
PHYSICAL REVIEW E 91, 013301 (2015)

Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows
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In this study, the Chebyshev collocation spectral lattice Boltzmann method (CCSLBM) is developed and
assessed for the computation of low-speed flows. Both steady and unsteady flows are considered here. The
discrete Boltzmann equation with the Bhatnagar-Gross-Krook approximation based on the pressure distribution
function is considered and the space discretization is performed by the Chebyshev collocation spectral method to
achieve a highly accurate flow solver. To provide accurate unsteady solutions, the time integration of the temporal
term in the lattice Boltzmann equation is made by the fourth-order Runge-Kutta scheme. To achieve numerical
stability and accuracy, physical boundary conditions based on the spectral solution of the governing equations
implemented on the boundaries are used. An iterative procedure is applied to provide consistent initial conditions
for the distribution function and the pressure field for the simulation of unsteady flows. The main advantage of
using the CCSLBM over other high-order accurate lattice Boltzmann method (LBM)-based flow solvers is the
decay of the error at exponential rather than at polynomial rates. Note also that the CCSLBM applied does not
need any numerical dissipation or filtering for the solution to be stable, leading to highly accurate solutions.
Three two-dimensional (2D) test cases are simulated herein that are a regularized cavity, the Taylor vortex
problem, and doubly periodic shear layers. The results obtained for these test cases are thoroughly compared
with the analytical and available numerical results and show excellent agreement. The computational efficiency
of the proposed solution methodology based on the CCSLBM is also examined by comparison with those of the
standard streaming-collision (classical) LBM and two finite-difference LBM solvers. The study indicates that the
CCSLBM provides more accurate and efficient solutions than these LBM solvers in terms of CPU and memory
usage and an exponential convergence is achieved rather than polynomial rates. The solution methodology
proposed, the CCSLBM, is also extended to three dimensions and a 3D regularized cavity is simulated; the
corresponding results are presented and validated. Indications are that the CCSLBM developed and applied
herein is robust, efficient, and accurate for computing 2D and 3D low-speed flows. Note also that high-accuracy
solutions obtained by applying the CCSLBM can be used as benchmark solutions for the assessment of other
LBM-based flow solvers.
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I. INTRODUCTION

Over the past two decades, there has been rapid progress
in developing and employing the lattice Boltzmann method
(LBM) as an alternative computational fluid dynamics ap-
proach for simulating complex flows (see, for example,
Refs. [1–6]). An alternative to the lattice-gas automata for
studying hydrodynamic properties was introduced in Ref. [1]
in which the lattice gas is modeled by a Boltzmann equation.
In [2] it was shown that the lattice Boltzmann (LB) equation
can provide a convenient alternative to the direct simulation
of cellular automata microdynamics. This was one of the
early efforts in applying LBM as an alternative solver for the
conventional computational fluid dynamics (CFD) methods.
An efficient strategy was proposed in Ref. [3] for the construc-
tion of appropriate collision operators, to be implemented in
a simplified version of the LB equation to make the LBM
competitive in the CFD area. More details on the basic
elements of the LB equation can be found in Refs. [4,5]. The
application of the LBM to simulate rarefied gas dynamics was
made in Ref. [6].

The LBM has several advantages over other conventional
CFD methods, especially in dealing with complex boundaries,
incorporating microscopic interactions, and efficient paral-
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lelizing of its solution algorithm. The conventional LBM may
not be suitable for problems with large pressure gradients
because of the compressibility error [7]. Efforts to reduce
the compressibility error in the incompressible form of the
LBM are categorized in two different approaches: density-
based methods [8–10] and pressure-based methods [11–14].
Density-based methods are appropriate for multicomponent
or multiphase flows while pressure-based methods strictly
solve the pressure variable and recover the incompressible
Navier-Stokes equations.

