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Transport properties of a Bentheim sandstone under deformation
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The mechanical and transport properties of a Bentheim sandstone are studied both experimentally and
numerically. Three classical classes of loads are applied to a sample whose permeability is measured. The
elasticity and the Stokes equations are discretized on unstructured tetrahedral meshes which precisely follow
the deformations of the sample. Numerical results are presented, discussed, and compared to the available
experimental data.
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I. INTRODUCTION

The influence of stress on rock properties is important for
the oil industry for several applications. First, the decrease
of pore pressure during oil production induces significant
modifications of the field stress, which results in an increase
of the compaction which may have an important impact on
the rock microstructures and on their petrophysical properties.
Second, plugs which are cut at large depths are analyzed in the
laboratory where the pressure is significantly less than in place;
this pressure change is likely to have a significant influence on
the rock properties.

The major objectives of this paper is to determine the
geometrical properties, the conductivity and the permeability
of a real sample of Bentheim sandstone whose structure
is determined by computed microtomography (CMT). Then
this sample is subjected to external stresses and the overall
mechanical and transport properties are determined for the
deformed sample.

The literature directly related with this subject can be
summarized as follows. The authors of Ref. [1] conducted
hydrostatic and triaxial compression tests on nominally dry
samples of Bentheim sandstone with a porosity of about
23%. The authors of Ref. [2] measured the ultrasonic P -wave
velocity, the electrical conductivity, and the magnetic suscepti-
bility on Bentheim and Rothbach sandstones. This contribution
was completed by a microstructural analysis of these two
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sandstones [3] which analyzed the anisotropy of elastic and
transport properties in the undeformed materials. The authors
of Ref. [4] developed a novel apparatus capable of simul-
taneously measuring permeability, porosity, and ultrasonic
velocities at hydrostatic pressures up to 100 MPa; they applied
it to Bentheim and Crab Orchard sandstones. The authors
of Ref. [5] proposed an integrated approach based on an
extended rock characterization, an experimental investigation
of pressure dependency of directional rock permeabilities,
and, finally, a pore scale simulation of this dependency using
an equivalent pore network extracted from microtomography
analysis; this was conducted on a high-permeability Bentheim
sandstone and a dual porosity bioclastic carbonate, the
Estaillades limestone having an intermediate permeability.
Regarding the Bentheim sandstone, the same tomographic
data have been used in Ref. [6] to condition other stochastic
reconstruction techniques, by thresholded Gaussian fields or
by penetrable spheres models, and to compare the predicted
properties to those measured in the CMT image.

The present work is an extension of that in Refs. [5,6],
along the same lines as the careful studies conducted by the
authors of Refs. [7,8], who computed the conductivity and
elastic properties of undeformed Fontainebleau sandstones
from tomographic images and compared them to experimental
measurements. Here the microstructural characteristics and
the macroscopic conduction, flow, and elastic properties are
calculated in the undeformed state by solving the local
equations in the discretized samples as they are provided by
CMT; in addition, the flow and elastic properties are calculated
in the deformed state by the same methodology. For these
last two quantities, the numerical predictions are compared
with experimental measurements performed on the same
piece of material. The properties under large deformations
are addressed by imposing successive incremental loads.
The resulting geometrical changes are accounted for by the
progressive deformation of the unstructured tetrahedral mesh,
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which improves on the similar procedure of Ref. [9] for the
mechanical response of fractures where the deformations were
applied stepwise on a regular mesh.

This paper is organized as follows. The numerical method-
ology is briefly presented in Sec. II. The measurement
procedure, which is fully described by Ref. [5], is summarized
in Sec. III. The results are not presented at this stage. The main
ones are introduced later simultaneously with the numerical
results. Application of microtomography to the Bentheim
sandstone is given in Sec. IV where the microstructure is
also characterized. The numerical results and their comparison
to the experimental data are detailed in Sec. V. First, the
conductivity, the permeability, and the mechanical properties
of the undeformed samples are determined; second, the
samples are deformed along various deformation paths and the
last two properties are derived. All the results are compared to
the experimental data and thoroughly discussed.

Finally, some remarks and possible extensions are presented
in Sec. VI.

II. GENERAL

The porous medium is an elastic heterogeneous material
whose precise structure is provided by CMT (cf. Sec. IV).
The cell � is initially divided into N3

c elementary cubes of
size a (also called voxels) which are either fully solid or fully
void denoted by �s and �p, respectively. �p is filled by an
incompressible Newtonian fluid of viscosity μ and electrical
conductivity �o. It should be noted that these elementary
cells do not remain cubic when they undergo deformation
and this necessitates the use of unstructured meshes based on
tetrahedra.

This section is devoted to a summary of the determination
of the mechanical properties, the macroscopic conductivity,
and the permeability of deformed or undeformed materials.
We start with the mechanical properties in order to introduce
the unstructured meshes.

A. Elastic deformations

In the solid matrix �s , the solid displacement us is governed
on the microscopic level by the elastic equation

∇ · σ s = 0 in �s, (1a)

where σ s is the stress tensor; the local deformation tensor e
can be expressed as

e = [∇us + (∇us)
t ]/2, σ s = C{4} : e, (1b)

where C{4} is the solid fourth-order elastic tensor. For isotropic
materials, the expression of the stress tensor reduces to

σ s = λs(
tre)I + 2μse, (1c)

where λs and μs are the Lamé coefficients and I the unit tensor.
The effective macroscopic stress 〈σ s〉 is defined as the volume
average of the local stress over the total volume.

These equations are discretized and solved as follows. Each
elementary cube in the CMT data is discretized by tetrahedra
as shown in Fig. 1. Then the elastic equation is integrated
over elementary volumes surrounding each corner of each
tetrahedron; these volumes are a partition of the solid space

(a)

(b)

(c)

FIG. 1. (Color online) Discretization of the porous medium. (a)
The 3D CMT image of the Bentheim sandstone sample with
5003 voxels of size 6 μm. Each voxel is decomposed into six
identical tetrahedra in order to obtain the structured mesh SCT6;
one tetrahedron is shown in (b) and three of them in (c) where one of
the symmetry planes is visible.

�s . The resulting linear system is solved by a conjugate
gradient technique. Some additional details can be found in
Refs. [10,11]. Of course, after deformation, the coordinates of
the corners of the elementary tetrahedra are no more integer
multiples of the size a of the initial voxels. A check for mesh
intersection is made after application of each incremental
deformation, and the simulation would stop if it occurred.
However, it never does in practice; this would require very
large deformation rates (of the order of unity) or discontinuities
in the deformation field due to the presence of fractures,
for instance. Then the equations are discretized again on the
deformed mesh whenever it is needed.

These calculations were performed in three different cases,
each of them corresponding to an experiment [5]; they are
illustrated in Fig. 2. In the hydrostatic load, equal normal
displacements are imposed on the six faces of the cell [see
Fig. 2(a)]. In the oedometric load, a constant displacement is
imposed on the upper face along the z axis while no normal
displacement is allowed on the opposite face nor on the four
lateral faces, as illustrated in Fig. 2(b). In the last case called
the uniaxial load, a constant displacement is imposed on the
upper face along the z axis while the normal displacement on
lower face is zero; the four lateral faces are completely free
to move. In all cases, the tangential stress is always zero at
all the sample boundaries, except in a variant of the uniaxial
test, where tangential displacements were also prevented at the
lower face.

