]. The section also contains several observations
about algorithmic behavior. Section IV finishes the paper with
conclusions.

II. VARIABLE-BASED FOCUSING

In what follows, the state of the system at a given time
is monitored by the number of unsatisfied clauses in the
configuration (i.e., assignment of values to the variables),
which we use as an energy function. It reaches zero only
when a solution is found, and can be used to define an energy
landscape [14] (but see also below). We study the variable-
focusing case with the behavior of the V-FMS algorithm,
presented here in pseudocode:

1: S = random assignment of values to the variables
2: while S is not a solution do
3: V = a variable selected uniformly from those in UNSAT

clauses
4: �E = change in energy if V is flipped in S

5: if �E � 0 then
6: flip V in S

7: else
8: flip V in S with probability η�E

9: end if
10: end while

We also study the square-focused Metropolis search
(S-FMS). Its only difference from V-FMS is that the variable
V in line 3 of the pseudocode is not chosen uniformly from
those in UNSAT clauses, but is selected with a probability
proportional to the square of the number of unsatisfied clauses
this variable is involved in.

We have implemented these algorithms as different search
heuristics in a code derived from Walksat version 45 [3,8,15],
where we have introduced different arrays to keep track of
variables participating in unsatisfied clauses. In this code, η is a
positive parameter which has to be adjusted for optimal search.
Let us point out that since this process does not obey detailed
balance the “energy” E is here just a convenient quantity
to describe the dynamics locally, and may not be a good
descriptor of the global dynamics. In other words, one may
envision other energylike constructions (a global value from
a sum of local contributions) that would be more relevant for
information about the true distance to the ground state from the
viewpoint of algorithmic performance. Instead of E, and given
that V-FMS concentrates on variables, it is an alternative and
natural idea to consider N0, the number of variables involved in
at least one unsatisfied clause (the cardinality of the support set
of the flipping). This quantity also defines an energy landscape
which is zero only at solutions, and could in principle have
qualitatively different properties. One could use this or other
quantities to define the best energy landscapes for the task one
is interested in. The S-FMS algorithm suggests that another
quantity could be instead used as energy function: this quantity,
which we call N2, is the sum over variables of the square of
the number of unsatisfied clauses each variable is involved in.

Note that the corresponding quantity N1 for clause-focusing
(sum over variables of the number of unsatisfied clauses each
variable is involved in) is exactly K × E. We can also note
that these quantities are, for variables in UNSAT clauses, the
first moments of the distribution of the number of unsatisfied
clauses they are involved in, with N0 the “zeroth” moment.

III. ALGORITHMIC PERFORMANCE

A. Role of noise for V-FMS and S-FMS

First we note that the infinite noise limit of the new
algorithms is not the usual random version of WalkSAT,
studied for instance in Refs. [16–19]. Reference [16] shows
that random WalkSAT can solve linearly random 3-SAT
instances up to values of the clauses to variables ratio α

close to 2.7. Figure 1 shows that variable focusing does worse
than that, solving instances linearly up to α = 2.51 ± 0.01.
Square focusing improves on the usual clause-focused random
algorithm and finds solutions to random 3-SAT instances up
to α = 3.09 ± 0.01. This result and similar results obtained
in Ref. [13] show that for easy problems, selecting preferably
variables in many unsatisfied clauses performs better. Refer-
ence [13] also suggests that the behavior of algorithms in the
zero noise limit (i.e., greedy algorithms with different types of
focusing) would also be different.