Despite the increasing popularity of the LBM in simulating
complex fluid systems, this approach has some limitations
too. The standard LBM with the Bhatnagar-Gross-Krook
(BGK) approximation is restricted to the use of uniform
Cartesian grids with equal spacing that limit its applications to
solve practical engineering problems. Inherent instability for
simulating high-Reynolds-number flows is another drawback
of this methodology [15]. Using a multi-relaxation-time
version [16,17] and implementing the cascaded LBM [18,19]
on nonuniform meshes are efforts that have been made in the
literature to overcome these shortcomings.

Studies for improving the computational accuracy and
efficiency of the LBM can be classified into two different
categories [20]: namely, interpolation types and differential
types. In the interpolation type, usually a coarse grid is initially
used for the simulation of the entire domain and then a grid
refinement procedure is applied to locally refine the grid in
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the critical regions requiring a high grid resolution [20,21]. In
the differential types, the LBM is considered as a particular
discretization of the discrete Boltzmann equation (DBE) using
the Taylor-series expansion in time and space [5]. Recently,
several attempts have been made to use different computational
fluid dynamics methods for solving the DBE. Spectral-element
discontinuous Galerkin methods [22–24], finite-element meth-
ods [25–27], finite-volume methods [28–33], traditional finite-
difference methods [34–43], and more recently the high-order
compact finite-difference method [44] have been applied to
improve the capability of the LBM in modeling different fluid
flow problems accurately and efficiently.

For precisely predicting complex flows, high-order accurate
numerical methods are to be used that reduce the grid
and CPU time requirements compared to the traditional
low-order numerical methods. Among different high-order
accurate numerical methods, the spectral methods are known
as suitable schemes that can resolve everything up to the
smallest dynamical scales in the flow structures. Thus, they are
more appropriate for performing direct numerical simulations
(DNSs) of turbulent flows and computations of other critical
applications [45–47]. On the other hand, the LBM formulation
is much easier to use for modeling fluid flows compared to
the solution of Navier-Stokes equations. Thus, applying the
spectral methods for the solution of the LB equation provides
a highly accurate and reliable DNS LBM flow solver that
can be considered as an alternative to the DNS Navier-Stokes
flow solvers. Note that high-accuracy solutions obtained by
applying the spectral methods to the LBM formulation can be
considered as benchmark solutions for the assessment of other
LBM-based flow solvers developed in the literature.

The main objective of this paper is to develop and apply
a Chebyshev collocation spectral lattice Boltzmann method
(CCSLBM) for the simulation of low-speed flows. The decay
of the error at exponential rather than polynomial rates is the
main benefit of applying the Chebyshev collocation spectral
LBM over other high-order LBM-based flow solvers. Another
advantage of the proposed CCSLBM is that it does not require
any numerical dissipation or filtering for the solution to be
stable, which leads to highly accurate solutions. In general,
spectral methods are quite sensitive to the implementation
of boundary conditions and therefore special consideration
should be paid to obtain accurate and stable solutions when
applying such methods. In this study, instead of any ad
hoc boundary condition, physical boundary conditions are
implemented based on the solution of the governing equations
applied at each boundary to obtain accurate and stable
solutions. Herein, the spatial derivatives in the LB equation
are discretized by using the Chebyshev collocation spectral
method and the temporal term is discretized by the fourth-order

Runge-Kutta scheme to provide an accurate and efficient low-
speed flow solver. An iterative procedure based on the solution
of the LB equation by applying the CCSLBM is implemented
to provide consistent initial conditions for the distribution
function and the pressure field for simulating unsteady flows.
The accuracy and robustness of the proposed methodology,
that is, the CCSLBM, are shown by simulating different
two-dimensional (2D) or 3D low-speed flow problems at
different conditions and the results obtained are thoroughly
compared with the analytical and available numerical results.
The accuracy and performance of the solution obtained by
applying the CCSLBM are also examined by comparison
with those of the standard streaming-collision (classical)
LBM and two finite-difference LBM solvers, namely, the
fourth-order compact finite-difference LBM (CFDLBM) [44]
and the developed second-order central finite-difference LBM
(FDLBM).