The various tests give direct access to different macroscopic
elastic moduli. The hydrostatic load provides only the value
of the bulk modulus,

Ke =
tr〈σ 〉
3tr〈e〉 . (2a)
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(a) (b) (c)

FIG. 2. Boundary conditions for hydrostatic (a), oedometric (b), and uniaxial (c) loads. Arrows denote imposed normal displacement and
zero tangential stress. A shaded casing denotes zero normal displacement and tangential stress. Displacement is unrestricted on the faces
without arrows or casing.

The two Lamé coefficients λe and μe can be obtained from
the oedometric test by

λe = 〈σxx〉
〈ezz〉 , μe = 〈σzz〉 − 〈σxx〉

2〈ezz〉 , (2b)

or from similar formula based on 〈σyy〉 instead of 〈σxx〉.
The difference between these two determinations provides a
measure of the degree of anisotropy. Finally, the uniaxial test
yields the Young modulus and Poisson ratio Ee and νe,

Ee = 〈σzz〉
〈ezz〉 , νe = −〈exx〉

〈ezz〉 . (2c)

Again, the difference between the values of νe deduced from
〈exx〉 or 〈eyy〉 measures the sample anisotropy.

The numerical results are normalized by the corresponding
moduli Ks , λs , μs , and Es of the solid material, which has a
Poisson ratio νs = 0.07 representative of quartz. When these
results are applied to a real situation with the same value of νs ,
they should be multiplied by the real corresponding moduli as
it is done for instance in (24).

B. Conduction

The electric terminology is used here, but the following
developments are also valid for thermal conduction and for
diffusion of Brownian particles whose size is small with
respect to a typical pore size. The local flux q is equal to

q = −�o∇ψ, (3)

where �o is the fluid conductivity and ψ is the local
electrical potential. Electrical and thermal conductions are
both governed by a Laplace equation (see Refs. [12] and [13]
where additional details are given) which corresponds to the
conservation of the local electrical flux,

∇2ψ = 0, (4)

together with the no-flux boundary condition at the wall Sp

when the solid phase is assumed to be insulating,

n · ∇ψ = 0 on Sp, (5)

where n is the unit vector normal to Sp.
These equations are solved in cubic blocks of size aNc taken

from the CMT image. When considering conduction along a
direction i = x, y, or z, potentials 0 and �ψ are imposed at the

two opposite faces normal to i, and periodicity is applied along
the two transverse directions. The conductivity coefficient �ii

is deduced from the resulting average electrical flux by

qi = −�ii

�ψ

aNc

. (6)

In the average, for an isotropic random medium, the
conductivity tensor � is spherical and equal to � I . The
formation factor F is generally defined as the inverse of the
dimensionless macroscopic conductivity,

F = �o

�
. (7)

The Neumann problem [(4) and (5)] is solved via a second-
order finite-difference formulation. The resulting set of linear
equations is solved by a conjugate gradient algorithm.

Several boundary conditions combining Dirichlet and
Neumann conditions, periodicity, and insertion of empty layers
have been tested and found to yield nearly equal results for
sufficiently large block sizes, including those considered here.
Only the initial configurations were studied since there is no
experimental data to compare with. Full details are provided
in Ref. [14].

C. Stokes flow

The low-Reynolds-number flow of an incompressible New-
tonian fluid is governed by the Stokes equations,

∇p = μf ∇2v, ∇ · v = 0, (8)

where v, p, and μf are the velocity, pressure, and viscosity
of the fluid. In general, v satisfies the no-slip condition at the
solid walls,

v = 0 on Sp. (9)

For each direction of calculation, the cubic blocks are
supplemented with an empty layer normal to the mean flow
direction, and periodic boundary conditions are applied. A
macroscopic pressure gradient ∇p induces a flow character-
ized by the seepage velocity v which obeys the Darcy law,

v = − 1

μf

K · ∇p. (10)
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Here K is a symmetric tensor that is positive definite. It
only depends on the geometry of the system and thus can
be simplified when the porous medium possesses geometric
symmetries. Its diagonal component Kxx was calculated by
imposing ∇p along the x axis. It is simply denoted by K in
the following.

Two kinds of boundary conditions have been tested, with
either an impermeable casing or periodic conditions in the
directions transverse to the flow. Along the flow direction,
periodic boundary conditions are applied in both cases to
the cubic block supplemented with a free fluid layer. The
two configurations are found to yield nearly equal results
for sufficient large block sizes [14]. Note that the disturbing
effects of the transverse conditions are of a different nature
and of a much milder amplitude than those quantified by
Ref. [15] in permeameter experiments, which resulted from
fluid bypassing around the core and/or rock damage induced
by the coring procedure.

Two numerical solvers of the Stokes equations have been
used which are based on finite volume formulations applied
to unstructured or cubic meshes [11,16,17] depending on the
deformed or undeformed character of the medium. In order
to cope with the continuity equation, the so-called artificial
compressibility method was applied [18]. The solver which
operates on a regular cubic grid is much faster and therefore
it was used for the exhaustive calculations in the very large
number of sub-blocks with size up to 2503 investigated
in the undeformed state. However, since only the solver
based on an unstructured mesh can handle the successive
deformations induced by the incremental loads, it was used
for the investigation of the flow properties under load. For
this reason, and also because the flow calculations have to be
repeated in sequences of successive deformed states, fewer
and smaller samples have been considered.

III. EXPERIMENTAL MEASUREMENTS

The triaxial cell used in this study has been codeveloped
by I.F.P. and ErgoTech. The cell is operated using two high-
pressure pumps to control independently the confining and
axial pressures in the range 3 to 69 MPa. An intermediate
pressure pump generates flows of brine through the core
sample. The pore pressure regulation, up to 25 MPa, is
achieved either by a back-pressure system or by the pump.
The cell is placed inside an oven where the temperature can be
regulated up to 200 ◦C. Care is taken with thermal regulation
of the whole system, critical for accurate measurements of
permeabilities on long periods. All results presented in this
study were obtained at a regulated temperature of 40 ◦C. The
cell is equipped with deformation sensors to measure both
axial and radial strains of the core samples. The displacement
of the upper mobile piston is monitored using a couple
of external linear variable differential transformer (LVDT)
sensors fastened parallel between the two pistons. The radial
deformation of the core is measured using a double cantilever
sensor fastened to the sleeve inside the cell.

The innovative characteristic of the cell is related to the
special equipment of the core sleeve which allows permeabili-
ties measurements in three orthogonal directions. Commonly,
permeability measurement in a triaxial setup is achieved by

FIG. 3. (Color online) Simplified sketch of the directional flow
triaxial cell.

measuring during steady-state flow the differential of pore
pressure between the inlet and the outlet of the sample along
the axial direction, which is also the direction of maximal
stress. In addition, our triaxial setup allows us to measure an
intermediate pressure difference (between two points located
at 1 cm of the core ends) using small fluid samplers in contact
with the lateral surface of the core (items 10 and 11 in Fig. 3), in
order to suppress the possible end effects on axial permeability
measurement [19]. The first permeability measurement Ka,FL

is referenced as the axial full-length, while the second one,
Ka,ML, is referenced as the axial midlength. The core sleeve is
also equipped to measure the permeabilities Kr in two radial
directions along the diameter of the sample. Specific flow ports
are positioned in contact with the lateral surface of the core.
For each radial direction, there is one injector (item 12) facing
one receptor (item 13) along the diameter. For the pressure
difference measurement, we use a set of differential pressure
sensors ranging from ±15 to ±400 mbar adapted to measure
permeabilities of cores of 1 D to 1 mD, respectively.