Next we test the V-FMS and S-FMS against the known
state-of-the-art of the FMS, and we refer in particular to
the work of Seitz et al. [6]. The important issues here from
an empirical perspective are as follows: (i) Are the V-FMS
and S-FMS linear for relatively high constraint-densities α?
(ii) How does the performance depend on the noise parameter
η, i.e., what does the algorithmic landscape look like? Ordinary
FMS is biased towards picking trial variables that are present in
a greater than average number of unsatisfied clauses. If this bias
and the evolution of the set of eligible variables does not matter
at optimal noise, then one should get similar performance out
of V-FMS and S-FMS.
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FIG. 1. (Color online) Plateau energy E/N and fraction of un-
satisfied clauses �u = E/M for the random focused algorithms
(variable-, clause-, and square-focused random algorithms, respec-
tively V-, C- and S-random), as a function of the ratio of clauses
to variables α. Each point is an average over ten simulations with
N = 2 × 105.
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FIG. 2. (Color online) Running times of the local search algorithms. In the left column, running time of the V-FMS (a) and S-FMS (c)
algorithms as a function of the noise parameter η, for different values of α (increasing from bottom to top). Each point presents median and
quartiles for 20 instances, with N = 105. The right column presents these results again, with the same symbols, and superimposes the running
times of the FMS algorithm taken from [6] for the same values of α, but where the noise parameter η has been rescaled by a factor 0.24/0.35
(b) and 0.56/0.35 (d).

Indeed, despite the different sampling rules used for V-
FMS, FMS, and S-FMS, Fig. 2 shows evidence supporting the
idea that the solution times of the three different algorithms
are quite similar, when studied close to their respective optimal
noise parameters. The generic feature is known for local search
with focusing: the effort to solve problems in the median sense
depends on the noise parameter η, or other such parameters of
the algorithm used. There is a minimum solution time for an
optimal noise parameter, and the minimum gets more marked
with the increase of α, as has been reported for the FMS in
the past [6]. The right panel of Fig. 2 shows that a simple
rescaling of the noise parameter (data from Ref. [6]) suffices
to bring the curves of the solution times to fall well on top of
each other. This phenomenon is surprising when considering
the results at infinite noise of Fig. 1. It implies that at optimal
noise, the particular sampling, clause or variable based, is
at most of quantitative importance in solving very difficult
3-SAT problems—a clearer difference might well exist of
course for other test cases, like K > 3 in the SAT class. Let
us note that multiplying the noise parameter η by a constant
a is equivalent to multiplying the energy E by ln ηa/ ln η

in the pseudocode of Sec. II. We can also observe that the
optimal noise is higher in the case of square focusing than
for standard FMS, and is even lower for variable focusing,
since the two first algorithms choose preferably variables
in several unsatisfied clauses, while variables in unsatisfied

clauses are picked uniformly with V-FMS. A more “greedy”
sampling of variables in unsatisfied clauses, in the sense that
variables in many unsatisfied clauses are chosen more often,
is compensated by a higher noise in the flipping rates.

Figure 3 affirms the natural expectation that the solution
time distribution gets more focused around the typical time
value with an increasing instance size, which corresponds to a
typically linear running time of the algorithms. The histograms
start with increasing N to concentrate, albeit slowly, towards a
typical solution time. This concentration of the measure takes
here place for an α close to the maximum value up to which
the local search methods work (linear algorithms have been
reported to perform well at least up to α = 4.23 while survey
propagation finds solutions for α = 4.25).

B. Energy traces

Next we consider the choice of the energy landscape by
investigating the combination of N0 and the energy E. In Fig. 4,
we pick a suitable set of parameters including roughly optimal
noise values for V-FMS, FMS, and S-FMS. We observe that
the three algorithms have close behaviors, but still distinct
energy and N0 traces. This can be related to Fig. 2, where no
difference was seen between algorithms on running times after
the appropriate rescaling of the noise parameter η is made. The
data are presented both in linear and logarithmic time scales
to underline the early time behaviors.
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FIG. 3. (Color online) Cumulative distribution (histogram) of running times of V-FMS (a) and S-FMS (b), with α = 4.2 and η = 0.25 (a),
respectively η = 0.56 (b). Each curve is computed from 100 instances.