The paper is organized as follows. In Sec. II the LB equation
for 2D low-speed flows based on the pressure distribution
function is presented. In Sec. III the Chebyshev collocation
spectral method and the Runge-Kutta time-stepping scheme
are given. Section IV includes the initialization procedure to
provide consistent initial conditions for simulating unsteady
flows. The implementation of boundary conditions is presented
in Sec. V. Section VI is devoted to presenting the results
obtained by applying the CCSLBM for different 2D test cases.
In Sec. VII the solution methodology is extended to three
dimensions and the results of the simulation of a regularized
cubic cavity are presented in Sec. VIII. Finally, a summary
and conclusions are given in Sec. IX.

II. GOVERNING EQUATIONS

The Boltzmann equation governed the particle distribution
function f (t,e,x) is utilized with the single relaxation-time
and the BGK approximation [48]

∂f

∂t
+ e · ∇f = − 1

τ
(f − f eq), (1)

where e is the particle velocity, τ is the dimensionless collision
relaxation time, and f eq is the equilibrium distribution
function. With discretizing the velocity space e, the lattice
Boltzmann (LB) equation for the particle distribution function
fk in the direction of microscopic velocity ek may be written
as

∂fk

∂t
+ ek · ∇fk = − 1

τ

(
fk − f

eq

k

)
, k = 0,1, . . . , 8, (2)

where the subscript k denotes the direction of the particle
speed. In the D2Q9 discrete Boltzmann model, the microscopic
velocities (see Fig. 1) are given as
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[
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=
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]
. (3)

The equilibrium distribution function f eq is selected to
satisfy the incompressible Navier-Stokes equations through a

Chapman-Enskog expansion procedure. For low-speed flows,
the density ρ0 is approximately constant and the pressure p can
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FIG. 1. The D2Q9 lattice and the microscopic velocities.

be used as an independent variable. The incompressible form
of the LB equation used in this study is based on the model
applied by He and Luo [12]. They suggested a local pressure
distribution function by redefining the density distribution
function in the LB equation, utilizing the fact that the error
terms on the order of M2 (M is the Mach number) are explicitly
removed from the equilibrium distribution function. Thus, the
incompressible form of the LB equation is solved to obtain
the pressure in the computational domain and the fluid density
is not calculated in the simulations. In this formulation, the
equilibrium distribution function is defined as [12]

f
eq

k = αk

{
p + p0

[
3(ek · u) + 9

2 (ek · u)2 − 3
2 (u · u)

]}
, (4)

with α0 = 4
9 , α1 = α2 = α3 = α4 = 1

9 , and α5 = α6 = α7 =
α8 = 1

36 for the D2Q9 model, and u = (u,v) is the velocity
vector.

The macroscopic pressure p and the macroscopic velocity
vector u are obtained using the relations

p =
8∑

k=0

fk, p0 u =
8∑

k=0

ek fk, (5)

where p0 = c2
s ρ0 and ρ0 is the constant density of the fluid.

The incompressible Navier-Stokes equations can be derived
from the incompressible form of the LB model through the
Chapman-Enskog expansion procedure [12]:

1

c2
s

∂P

∂t
+ ∇ · u = 0, (6)

∂u
∂t

+ u · ∇u = −∇P + υ ∇2u, (7)

where P = p

ρ0
is the normalized pressure and υ is the

kinematic viscosity of the fluid. The relaxation time τ in this

model is defined by [34]

τ = υ

c2
s

, (8)

where cs = 1/
√

3 is the speed of sound of the LB model.
Herein, it is the goal to simulate both steady and unsteady

low-speed flows using the Chebyshev collocation spectral
LBM. For steady flow computations, the term ∂P

∂t
in Eq. (6)

approaches zero by converging the solution, which leads the
continuity equation to be exactly satisfied. For unsteady flow
simulations, a further condition has to be satisfied [12], which
is briefly discussed here. For this aim, the nondimensional
form of incompressible Navier-Stokes equations (6) and (7) is
given by