Compression tests are performed vertically on cylindrical
samples of diameter 38.1 mm and height 80 mm saturated
with NaCl brine at concentration 20 g L−1. First, we apply a
preliminary hydrostatic pressure of few MPa to ensure sealing
of the core sleeve onto the sample and the pore fluid pressure
is increased to 1 MPa using a back-pressure system. At this
point, the oven as well as the pore fluid pump and the flow
lines network are regulated at 40 ◦C. At this prestressed and
equilibrated stage, all displacement sensors are initialized to
zero. Two different stress paths were investigated during our
compression tests; for hydrostatic compression experiments,
we performed the loading by pressure steps towards the
maximum pressure at a constant pore pressure of 1 MPa; for
the “uniaxial” compression tests, the increase of axial stress
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was continuous and the confining pressure was maintained at
3 MPa. At each pressure step, we performed axial and radial
permeability measurements using the steady-state method. For
the two axial measurements, the classical Darcy law (10) is
used. For the two radial measurements, a modified Darcy
law was employed with a correction factor introduced to take
into account the noncylindrical shape of the radial flow lines
between the transverse flow ports of cross section along the
sample diameter D. Details about this correction factor and its
estimation in the present setup are given in Ref. [5].

IV. MICROTOMOGRAPHY AND MICROSTRUCTURAL
CHARACTERIZATION

A. Microtomography

The CMT equipment installed at IFP is a Nanotom from
PHOENIX X-Ray (Germany). The source is generated by the
impact of a focused electron beam on a thin target. Spot
size varies between 1 and 5μ depending on the operating
conditions. The diverging geometry of the x-ray source results
in a magnification of the object image. The detector is a Hama-
matsu flat detector (110 mm×110 mm) made of 2304×2304
pixels, 50μ in size. Generating images using microfocus
computed tomography (CT) starts with the acquisition of
a series of 2D projections while progressively rotating the
sample step by step through a full 360◦ rotation at increments
of less than 1◦. The entire diameter of the sample should
remain within the field of view throughout the entire 360◦
rotation; a 5-mm-diameter sample is completely displayed on
each projection with a pixel size of 3μ.

Acquisition parameters for rock analysis were the fol-
lowing: 5-mm-diameter sample; source object distance,
12 mm; source-detector distance, 200 mm; pixel size, 3μ;
2000×2000 field of view, 90 KV; 170 μA; 0.2◦ angular step;
Cu 0.1-mm filter; and 2.5-h acquisition time. Each acquisition
generates 1800 TIFF projections coded in 12 bits (about 10 Mo
each), which represents about 18 Go per data set. These data
sets are used for the numerical reconstruction of the volumetric
data.

The reconstruction (PHOENIX algorithm) uses a classical
cone-beam Feldkamp algorithm. CMT images are corrected
from beam hardening effect both by using a metal filter
(Cu) and by using a mathematical correction during the
reconstruction process (Phoenix). Because of the relatively
low resolution, it was not found necessary to correct for ring
artifacts.

Reconstructions were performed in 16 bits on a four-
PC cluster of 64-bit dual-core CPUs. The maximum
unit volume which can be reconstructed at full resolu-
tion is 1000×1000×500 (about a 25-min reconstruction).
For each sample, two consecutive high-resolution volumes
(1000×1000×500) are reconstructed and appended to form
the basic 1000×1000×1000 volume on which the analysis
is done. Then subset volumes can be extracted from this
1000×1000×1000 basic volume. In order to reduce their disk
size and allow a larger volume access, the volumes can be
converted into a 8-bit format or/and binned if the full resolution
is not needed.

A single cubic sample of Bentheim sandstone was recon-
structed by means of CMT with two different voxel sizes a

equal to 3 and 6 μm. The two resolutions correspond to cubic
arrays of 10003 and 5003 voxels, respectively. The second case
is illustrated in Fig. 1(a).

The microstructural properties and the transport properties
of the initial configurations have been measured or calculated
in both cases and the results were found to differ only slightly.
For instance, porosity is found equal to 0.232 and 0.240
with the coarse and fine resolutions, respectively. Macroscopic
conductivity and permeability of the initial configurations are
found to be larger by a few percentages when computed from
the (1000×3 μm)3 image. A full comparison is provided in
Ref. [14].

Precision depends on the resolution and on the overall size
of the sample. The influence of resolution is obvious, while
statistical fluctuations decrease with the size of the sample.
In order to have configurations which could be computed in
a reasonable amount of time, a compromise had to be found
between these two parameters. It was decided to maximize
the volume of the computation domains; the coarse image for
the calculations of the elastic response and of the transport
properties under load were used. Therefore, all the results
discussed in the following pertain to the (500×6 μm)3 image.

B. Microstructural characterization

The first important property which can be studied is
porosity, which is defined as the volume fraction of the
interstitial space,

ε = �p

�
, (11)

where �p is the volume of the pore space and � is the total
volume of the sample under consideration.

The overall sample porosity is equal to 0.232, which is
slightly smaller than the measured value 0.244 in the larger-
scale sample used in Ref. [5] for the mechanical tests. The
porosity profiles along the x, y, and z axes are displayed in
Fig. 4. These profiles are seen to be stable, i.e., without any
systematic trend to increase or to decrease.

The CMT image was sliced into smaller cubic blocks of
size N3

c voxels with

Nc = 1,2,4,5,10,20,25,50,100,125,250. (12)

The porosity ε(Nc,i) was systematically calculated for all the
blocks i of size Nc. Of course, the average value 〈ε(Nc)〉 is
independent of Nc, but it is interesting to look at the variations
of its standard deviation σε(Nc) defined by

σε(Nc) =
{

1

N

N∑
i=1

[ε(Nc,i) − 〈ε(Nc)〉]2

}1/2

, (13)

where N is the number of sub-blocks of size Nc. Results are
displayed in Fig. 5 (see also Refs. [20] and [21]). σ 2

ε tends to
ε(1 − ε) as expected for blocks smaller than the correlation
length, of the order of 40 μm [see Eq. (17)], since under this
condition the blocks sample entirely void or solid regions.
The standard deviation decreases for larger block sizes and
approaches the usual dependence on the square root of the
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FIG. 4. Porosity profiles along the x, y, and z directions. The straight lines are the averages over the whole block.

sample size (Nca)3 as a consequence of the law of large
numbers [22],

σε(Nc) ∝ (Nca)−3/2, (300 μm � Nca � 750 μm). (14)

The number of blocks becomes too small for larger sizes to
assess whether the decay of σε slows down, as would occur if
large-scale porosity fluctuations existed.

Histograms of porosity are systematically displayed in
Fig. 6. They are compared to the Gaussian or log-normal
distributions deduced from the measured first and second
moments. Both laws provide a reasonable approximation of
the data set.