The main observation is that energy and number N0 of
variables in unsatisfied clauses have a very similar evolution.
They are almost proportional during most of the search process
evolution, as shown in Figs. 4(c) and 4(d). The proportionality
factor increases first and then saturates to a value slightly below
K = 3, meaning that most variables involved in unsatisfied
clauses are involved in only one of them. This of course
helps to qualitatively understand why the different sampling
does not bring about any major changes in performance
(V-FMS compared to FMS and S-FMS). Note that for all three
algorithms there is a similar transient from the N0/E value of a

random assignment towards the higher value; already roughly
one flip per clause is enough for the transient to get over.

IV. DISCUSSION

We have introduced here algorithms which perform in
the region of large α’s with an optimized noise parameter
in practice as well as the already known focused Metropolis
search (FMS). These algorithms have different picking rates
for variables in unsatisfied clauses, since focusing is defined
differently. They also have different flipping rates, since the
optimal noise parameters are different. It can also be checked

FIG. 4. (Color online) Top panel: average traces, over 20 instances, of the energy E and the number of variables in unsatisfied clauses N0,
for V-FMS (η = 0.23), FMS (η = 0.33), and S-FMS (η = 0.53), with logarithmic (a) and linear (b) abscissa, α = 4.12 and N = 105. Bottom
panel: same results, but showing the evolution of N0/E with logarithmic (c) and linear (d) abscissa.
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that the product of the picking and flipping rates is different.
Thus it is not trivial that these different algorithms have a very
similar performance as the usual FMS with a simple rescaling
of parameters.

The variable focusing shows that one has considerable
freedom in the choice of focused local search algorithms. This
freedom could be used to design successful new algorithms,
for instance in the direction of Ref. [20], or to understand
the properties of the random K-SAT problem. Indeed, this
result can alternatively be seen as a kind of degeneracy of this
problem, as these different algorithms seem to make very little
difference as far as running times are concerned, if parameters
are optimized properly.

We also show that the random (infinite noise) versions of
the algorithms we study perform quite differently on random
3-SAT than the standard random WalkSAT. Choosing with
increased probability variables in many unsatisfied clauses
increases the performance of the random algorithms, so that the
square-focused random algorithm solves instances of random
3-SAT linearly close to α = 3.1. It is peculiar that in this
case the sampling following from variable-based focusing can
shift the algorithmic threshold (of the linear time regime)
noticeably, whereas in the “real applications” case we mostly
concentrate on, this is not the case. A calculation of the
dependence of the linearity threshold by a rate equation
approach [16,17] might reveal whether the tuning by sampling
arises just due to the different flipping rates of variables in the
diverse FMS variants due to the different focusing, or if more
complicated correlations build up.

The idea of variable focusing arises naturally in theoretical
approaches based on describing the algorithm dynamics by a
master equation, since the natural time scale for asynchronous
updates is 1 over the number of variables [13]. Here this idea is
applied only to Metropolis rates, but the concept is general, and
it is not clear whether other focused algorithms, like WalkSAT
or record-to-record travel, would show more interesting or
surprising behaviors than FMS when using other kinds of
focusing, such as variable and square focusing, studied here. It
is not clear either how these results, even for FMS, translate to
higher K , like 4 or 5. This work also questions how “greedy”
focusing should be. When variables in unsatisfied clauses are
picked with a probability proportional to the power b of the
number of unsatisfied clauses they are involved in, only b = 1
was studied in the literature, and we study here b = 0 (variable
focusing) and b = 2 (square focusing) for Metropolis rates.
What are the results when b is strictly bigger than 2, both at
optimal and infinite noise, depending on b? For Metropolis
rates, our results show that the optimal noise increases with
b and that random (infinite noise) algorithms perform signif-
icantly better with increasing b. This suggests that for some
finite value of b, infinite noise might be optimal, and that the

tuning of the noise parameter could be replaced by the tuning
of focusing through b. This would be interesting also because
the random algorithms we consider use less information than
the algorithms with finite noise: they use only the number of
unsatisfied clauses each variable is involved in (“makecount”
in WalkSAT [3]), while finite noise algorithms use also the
number of clauses when each variable is the only one to satisfy
(“breakcount”), in order to compute changes in energy E.