1

T

∂P ∗

∂t∗
+ cs

L
∇∗ · u∗ = 0,

(9)
1

T

∂u∗

∂t∗
+ cs

L
u∗ · ∇u∗ = −cs

L
∇∗P ∗ + υ

L2
∇∗2u∗,

where the following scaling parameters are used:

l∗ = l

L
, t∗ = t

T
, u∗ = u

cs

, v∗ = v

cs

, P ∗ = P

c2
s

(10)

and T and L are the characteristic time and length, respectively.
The dimensionless form of the continuity equation shows that
the term ∂P ∗

∂t∗ is negligible by considering the condition T �
L/cs , which means that the macroscopic characteristic time T

should be chosen greater than the time taken by a sound signal
to travel the length scale. This condition is satisfied in the
discrete Boltzmann equation by selecting very slow temporal
variations for the driving pressure in the simulation of unsteady
flows [12]. This procedure has been used in Ref. [44] and led
to accurate and reliable unsteady computations.

III. DISCRETIZATION PROCEDURE

In this study, the Chebyshev collocation spectral method is
applied to solve the LB equation. To examine the resolution
characteristics of such a highly accurate numerical method,
the spectral function (or the modified wave number) associated
with this scheme can be used (see Fig. 2). The modified wave
number for the first derivative approximation of the spectral
method is compared with two other numerical methods,
namely, the fourth-order compact and second-order central
finite-difference schemes, as plotted in Fig. 2. Note that for
the exact differentiation, the modified wave number must be
β̄(β) = β. It is shown that the spectral method provides the
exact solution, whereas two other finite-difference schemes
deviate from the exact solution especially for high wave
numbers.

Herein, the spatial derivatives in the LB equation are
discretized by a Chebyshev collocation spectral method to
obtain high-accuracy solutions. The series expansion for a
sample function u(ξ,t) may be approximated as [49–54]

u(ξ,t) =
N∑

n=0

ûn(t)φn(ξ ), (11)

013301-3



KAZEM HEJRANFAR AND MAHYA HAJIHASSANPOUR PHYSICAL REVIEW E 91, 013301 (2015)

Wave Number

M
o

d
if

ie
d

 W
av

e 
N

u
m

b
er

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Exact Solution
Spectral Scheme
4th-order Compact Scheme
2nd-order Central Scheme

FIG. 2. Comparison of the modified wave number of the spectral
scheme with the fourth-order compact and second-order central finite-
difference schemes.

where φn(ξ ) are the trial or basis functions, ûn(t) are the
time-dependent expansion spectral coefficients, and N is the
polynomial degree. For the Chebyshev collocation spectral
method, the basis functions are the Chebyshev polynomi-
als. In the most common Chebyshev collocation spectral
method, the interpolation points in the interval ξ = [−1,1]
are the Chebyshev-Gauss-Lobatto collocation points ξj =
cos(jπ/N ) for j = 0, . . . ,N , which are the extreme of the
j th-order Chebyshev polynomials Tj (ξ ) = cos[j cos−1(ξ )].
The Chebyshev collocation spectral method is characterized
by the fact that the numerical solution is forced to satisfy the
equations exactly at the collocation points.

The expansion coefficients ûn(t) may be evaluated by the
inverse relation

ûn = 2

Nc̄n

N∑
j=0

1

c̄j

uj (ξj ,t)cos(njπ/N ), (12)

where

c̄j =
{

2, j = 0,N

1, j = 1,2, . . . ,N − 1.
(13)

The Chebyshev collocation spectral method can be seen as a
technique of interpolation, thus Eq. (11) can be expressed in
terms of the Lagrange polynomials. The Lagrange polynomials
for the Chebyshev-Gauss-Lobatto points may be represented
by the expression

gj (ξ ) = (−1)j+1(1 − ξ 2)T ′
N (ξ )

c̄jN2(ξ − ξj )
, j = 0, . . . ,N. (14)

The differentiation step can be accomplished in the trans-
formed space (the transform method) or in the physical
space (the matrix multiplication method). The first method
is performed efficiently by means of a fast cosine transform
with a recurrence relation in the spectral space and the
second method is based on the explicit expressions obtained
by differentiating the Lagrange polynomials. The matrix
multiplication method is used in this study because it is
efficient and easy to implement.