The correlation function RZ(u) of the phase function Z(x)
is generally defined as [13]

RZ(u) = (Z(x) − ε)[Z(x + u) − ε]

[Z(x) − ε]2
, (15)

where Z(x) is equal to 1 if the point x belongs to the pore space
and 0 otherwise. u is the lag; the overbar denotes the spatial
average. When the medium is isotropic, RZ(u) only depends
on the modulus u of u. Correlation lengths Lα (α = x,y,z)
can be defined by

Lα =
∫ ∞

0
RZ(uα)duα, (16)

10
1

10
2

10
3

0.01

0.02

0.05

0.1

0.2

0.5

N
c
 a (μm)

ε,
 σ

ε

FIG. 5. (Color online) The porosity ε (◦) and the standard devia-
tion σε(Nc) (�) as functions of the block size Nca (in μm). The thin
straight line is an indication of the slope −3/2 of the power law (14).

where uα is the α component of u (α = x,y,z). Calculations
were performed along the x, y, and z axes for the whole 5003

block. Results are given in Fig. 7. The correlation lengths
expressed in μm are equal to

Lx = 34.7, Ly = 38.5, Lz = 36.5, Lm = 36.6, (17)

whereLm is the average of the three values. A slight anisotropy
can be observed with a longer range correlation along the y

axis. This fact will be confirmed in Sec. V by the anisotropy
of the transport properties.

The hydraulic radius RH is defined as the ratio between the
pore volume �p and the surface S of the interface inside the
same total volume. Therefore, RH is the inverse of the specific
surface. When the medium is discretized by cubic voxels, the
surface is overestimated by a factor 3/2. After correction by
this factor, RH is found to be equal to 16.5 μm.

The skeleton of the pore space can be viewed as a simplified
image of the pore space, analogous to a capillary network. It
is of interest to note that the literature devoted to pore network
models is immense; a recent comparison between this type
of model and the present one was done in Ref. [23]. The
skeleton is determined by a progressive conditional thinning
algorithm [24]. It results in a graph which contains Ne edges
and Nv vertices. Various statistical quantities can be measured
on the skeleton. Let ds denote the distance of a point on the
skeleton to the closest solid. Its minimum re along the edge e

is the critical radius of this edge, i.e., the radius of the largest
sphere that can travel along e. de is the distance between the
end points of the edge e and rv the vertex radius, i.e., the value
of ds at the vertex location. zv is the coordination number of
the vertex v, i.e., the number of edges incident on v.

The following calculations were performed. In order to
illustrate the structure of the sandstone, a 1253 sub-block cut
from the 5003 image and its skeleton are shown in Fig. 8;
they do not present any specific features when compared, for
instance, to the ones given in Ref. [20]. Then a systematic
analysis was performed in a block of size Nc = 250 cut from
the 5003 image and in eight nonoverlapping sub-blocks of size
1233. The corresponding histograms are given in Fig. 9. It can
be noted that the average results for the sub-blocks of size 1233

are very close to the ones for the block of size Nc = 250.
When compared to the corresponding results for a low-

porosity Fontainebleau sandstone (Fig. 12 in Ref. [20]),
the main differences are in the spectra of re, rv , and ds .
The decrease of the distribution of re in the Fontainebleau
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FIG. 6. Normalized histograms of the porosity ε, in blocks of size Nc a = 300 (a), 600 (b), of 750 μm (c). The solid and dash curves are
the Gaussian and log-normal distributions deduced from the measured averages and standard deviations in real and log-spaces.

sandstone was much steeper than here, and the distributions of
rv and ds were monotonously decreasing, while they both have
a maximum at about 15–20 μm in the Bentheim sandstone.
This denotes a larger proportion of bulky cavities in the present
sample, resulting in part from its larger porosity (0.23 versus
0.069). However, the differences are also due to the better
spatial resolution of the present CT image, relative to the
typical pore size quantified by the correlation length, with
a ratio of about 6 to 40 here versus only 6 to 25 in Ref. [20].

Finally, percolation was systematically studied in sub-
blocks of increasing sizes 150, 300, 600, 750, and 1500
μm, cut from the (500×6 μm)3 image. All the sub-blocks
resulting from the partition of the full image were examined,
i.e., 8000, 1000, 125, 64, or 8 sub-blocks, depending on
their size. Percolation was tested between two opposite faces
of the sample, with or without transverse periodicity. In all
cases, a unit percolation probability is obtained for blocks of
600 μm or more, and it is more than 0.99 for blocks of
300 μm. Significantly smaller values (≈ 0.75) are obtained
only for blocks of 150 μm, i.e., about 4 times Lm. This is
a striking difference with the corresponding results for the
low-porosity Fontainebleau sandstone of Ref. [20]. Blocks of
size 4Lm percolated with a probability of only 0.2, and even
with a block size 16Lm, Pp was only about 0.6. This is because
the Fontainebleau sandstone was very close to the percolation
threshold, due to its low porosity 0.069. Therefore, size-effects
were very important. The present Bentheim sandstone with

ε = 0.23 is very far from critical, and any sample reasonably
larger than Lm percolates almost certainly.

V. TRANSPORT AND ELASTIC PROPERTIES

The transport properties are characterized first of the initial
configurations for conductivity and permeability. Then the
elastic response of the material is studied for various kinds of
loads. Finally, permeability in deformed states is considered.

A. Conductivity of the initial configurations

Conductivity was only studied in the undeformed samples
since there is no experimental data to compare with, but a very
complete set of results was obtained. The full conductivity
tensor was calculated for various boundary conditions. It was
systematically determined for the 125 sub-blocks of size 1003,
the 64 sub-blocks of size 1253, and the 8 sub-blocks of size
2503. Overall correlations could be derived as functions of
porosity.

Systematic data related to conductivity are represented
in two different ways. The first way is to gather all the
results obtained for the various directions as functions of
the block sizes as done in Fig. 10(a). Two observations can
be made about this figure. First, conductivity along the y

axis is systematically larger than the two other ones. This
corresponds to a similar observation for the percolation length
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FIG. 7. (Color online) Correlation functions RZ as a function of the lag u in μm along the x, y, and z axes.
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FIG. 8. The pore space in a 1253 sub-block from the 5003 CMT
image (a) and its skeleton (b).

Ly [see Eq. (17)]. Second, the conductivity reaches a nearly
constant value when the sub-block size exceeds 100×6 μm,
with a standard deviation of the trace of the conductivity
tensor smaller than 1%. The conductivity of the whole 5003

sample was also calculated and found to be equal to �/�0 =
0.0647, 0.0731, and 0.0672 along the x, y, and z directions,
respectively.

A second way is to represent the data as functions of
porosity [cf. Fig. 10(b)]. Archie laws can be derived for the
data depending on the size of the blocks,

(Nc = 100) �/�0 = 1.00ε1.81 (6.8%), (18a)

(Nc = 125) �/�0 = 0.96ε1.79 (5.3%), (18b)

(Nc = 250) �/�0 = 0.78ε1.66 (1.7%). (18c)

These fits were obtained by minimizing the relative deviations
between the data and the models. The quadratic mean
deviations are given in parentheses. The fits for Nc = 100
and 125 are very close one to another; the fit for Nc = 250
differs slightly, but it is calculated on eight points only and
over a limited range of values of porosity. A further analysis
of these fits is difficult.

Therefore, these fits should be used with care. They should
not be used outside of the porosity range for which they were
obtained. No straightforward conclusion can be drawn from
the variations of the coefficients.

The conductivity was not measured in Ref. [5], but the
authors of Ref. [2] also investigated a Bentheim sandstone
with porosity 0.245 and reported a formation factor F = 11.5,
i.e., �/�0 = 0.087. This result is shown in Fig. 10(b). It is
in the upper range of the numerical results for (500-μ)3 and
(750-μ)3 blocks.