Another point we have raised is that many other quantities
than the conventional “energy” E can be considered to design
efficient local search, and we have pointed out that one natural
such quantity could be N0, the number of variables in unsat-
isfied clauses. Higher moments (in our notation N2,N3, . . .)
of the distribution, for variables in UNSAT clauses, of the
number of unsatisfied clauses they are involved in, could
also be studied. Some such alternative quantities have already
been considered in the past such as “breakcount” (number of
clauses which become unsatisfied if a given variable is flipped)
and “makecount” (number of clauses which become satisfied)
in WalkSAT [3], and the remembered value of a previous
energy minimum in focused record-to-record travel [6]; N0

has however the conceptual advantage that it is simpler and
similarly to E can be naturally extended to a global landscape.
The tests for 3-SAT reveal that V-FMS and S-FMS are in
practice not better or worse than the usual focused Metropolis
search. Tests also revealed that E and N0 are proportional (or
nearly so) after an initial transient, and a value is reached which
indeed indicates that eligible variables tend to partake only in
one unsatisfied clause. Since this is close to the “maximum
efficiency” for the ratio of the two quantities, it is an interesting
question how to find algorithms that differ in this sense, and if
they would be found to be improved over FMS.

The apparent boundary of (typical) linear behavior of fo-
cused local search on random K-SAT is hence approximately
at the same value of α ≈ 4.23 with quite different choices of
local search, as has been found in the past [6], and also for
different kinds of focusing, as found here. Why this is, and if
this boundary is in some sense universal, or if other versions
of focusing can be designed which perform qualitatively
differently, are important challenges for the future.
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RÉMI LEMOY, MIKKO ALAVA, AND ERIK AURELL PHYSICAL REVIEW E 91, 013305 (2015)

2004 Conference (MIT Press, Cambridge, MA, 2005), Vol. 17,
p. 49.

[6] S. Seitz, M. Alava, and P. Orponen, J. Stat. Mech.: Theory Exp.
(2005) P06006.

[7] J. Ardelius and E. Aurell, Phys. Rev. E 74, 037702 (2006).
[8] M. Alava, J. Ardelius, E. Aurell, P. Kaski, S. Krishnamurthy, P.

Orponen, and S. Seitz, Proc. Natl. Acad. Sci. U.S.A. 105, 15253
(2008).

[9] L. Kroc, A. Sabharwal, and B. Selman, in Theory and Appli-
cations of Satisfiability Testing–SAT 2010, Lecture Notes in
Computer Science Vol. 6175, edited by O. Strichman and S.
Szeider (Springer, Berlin, Heidelberg, 2010), pp. 346–351.

[10] O. C. Martin, R. Monasson, and R. Zecchina, Theor. Comput.
Sci. 265, 3 (2001).

[11] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian, J. Stat.
Mech.: Theory Exp. (2008) P04004.

[12] D. Mitchell, B. Selman, and H. Levesque, in Proceedings of
the Tenth National Conference on Artificial Intelligence (AAAI,
San Jose, 1992), pp. 459–465.

[13] R. Lemoy, A. Mozeika, and S. Seitz (unpublished).
[14] F. Krzakala and J. Kurchan, Phys. Rev. E 76, 021122

(2007).
[15] B. Selman and H. Kautz, WalkSAT home page, http://www.cs.

rochester.edu/u/kautz/walksat/.
[16] G. Semerjian and R. Monasson, Phys. Rev. E 67, 066103

(2003).
[17] W. Barthel, A. K. Hartmann, and M. Weigt, Phys. Rev. E 67,

066104 (2003).
[18] G. Semerjian and R. Monasson, in Theory and Appli-

cations of Satisfiability Testing, Lecture Notes in Com-
puter Science Vol. 2919, edited by E. Giunchiglia
and A. Tacchella (Springer, Berlin, Heidelberg, 2004),
pp. 120–134.

[19] A. Coja-Oghlan and A. M. Frieze, in ANALCO (SIAM, Kyoto,
2012), pp. 48–55.
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