The spatial derivative of u(ξ,t) at the collocation points ξk

is evaluated using the analytical derivative of the Lagrange
polynomials

u(r)(ξk) =
N∑

j=0

D
(r)
kj u(ξj ), r = 1,2, . . . , (15)

where D
(r)
kj = g

(r)
j (ξk) are the elements of Chebyshev colloca-

tion derivative matrix and r is the order of differentiation. The
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FIG. 3. The 2D regularized cavity flow: (a) boundary conditions and (b) flow configuration and nomenclature (see also Ref. [60]).
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FIG. 4. Effect of grid size on (a) and (c) local compressibility and (b) and (d) vorticity for the 2D regularized cavity at Re = 100 for the
(a) and (b) left and right walls and (c) and (d) upper and lower walls.

differentiation matrix D
(1)
kj in a closed form is given by [55]

D
(1)
kj = ck

cj

(−1)j+k

ξk − ξj

, k �= j

D
(1)
kk = −1

2

ξk

1 − ξ 2
k

, k �= 0,N (16)

D
(1)
00 = −D

(1)
NN = 2N2 + 1

6
.

The Chebyshev collocation second derivative matrix D
(2)
kj can

be obtained analytically using an explicit expression or by the
relation D

(2)
kj = (D(1)

kj )2.
Errors may be incurred when using the above analytic

formula for calculating the differentiation matrices for the

Chebyshev-Gauss-Lobatto points. In [51–53,56–58] it was
explained that the error spoiling the first derivative is due
to the roundoff error. An attempt was made in [58] to reduce
the roundoff error by rewriting the elements of first derivative
matrix as

D
(1)
kj =

{
λj

λk

1
ξk−ξj

for k �= j

−∑N
i=0,i �=k

λi

λk

1
ξk−ξi

for k = j,
(17)

where

λ−1
k =

N∏
i=0,i �=k

(ξk − ξi), (18)
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TABLE I. Comparison of variables M1 and M2 for the 2D regularized cavity at Re = 100.

M1 M2

Present M1 M1 M1 Present M2 M2 M2

Grid work Ref. [60] Ref. [61] Ref. [62] work Ref. [60] Ref. [61] Ref. [62]

17 × 17 13.3506 13.3347 13.3467 13.3687 13.4509 13.4628 13.4476 13.4663
21 × 21 13.1760 13.1869 13.1759 13.1780 13.4440 13.4472 13.4441 13.4459
25 × 25 13.4225 13.4291 13.4226 13.4227 13.4446 13.4449 13.4446 13.4446
33 × 33 13.3422 13.3441 13.3423 13.3422 13.4446 13.4443 13.4448 13.4447
41 × 41 13.4433 13.4430 13.4446 13.4444 13.4447

and the elements of the second derivative matrix as

D
(2)
kj =

{
2D

(1)
kj

(
D

(1)
kk − 1

ξk−ξj

)
for k �= j

2
(
D

(1)
kk

)2 + 2
∑N

i=0,i �=k D
(1)
ki

1
ξk−ξi

for k = j.
(19)

In [51–53] it was mentioned that the above formulas are
preferable to the other formulas when computing the elements
of the first differentiation matrix for a higher number of grid
points. Here these formulas are used for the calculation of
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FIG. 5. Effect of value of characteristic velocity u0 on (a) and (c) local compressibility and (b) and (d) vorticity for the 2D regularized
cavity at Re = 100 at the (a) and (b) left and right walls and (c) and (d) upper and lower walls.
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TABLE II. Comparison of variables M1 and M2 for the 2D regularized cavity at Re = 400.