B. Permeability of the initial configurations

Permeability was calculated for the same set of sub-blocks
as conductivity. Permeability was systematically calculated
along the three directions of space for sub-blocks of various
sizes extracted from the 5003 CMT image. The results in
Fig. 11(a) follow the same trends as those illustrated in
Fig. 10(a) for conductivity. Permeability is found to be larger
along the y axis. It decreases with the block size and reaches a

nearly constant value when the block size exceeds 125×6 μm.
The statistical fluctuations are larger than for conductivity.
The standard deviation of the trace of the permeability tensor
becomes smaller than 1% when the block size exceeds
250×6 μm. Due to the length of the calculations, K was
calculated in the whole 5003 sample only along the x direction.
It was found to be equal to 3.38 D.

The results are displayed as functions of the porosity of the
sub-blocks in Fig. 11(b). Three power laws can be derived for
these data depending on the size of the blocks,

(Nc = 100) K = 275ε2.95 (22.0%), (19a)

(Nc = 125) K = 527ε3.41 (16.0%), (19b)

(Nc = 250) K = 247ε2.86 (3.7%), (19c)

where the permeabilities are given in darcy. Figure 11(b) also
shows the values measured by Ref. [5], Ka,ML = 2.89 Da and
Kr = 2.34 Da. The axial midlength measurement, which is
believed to be the most reliable, is in the lower range of the
numerical results for (500-μ)3 and (750-μ)3 blocks.

Finally, power-law relationships can be given between
permeability and conductivity,

(Nc = 100) K = 322(�/�0)1.69 (16.0%), (20a)

(Nc = 125) K = 604(�/�0)1.93 (12.0%), (20b)

(Nc = 250) K = 365(�/�0)1.71 (2.4%). (20c)

Note that (20) results from a direct fit of permeability
versus conductivity, but the results are close to that obtained
by combining (18) and (19).

The same comments as for conductivity can be made about
these two sets of approximate power laws.

C. Effective elastic coefficients

Note first that in the mechanical tests of Ref. [5], for
both hydrostatic and uniaxial compressions, a nonlinear initial
behavior is observed when the load first increases from zero.
This can result from the closure of microcracks or from the very
compliant Hertzian behavior of quasipunctual grain contacts.
Then a linear regime is established for larger loads, beyond
about 15 MPa. All the measurements reported below are
obtained in this linear range. It extends up to 40 MPa for a
uniaxial load, with failure at 52 MPa. It applies up to the largest
load 65 MPa imposed in the hydrostatic test. Hydrostatic tests
with a similar Bentheim sandstone by the authors of Ref. [1]
showed that the linear behavior extends much farther, with the
onset of crushing and pore collapse at 390 MPa, corresponding
to a volumetric strain about 0.03.

The present numerical simulations do not take into account
the phenomena which cause the initial nonlinear response.
They are more representative of the subsequent linear regime
in a prestressed state which is probably closer to the actual in
situ situation.

A complete series of mechanical tests has been performed
in two 1003 sub-blocks extracted from the 5003 image and
denoted by SB1 and SB2. These tests include the hydrostatic,
oedometric, and uniaxial loads described in Sec. II A, with
an imposed uniform displacement on the sides of the sample
as illustrated in Fig. 2. In addition, hydrostatic tests have
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FIG. 9. Normalized histograms of the critical edge radii re [number-weighted in (a) or length-weighted in (b)], vertex radii rv (c), edge
length de (d), distance to the solid surface ds (e), and coordination number zv (f). Results for the 2503 block (white) cut from the 5003 CMT
image and mean over eight nonoverlapping sub-blocks 1233 (black) cut from the block 2503.

been simulated in eight 2503 sub-blocks cut from the 5003

image. These calculations are much more limited than the
ones performed for conductivity and permeability because of
their duration as mentioned in Sec. IV A.

We only consider here the initial elastic moduli of the
porous medium, i.e., the equations (1) are solved in the
linearized, small deformation approximation. Large deforma-
tions are addressed in the next Sec. V D.

The effective elastic moduli obtained for SB1 and SB2 are
given in Table I. All the moduli are found to be slightly smaller
in SB2, which is expected since its porosity is slightly larger

than that of SB1. However, the uniaxial test yields identical
Poisson ratios for the two samples.

Note that due to their small size, both samples present some
anisotropy. In particular for SB2, the diagonal components of
the stress tensor induced by an isotropic deformation differ by
±4%, and the mean stresses 〈σxx〉 and 〈σyy〉 in the oedometric
test with compression along z differ by 8%. Aside from these
two cases, all the symmetries expected in each load case if
isotropy is assumed are satisfied within a ±1.5% interval.

Table I gives the elastic moduli obtained by (2) from the
sample responses in the three standard mechanical tests and,
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FIG. 10. (a) The conductivity vs. the size of the sub-blocks cut from the 5003 CMT image, along the x, y, and z directions (◦) and in
average over the three axes (•). (b) The conductivity averaged over the three directions as function of porosity. Data are for Nc = 100 (�), 125
(◦), and 250 (�). The dash-dotted, broken, and solid lines, respectively, are the corresponding power laws (18). The black cross corresponds to
the measurement of Ref. [2].

for illustration, the values of the Ke, Ee, and νe deduced from
the Lamé coefficients if isotropy is assumed. Small differences
are observed which never exceed 5%.

Of course, statistical uncertainty is also associated with this
limited size, and the results for SB1 and SB2 should only be
regarded as general trends. Simulations on larger samples have
been conducted for the hydrostatic test, by splitting the 5003

sample into eight 2503 sub-blocks.
The resulting effective bulk moduli are plotted in Fig. 12

as functions of the porosity. The average value of Ke is 0.499
Ks with fluctuations linearly related to the deviations of the
sub-block porosities from the overall block porosity,

Ke

Ks

≈ 0.50 − 1.7(ε − 0.232). (21)

This linear relationship can be used to predict the fluctuations
of Ke on a millimetric scale, induced by the porosity fluctua-
tions which have been quantified in Sec. IV B (see Fig. 5).

It is interesting to compare this result with classical
variational bounds. The best possible bounds for the bulk
modulus of composite media have been established by Hashin
and Shtrikman [25] when isotropy is assumed and the only
available geometrical knowledge is the porosity. Higher-order
and tighter bounds can be stated when additional morpho-
logical information is used, such as those formulated by
Milton [26]. When the material is composed of a solid and
a void phase, the lower bound vanishes and the upper bound
is given by

Ke

Ks

� 1 − ε

1 + 1+νs

2(1−2νs )
ε

1−ζ

, (22)

where ζ is a structural parameter. Hashin and Shtrikman’s
upper bound is obtained by setting ζ = 0.

Visual examination of Fig. 1(a) suggests that representing
the solid phase by randomly located fully penetrable spheres
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FIG. 11. (a) The permeability vs. the size of the sub-blocks cut from the 5003 CMT image, along the x, y, and z directions (◦) and the
average over the three directions (•). (b) The permeability averaged over the three directions as a function of porosity. Data are for Nc = 100
(�), 125 (◦), and 250 (�). The dash-dotted, broken, and solid lines, respectively, are the corresponding power laws (19). The black crosses
correspond to the measurements of Ka,ML and Kr by Ref. [5].
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TABLE I. The main characteristics of sub-blocks SB1 and SB2.
Their size, porosity, and effective transport coefficients; their effective
elastic moduli obtained as stated in Eq. (2), and for Ke, Ee, and νe,
as deduced from the Lamé coefficients λe and μe obtained by (2b).

SB1 SB2

Size 100×6 μm 100×6 μm
ε 0.226 0.233
�/�0 0.069 0.074
K (Da) 2.75 3.29
Ke/Ks from (2a) 0.517 0.500
Ke/Ks from (λe,μe) 0.508 0.476
Ee/Es from (2c) 0.461 0.430
Ee/Es from (λe,μe) 0.468 0.442
νe from (2c) 0.099 0.099
νe from (λe,μe) 0.104 0.101
λe/λs from (2b) 0.729 0.669
μe/μs from (2b) 0.454 0.429

is a reasonable tentative model. It indeed proved successful
in reproducing the transport and mechanical properties of
the real material when applied with a polydisperse grain size
distribution [6]. However, we use here the parameter ζ ≈ 0.54
for monodisperse spheres obtained by interpolation from the
tabulated values of Ref. [27]. After linearization in the present
range of porosity, Hashin and Shtrikman’s and Milton’s upper
bounds read

Ke

Ks

� 0.67 − 1.24(ε − 0.232) (ζ = 0), (23a)

Ke

Ks

� 0.585 − 1.36(ε − 0.232) (ζ = 0.54). (23b)

The numerical result (21) conforms with these theoretical
predictions. Ke is smaller than these bounds, and its depen-
dence on porosity is steeper but as is often the case the upper
bound is a reasonable first guess for the elastic coefficient,
especially when the variational argument is combined with
the penetrable sphere geometrical model.
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0.46

0.48

0.5

0.52

0.54

ε

K
e / 

K
s

FIG. 12. The initial bulk modulus in hydrostatic compression for
the 8 sub-blocks 2503 of the 5003 CMT image, as a function of
porosity. The broken line corresponds to the linear fit (21).

Let us finally compare these numerical results with the
experimental measurements. This requires the knowledge of
the solid bulk modulus Ks , which is not reported in Ref. [5] but
can be found in Ref. [28]. It was deduced from the combination
of tests where the pore and confining pressures were varied
independently, which yielded

Ks = 16.2 GPa, Ke = 6.96 GPa, Ke/Ks = 0.430. (24)

The ratio Ke/Ks is 10% smaller than predicted by the
application of (21) with the porosity 0.244 of the sample in
Ref. [28], which yields 0.479.

Consider now the data deduced from the uniaxial tests.
The value of Ks in (24) together with the Poisson ratio
νs = 0.07 used in the numerical calculations correspond to
a Young modulus Es = 41.8 GPa. Hence, the results in Table I
yield Ee = 18 − 19 GPa, which is significantly larger than the
measured value 10.3 GPa [5]. Conversely, the Poisson ratio
νe ≈ 0.1 is much smaller than the measured value ≈0.2.

These discrepancies can originate in the value of the solid
Poisson ratio adopted in the numerical model. We have no
direct indication of this parameter in the real material. The
value νs = 0.07 corresponds to α quartz [29]. It is anomalously
low compared to other minerals whose ratios are generally
of the order of 0.2, but this peculiarity is well known (see,
e.g., Refs. [30,31]). The response in a hydrostatic test is only
weakly sensitive to νs , in terms of Ke/Ks , and even totally
unsensitive in the case of an unconsolidated granular material,
which explains the relatively good agreement of (21) and (24).

Conversely, the response to uniaxial load is obviously much
more sensitive to the solid Poisson ratio. If νs is tentatively
set to 0.2 while keeping Ks = 16.2 GPa, Es = 29.2 GPa
and Ee becomes 13 GPa, in much better agreement with the
measurement. But, of course, this is only a gross corrective
action, since an exact prediction requires us to solve the local
equations (1) again with the modified Poisson ratio.

D. Properties of the deformed samples

We consider here the changes in the material properties
induced by a mechanical load for larger deformations. The
first and most obvious ones are the volume changes of the
solid and void spaces and the porosity variations. We also
consider the modifications of the permeability. Both effects
are of primary importance for hydromechanical coupling. In
addition, we quantify the variations of some of the elastic
properties of the porous medium beyond the small deformation
regime.

Performing conductivity calculations in the deformed state
was not found to be useful since there were no experimental
data to compare with.

In order to achieve large deformations, successive incre-
mental steps of small deformations are applied. Hence, the
elastostatic equations (1) can still be linearized, provided
that they are discretized on a deformed mesh, which takes
into account the displacements caused by previous steps.
These calculations have been performed for the three kinds
of loads, in the sub-blocks SB1 and SB2, with five successive
increments of 0.5% deformation.
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FIG. 13. (Color online) The volume changes δ�B (black, solid line), δ�s (red, dash-dotted line), and δ�p (blue, dashed line) normalized
by �0

B in SB1 (a) and the variations of the porosity in SB1 (solid lines and symbols) and SB2 (broken lines and open symbols) (b) as functions
of eT . Data are for isotropic deformation (◦), oedometric test (�), and unaxial test (�). The thick red lines in (b) show the slope of the fit (37)
of the experimental data in Ref. [5].

1. Volumes and porosity

Let us introduce first some notations. Recall that the bulk
volume �B of the porous medium is decomposed into the solid
volume �s and the pore volume �p. Their initial values are
denoted by a superscript 0, and their variations induced by
a deformation are denoted by δ�. For instance, �p = �0

p +
δ�p. Moreover, define eT as the trace of the strain tensor

eT = 〈exx〉 + 〈eyy〉 + 〈ezz〉. (25)

For later use, define in a similar way σT as the trace of the
stress tensor. If the deformations are small, eT represents the
relative variation of the bulk volume,

δ�B

�B

= (1 + 〈exx〉)(1 + 〈eyy〉)(1 + 〈ezz〉) − 1

≈ 〈exx〉 + 〈eyy〉 + 〈ezz〉 = eT . (26)

Note that the simulations have been conducted with compres-
sive deformations. Hence, eT , σT , and the volume variations
are all negative. For readability, their absolute values are
plotted in the following figures.

The volume variations δ�B , δ�s , and δ�p normalized
by �0

B are plotted in Fig. 13(a) as functions of eT for the
three kinds of tests in SB1. A similar picture is obtained
when considering SB2. The results for all the tests are
approximately gathered along single curves. A slight negative
inflection of these curves is visible beyond eT ≈ 0.03, when
the approximation (26) becomes inaccurate. The solid and
pore volumes vary by very similar amounts. Since �0

s and
�0

p different so much, this means that their relative variations
differ. It is therefore natural to examine the porosity variations.

The evolution of ε with eT is shown in Fig. 13(b) for the
three tests in SB1 and SB2. The porosity decreases linearly
with eT , according to

δε = 0.262 eT (SB1), δε = 0.274 eT (SB2), (27a)

δε = 0.274 eT (SB1), δε = 0.300 eT (SB2), (27b)

δε = 0.291 eT (SB1), δε = 0.318 eT (SB2), (27c)

for the isotropic, oedometric, and uniaxial deformations,
respectively. The correlation coefficient is larger than 0.999
95 in all cases.