M1 M2

Present M1 M1 M1 Present M2 M2 M2

Grid work Ref. [60] Ref. [61] Ref. [62] work Ref. [60] Ref. [61] Ref. [62]

17 × 17 24.9860 24.7189 24.7799 25.2329 25.2104 25.0855 25.1604 25.4675
21 × 21 24.6717 24.6189 24.6268 24.6693 24.9720 24.9362 24.9273 24.9846
25 × 25 24.9167 24.9172 24.9157 24.9344 24.9157 24.9176 24.9148 24.9333
33 × 33 24.7844 24.7821 24.7845 24.7845 24.9107 24.9110 24.9111 24.9110
41 × 41 24.8627 24.8622 24.9110 24.9108 24.9109

the differentiation matrices. The procedure of rewriting the
differentiation matrices ensures that the results obtained by
applying the Chebyshev collocation spectral method are free
of the roundoff error if used for a fine grid, without affecting
the solution for a coarse grid.

The computational domain ξ = [−1,1] is mapped to the
physical domain x = [a,b] by the simple transformation

x = a − b

2
ξ + a + b

2
(20)

TABLE III. Comparison of values of flow characteristics for the 2D regularized cavity [see Fig. 3(b)] with different Re.

Re Parameter Present work Grid Ref. [60] Grid Ref. [46] Grid

100 (xc, yc) (0.603, 0.751) 33 × 33 (0.607, 0.753) 33 × 33 (0.609, 0.750) 17 × 17
(xs1, ys1) (0.032, 0.032) (0.032, 0.032) (0.031, 0.031)
(xs2, ys2) (0.955, 0.047) (0.955, 0.052) (0.953, 0.047)
(Hs1, Vs1) (0.084, 0.084) (0.130, 0.140)
(Hs2, Vs2) (0.114, 0.122) (0.140, 0.140)

400 (xc, yc) (0.578, 0.617) 33 × 33 (0.578, 0.615) 33 × 33 (0.578, 0.625) 17 × 17
(xs1, ys1) (0.045, 0.042) (0.045, 0.041) (0.031, 0.047)
(xs2, ys2) (0.902, 0.112) (0.900, 0.115) (0.922, 0.094)
(Hs1, Vs1) (0.113, 0.101) (0.135, 0.110)
(Hs2, Vs2) (0.232, 0.292) (0.250, 0.315)

1000 (xc, yc) (0.542, 0.573) 33 × 33 (0.545, 0.575) 33 × 33 (0.547, 0.578) 25 × 25
(xs1, ys1) (0.076, 0.066) (0.077, 0.068) (0.078, 0.063)
(xs2, ys2) (0.875, 0.116) (0.876, 0.118) (0.922, 0.094)
(Hs1, Vs1) (0.203, 0.154) (0.205, 0.170)
(Hs2, Vs2) (0.289, 0.349) (0.320, 0.335)

2000 (xc, yc) (0.530, 0.553) 33 × 33 (0.535, 0.555) 33 × 33 (0.531, 0.547) 33 × 33
(xs1, ys1) (0.090, 0.090) (0.090, 0.090) (0.094, 0.094)
(xs2, ys2) (0.856, 0.104) (0.856, 0.107) (0.922, 0.094)
(xs3, ys3) (0.032, 0.889) (0.028, 0.888) (0.031, 0.908)
(Hs1, Vs1) (0.260, 0.201) (0.255, 0.195)
(Hs2, Vs2) (0.350, 0.385) (0.350, 0.350)
(Hs3, Vs3) (0.050, 0.208) (0.050, 0.140)

5000 (xc, yc) (0.519, 0.538) 49 × 49 (0.518, 0.543) 33 × 33 (0.516, 0.531) 33 × 33
(xs1, ys1) (0.079, 0.123) (0.081, 0.121) (0.094, 0.094)
(xs2, ys2) (0.816, 0.082) (0.818, 0.081) (0.922, 0.094)
(xs3, ys3) (0.084, 0.910) (0.082, 0.910) (0.078, 0.908)
(Hs1, Vs1) (0.312, 0.253) (0.350, 0.270)
(Hs2, Vs2) (0.359, 0.422) (0.370, 0.415)
(Hs3, Vs3) (0.130, 0.298) (0.130, 0.260)