Recall that for small isotropic deformations, the porosity
increment induced by a macroscopic strain with trace eT is

δε =
(

1 − ε − Ke

Ks

)
eT . (28)

This is the application of Eq. (28) of Ref. [32] to a dry porous
medium with uniform solid properties, expressed in terms of
the macroscopic strain instead of the confining pressure. This
result is valid for any linearly elastic porous medium. This
yieds 0.257 and 0.267 with the values of ε and Ke in Table I for
SB1 and SB2, respectively, in very good agreement with (27a).
The slight differences result from the finite size of the samples,
which make their elastic coefficients apparent rather than
effective. When applied with the overall porosity ε = 0.232
and the bulk modudus Ke/Ks = 0.50 [see Eq. (21)], (28)
yields

δε = 0.268 eT . (29)

This is also a good prediction of the numerical results (27a).
Note that (28) is also valid for any anisotropic deformation,

provided that the porous medium elastic properties are macro-
scopically isotropic and the results [(27b) and (27c)] are indeed
close to (29). However, the slightly larger porosity variations
in the oedometric and uniaxial tests can be explained by use
of a stronger form of (28) presented below.

The porosity variation is given by

δε = �p

�B

− �0
p

�0
B

= δ�p

�B

− ε0 δ�B

�B

≈ δ�p

�0
B

− ε0 δ�B

�0
B

, (30)

where the last form is the first-order approximation for small
deformations. The last term in (30) is exactly ε0eT . If the solid
material has uniform properties, it can be shown by application
of the Maxwell-Betti reciprocal theorem and by superposition
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arguments that

δ�p

�0
B

=
[

I − 1

3Ks

〈σ 1〉
]

: 〈e〉, (31)

where 〈σ 1〉 is the mean stress tensor resulting from a unit
spherical strain of the porous medium. Hence, for small
deformations

δε =
[

(1 − ε0)I − 1

3Ks

〈σ 1〉
]

: 〈e〉. (32)

Equations (31) and (32) are strong and general results, whereby
the porosity change under an arbitrary strain can be deduced
from the stress response under a hydrostatic load, without any
hypothesis aside from the uniformity of the solid properties.
If the medium is macroscopically isotropic, 〈σ 1〉 = 3KeI
and (32) reduces to (28).

The values of 〈σ 1〉 obtained numerically in SB1 and SB2
are

〈σ 1〉 =
⎛
⎝ 1.571 −0.021 −0.001

−0.021 1.561 −0.031
−0.001 −0.031 1.523

⎞
⎠ Ks (SB1),

〈σ 1〉 =
⎛
⎝ 1.531 0.014 −0.000

0.014 1.539 0.021
−0.000 0.021 1.428

⎞
⎠ Ks (SB2). (33)

Direct application of (32) with (33) to the oedometric test
where 〈exx〉 and 〈eyy〉 are imposed to be zero yields

δε = 0.266 eT (SB1), δε = 0.291 eT (SB2). (34)

This is in good agreement with (27b). In particular, in the most
anisotropic sample SB2, both (27b) and (34) predict a response
9% larger in the oedometric test than in the isotropic load. The
success of this comparison is an important conclusion since
in situ deformations induced by surface loads or subsidence
are likely to occur with 〈exx〉 ≈ 〈eyy〉 ≈ 0. Note that only the
knowledge of the zz component of 〈σ 1〉 is required in this
situation.

Application of (32) is less straightforward for the uniaxial
test since 〈exx〉 and 〈eyy〉 are not known a priori. However,
the knowledge of the effective Poisson ratio νe can be used to
circumvent this, since the mean strain tensor is given by

〈e〉 =
⎛
⎝−νe/(1 − 2νe) 0 0

0 −νe/(1 − 2νe) 0
0 0 1/(1 − 2νe)

⎞
⎠ eT .

(35)

This yields eventually for the uniaxial test, with νe = 0.10
(see Table I),

δε = 0.270 eT (SB1), δε = 0.300 eT (SB2). (36)

The agreement with (27c) is slightly less accurate than for the
oedometric test, since (36) predicts a response in SB2 larger
by 12% than for an isotropic load, instead of 16% in (27c), but
the trend is clearly captured.

Let us now compare these results with the experimental
measurements of the porosity variations under load. Data are
available in Ref. [5] only for the hydrostatic test. It should
be noted that the porosity changes are quantified in Ref. [5]

by dividing the pore volume change by the initial sample
volume, whereas we evaluate it here from the actual pore
volume fraction in the current sample volume [see Eq. (30)].
Therefore, the data of Ref. [5] have been reprocessed to allow
a direct comparison. A linear fit of the data in the range 15–65
MPa (i.e., |eT | > 0.0044) yields

ε = 0.241 − 0.285(|eT | − 0.0044). (37)

The comparison is very satisfactory since the coefficients in
the numerical results (27a) and in the prediction (29) differ
only by a few percentages from that in (37). The slope of the
dependence in (37) is indicated in Fig. 13(b) in comparison
with the numerical results.

2. Permeability

The permeability has been calculated in SB1 and SB2
for 0.5%, 1%, and 2% deformation rates in hydrostatic,
oedometric, and uniaxial tests. The Kxx component was
calculated in all cases. Kzz was also calculated for the uniaxial
load.

It was checked that in the investigated range the calculated
permeability is not sensitive to the nonlinearity introduced
by the nonvanishingly small deformations. For instance, the
permeabilities in SB1 isotropically deformed by 2% (eT ≈
0.06) either in a single step or by successive increments differ
by less than 0.1%.

The results are presented in Fig. 14 as functions of
the porosity and of the strain eT . Note that Kzz of the
initial configurations is larger than Kxx . Hence, the two
sub-blocks present the same permeability anisotropy as the
whole sample [see Fig. 11(a)]. Nearly linear decreases are
observed in all cases. The evolution of Kxx is almost identical
in the hydrostatic and oedometric compressions [Fig. 14(a)].
However, Kxx and especially Kzz decrease faster with eT in
the uniaxial test. This difference is slightly lessened in the plot
as a function of ε in Fig. 14(b), because ε also varies faster in
the uniaxial test than in the two other ones [see Eq. (27)], but
it is still significant.

A rough modelization of the permeability variations is
possible by using the relationship (19) between K and ε and by
combining it with the prediction (29) of the porosity increment
induced by the strain. We choose here (19b), which is based
on a data set larger than that for the 2503 sub-blocks and less
scattered than that for the 1003 sub-blocks [see Fig. 11(b)].
This yields

δK

K
= 3.31

δε

ε
= 0.890

ε
eT . (38)

These predictions are plotted in Fig. 14 and found to be in
surprisingly good agreement with the numerical data for the
hydrostatic and oedometric loads. The model is less successful
in representing the steeper variations of the permeability in the
uniaxial test, especially for Kzz.

It is difficult to assess whether this is due solely to the
anisotropy of the macroscopic deformation in this particular
test or also to its interplay with the anisotropy of the
medium itself, which has been detected in the foregoing
in its geometrical and transport properties. More extensive
calculations as well as a local morphological analysis of the

013304-13



L. JASINSKI et al. PHYSICAL REVIEW E 91, 013304 (2015)

0 0.02 0.04 0.06
1.5

2

2.5

3

3.5

|e
T
|

K

(a)

0.21 0.215 0.22 0.225 0.23 0.235
1.5

2

2.5

3

3.5

ε

K

(b)

0 0.005 0.01 0.015 0.02 0.025
0.88

0.9

0.92

0.94

0.96

0.98

1

|e
T
|

K / K
0

(c)

FIG. 14. (Color online) The permeability K in darcy in SB1
(solid lines and symbols) and SB2 (broken lines and open symbols)
as a function of the strain eT (a) and of the porosity ε (b), and the
permeability normalized by its value at rest K/K0 as a function of
the strain eT (c). Numericad data are for isotropic deformation (◦),
oedometric test (�), and unaxial test along the x (�) and z (∇)
directions. The red broken lines are the predictions (38). The solid
blue lines in (c) correspond to (40).

pore space deformations are required to tackle this interesting
question.

Note finally that the success of the fits (19) in accounting for
the permeability variations under strain is by no means obvious
and possibly fortuitous. They represent spatial variations

which originate in some kind of geometrical fluctuations,
probably in most part in varying degrees of consolidation with
possible impact on the connectivity of the pore space. On the
other hand, porosity varies under strain in a different way;
for instance, a moderate compression does not affect the pore
space connectivity.

For a comparison with the experimental measurements, we
use the most reliable and best documented data available in
Refs. [5,28]. A definite linear decay of the axial permeability
Ka,ML was observed during the hydrostatic compression, but
the evolution of the radial permeability Kr was unclear,
because of fluctuations. During the uniaxial test, only the full
length axial permeability Ka,FL was measured, but it is less
reliable than Ka,ML because of end effects. However, a linear
decay of Kr was clearly identified. The two best data sets can
be represented by the fitted relationships

Ka,ML = 2.89 [1 − 0.82 P ] (hydrostatic), (39a)

Kr = 2.15 [1 − 1.2 P ] (uniaxial), (39b)

where permeability is expressed in darcy and the applied load
P in GPa. Note that the value 2.15 Da of Kr from the value
2.34 mentioned earlier because the uniaxial test was conducted
after the sample had undergone other load cycles.

Again, the comparison with the numerical calculations is
made in terms of the permeability variations as functions of the
volumetric strain instead of the applied load. Therefore, (39)
is reformulated as

Ka,ML = 2.89 [1 − 4.4 |eT |] (hydrostatic), (40a)

Kr = 2.15 [1 − 19 |eT |] (uniaxial). (40b)

These fits are compared to the numerical data in Fig. 14(c).
Note that the lines representing (40) are drawn over the
actual range of imposed deformation in the experiments. The
agreement is excellent for the hydrostatic load. Conversely, it is
very poor for the uniaxial load. The calculations underpredict
by a factor of about 3 the permeability decrease. Again, this can
be a consequence of an erroneous Poisson ratio for the solid
material, which directly affects the deformation and therefore
the permeability response under uniaxial load. This might
also be due to a possible degradation of the sample since the
uniaxial test was conducted after the others.

3. Elastic coefficients

The variations of the elastic coefficients beyond the small
deformation range have not been investigated in depth, because
even with the very large deformation rates applied here which
cannot be performed experimentally without breaking the
sample, these variations are found to be very small. Hence, the
geometrical effect is probably negligible in practice, compared
to other more important sources of nonlinearity which occur
much sooner, such as nonlinear point contact behaviors,
damage, or the onset of plasticity, which are not accounted
for in the present model.

We provide a single example regarding the isotropic strain
and the bulk modulus. The trace σT of the stress tensor is
plotted in Fig. 15(a) as a function of eT for SB1 and SB2. There
is a slight negative inflection to the curves, but it is barely
visible. It is more easily quantified in the plot in Fig. 15(b)
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FIG. 15. The trace σT /Ks of the stress tensor (a) and the bulk modulus Ke/Ks (b) in successive deformed states as functions of eT for an
isotropic compression in SB1 (solid lines and symbols) and SB2 (broken lines and open symbols).

of the ratio δσT /3δeT Ks which corresponds to the value of
Ke/Ks in the successive deformed states. It only increases by
1.8% and 1.6% in SB1 and SB2, respectively, between the
initial configuration and the last one with eT ≈ −0.06.

Note that the naive argument which combines the depen-
dence (21) of Ke on the porosity and the variation (29) of
ε with the strain eT overestimates the variations of Ke by a
factor of about 3. This is because (21) corresponds to the strong
dependence of Ke on the consolidation, which strengthens the
grain contacts, whereas the strain which induces the porosity
variations described by (29) has no such effect.

No quantitative comparison can be made here with exper-
imental data. Although a slight increasing trend of the bulk
modulus under load seems to exist, it is difficult to quantify.

VI. CONCLUDING REMARKS

The properties of the initial configurations and under load
of a Bentheim sandstone sample have been investigated by
direct numerical simulations based on a microtomographic
image of its microstructure. The use of unstructured tetrahedral
meshes which can follow continuously the deformation of the
medium is a significant improvement on the fixed cubic voxels
which were used in Ref. [9] for the mechanical deformation of
fractures. When addressing large deformations, the elasticity
and the Stokes equations are solved on the progressively
deformed tetrahedral meshes corresponding to successive
incremental loads. This results in a significant improvement of
the precision.

The comparison of the numerical results with the available
experimental data is very good for isotropic loads. They repro-
duce well the behavior observed experimentally in the linear
elastic range beyond the initial very compliant deformation
when the load first increases from zero, i.e., in the prestressed
state which probably corresponds to the in situ conditions.
The results are also in good agreement with the applicable
theoretical predictions.

This comparison is less satisfactory for the oedometric and
uniaxial loads. This probably results in great part from the
uncertainty about the Poisson ratio of the solid material, which

has a greater influence on the mechanical response in these
situations than in hydrostatic deformations.

The direct resolution of the governing microscale equations
in the real sample geometry imaged by CMT can be tenta-
tively regarded as a reference for the assessment of various
conceptual models intended to mimic the properties of the
real material. Table II compares various quantities as obtained
from experiments, from the present direct simulations, and
from several models. In three of them [6], numerical samples
are reconstructed either by random insertion of penetrable
spheres with a polydisperse size distribution conditioned in
two different ways by measured geometrical characteristics
(PSMg and PSMR) or by thresholding a random Gaussian field
generated according to the measured two-point correlation
function (TGF). In the last one (PNM), a pore network model
is built, deduced from the skeleton of the pore space extracted
from the CMT image, and composed of pores separated by
throats [5].

Comparison of the numerical and experimental results
should be taken with caution, since the experiments have been
conducted with different or larger rock samples. However,
the same CMT image has been used for the present direct
simulations and for the conditioning of all the numerical
models.

TABLE II. The conductivity, permeability, effective bulk modu-
lus, porosity and permeability decrease coefficients under isotropic
load, as determined from experiments [2,5], by direct simulations
in the CMT image, by direct simulations in samples reconstructed
by use of two penetrable sphere models and thresholded Gaussian
fields [6] and by calculations in pore network models [5].

�/�0 K (Da) Ke/Ks δε/eT δK/KeT

Experiments [2,5] 0.087 2.9 / 2.3 0.430 0.285 4.4 / 19
CMT 0.069 3.7 0.499 0.268 3.8
PSMg [6] 0.078 4.2 0.433 0.349 —
PSMR [6] 0.074 4.3 0.456 0.321 —
TGF [6] 0.036 2.2 0.580 0.197 —
PNM [5] — 0.87 — 0.156 3.9
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The two PSM models are nearly equivalent and slightly
overestimate the conductivity and permeability of the initial
configurations, while they underestimate the bulk modulus
and therefore exaggerate the porosity variation induced by
an isotropic load. TGF model has just the opposite behavior.
These two classes of models bracket the truth, possibly because
TGF ignores the underlying granular nature of the sandstone,
while PSM does not explicitly account for consolidation. The
pore network model PNM is only intended to represent the
flow properties. Thus, only its prediction for permeability

can be compared, and it is significantly smaller than all
other predictions or measurements. However, the relative
permeability decrease due to isotropic compression is in good
agreement with the results of the present direct calculations
and with the measurements in the axial direction.
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