8000 (xc, yc) (0.516, 0.533) 81 × 81
(xs1, ys1) (0.070, 0.141)
(xs2, ys2) (0.795, 0.070)
(xs3, ys3) (0.095, 0.918)
(Hs1, Vs1) (0.332, 0.274)
(Hs2, Vs2) (0.378, 0.440)
(Hs3, Vs3) (0.171, 0.332)
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FIG. 6. Computed flow field for the 2D regularized cavity shown by streamlines at (a) Re = 100, (b) Re = 400, (c) Re = 1000, (d) Re =
2000, (e) Re = 5000, and (f) Re = 8000.
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FIG. 7. Computed flow field for the 2D regularized cavity shown
by streamlines at Re = 8000.

and therefore the differentiation matrices are expressed as

D
(1)
kj (x) = [

D
(1)
kj (ξ )

]( 2

a − b

)
,

(21)

D
(2)
kj (x) = [

D
(2)
kj (ξ )

]( 2

a − b

)2

.

The procedure given above for the calculation of the
derivatives in one dimension can be readily extended to two
dimensions. If an unknown matrix U is defined as U (xi,yj ) =
uij , then its partial derivatives evaluated at the collocation
points can be expressed in terms of the matrix-matrix products,
where the differentiation with respect to x corresponds to
multiplying the rows of Dx (the collocation derivative matrix
in the x direction) by the columns of U , and the differentiation
with respect to y corresponds to multiplying the rows of U by
the columns of DT

y (the collocation derivative matrix transpose
in the y direction).

Now, by performing the space discretization using the
spectral method, the LB equation (2) can be written in the
form

∂fk

∂t
= Rk, (22)

where

Rkm,n
= −

⎛
⎝ekx

Nx∑
i=0

Dxm,i
fki,n

+ eky

Ny∑
i=0

DT
yi,n

fkm,i

⎞
⎠

− 1

τ

(
fkm,n

− f
eq

km,n

)
, (23)

where m and n indicate the grid number in the x and y

directions, respectively, Dx is the derivative matrix in the x

direction, and DT
y is the transpose of the collocation derivative

matrix in the y direction. In addition, Nx and Ny are the
polynomial degrees in each direction.

The discretization of the temporal term in Eq. (22) is
performed by an explicit multistage time-stepping method.
Here the solution is advanced in the time t by using the
fourth-order Runge-Kutta scheme as follows:

f 0
k = f t

k ,

f 1
k = f 0

k + �t

4
R0

k ,

f 2
k = f 0

k + �t

3
R1

k , (24)

f 3
k = f 0

k + �t

2
R2

k ,

f t+�t
k = f 0

k + �t R3
k .

This time integration scheme is appropriate for an accurate
simulation of unsteady flows.

IV. INITIALIZATION PROCEDURE

For the numerical solution of the lattice Boltzmann
equation for low-speed flows, appropriate initialization of
the distribution function fk is required. The conventional
procedure is to initialize the distribution function fk by the
equilibrium distribution function f

eq

k calculated based on the
initial conditions of the macroscopic variables. This procedure
is suitable for the solution of steady flows; however, some
possible errors can be raised in the simulation of unsteady flows
due to inconsistent initial conditions. An iterative procedure
for generating consistent initial conditions for the LB equation,
based on the density as the conserved variable with a given
velocity field, has been proposed by Mei et al. [59]. In
the present study, an iterative procedure is used based on
the CCSLBM to provide consistent initial conditions for the
distribution function fk by calculating the pressure as the
conserved variable with a given velocity field. Such a pro-
cedure has been suggested and applied in [44] to provide
suitable initial conditions for unsteady low-speed flows by
implementing the high-order compact finite-difference LBM
(the CFDLBM). For this purpose, the following subsequent
steps are used in this procedure.

(i) The equilibrium distribution function f
eq

k is calculated
based on the initial velocity and pressure field by Eq. (4).

(ii) The distribution function fk is calculated by Eq. (24)
with the Chebyshev collocation spectral method.

(iii) The pressure field is updated by Eq. (5) only, while
the velocity field is fixed at the initial values.

(iv) The process is repeated until the pressure field con-
verges within a specified criterion.

By applying this iterative process, the distribution function
fk and the pressure are calculated in the field that is consistent
with the given initial velocity field. This iterative procedure is
verified by solving the Taylor vortex problem (see Sec. VI).

V. BOUNDARY CONDITIONS

In general, the solution of spectral methods is sensitive to
the boundary treatment and the algorithm may be unstable
due to reflections of the numerical waves or errors from the
boundaries into the flow field. Thus, the boundary conditions
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FIG. 8. Computed flow field shown by vorticity contours for the 2D regularized cavity at (a) Re = 100, (b) Re = 400, (c) Re = 1000,
(d) Re = 2000, (e) Re = 5000, and (f) Re = 8000.
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FIG. 9. Comparison of velocity profiles at midplanes of the 2D regularized cavity at (a) Re = 100, (b) Re = 400, (c) Re = 1000, (d) Re =
2000, Re = 5000, and (f) Re = 8000.
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for spectral methods should be implemented in a way to avoid
reflections of these numerical errors.

The Chebyshev collocation spectral method applied to
solve the LB equation needs suitable boundary conditions for
both the macroscopic and microscopic variables. In the LB
equation, the distribution function fk is not given directly at
the boundaries and a special treatment should be utilized for
determining its value based on the macroscopic variables on
each boundary. Here the approach is to use physical boundary
conditions based on the solution of the governing equations
implemented on the boundaries. On a wall boundary with
the no-slip condition, the values of the macroscopic velocity
components are known at each time step. To calculate the
pressure on a wall boundary, one can obtain the following
physical formula by employing the momentum equations at
the wall:

∂p

∂yn

= μ
∂2un

∂y2
n

, (25)

where yn indicates the distance in the wall-normal direction
and un is the normal velocity with respect to the boundary. By
implementing the Chebyshev collocation spectral method in
Eq. (25), for example, the wall boundaries x = 0 and x = L,
the pressure values at these two walls p0,n and pNx,n can be
calculated simultaneously by the relations

D
(1)
0,0p0,n +

Nx−1∑
i=1

D
(1)
0,ipi,n + D

(1)
0,Nx

pNx,n = μ

Nx∑
i=0

D
(2)
0,iui,n,

(26)

D
(1)
Nx,0

p0,n +
Nx−1∑
i=1

D
(1)
Nx,i

pi,n + D
(1)
Nx,Nx

pNx,n = μ

Nx∑
i=0

D
(2)
Nx,i

ui,n.

(27)

The same procedure can be used to calculate the pressure
on the other boundaries. After updating the macroscopic
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FIG. 11. Comparison of the L2-norm error of the solution for the
2D regularized cavity at Re = 100 obtained by the CCSLBM with
the FDLBM and the classical LBM.

variables, the equilibrium distribution function f eq (u,v,p) at
the boundaries is also updated by its formula, Eq. (4). Then,
to calculate the distribution function fk at a new time step,
Eq. (24) is solved at the boundaries with the same algorithm
used for the interior points.

VI. NUMERICAL RESULTS FOR 2D PROBLEMS

Herein, both steady and unsteady low-speed flows are
simulated by applying the CCSLBM. To verify the steady
computations, a benchmark test case is considered: a 2D
regularized driven cavity flow. The 2D cavity flow simulated
here is a suitable problem to show that the CCSLBM is an ef-
fective solver to accurately compute steady flow problems with
complex flow field structures and the solution methodology is
robust and stable even at high Reynolds numbers. Results
obtained for this problem by applying the CCSLBM are
thoroughly compared and verified with those of the Chebyshev
collocation spectral Navier-Stokes flow solvers. The Taylor
vortex problem is simulated here to examine the accuracy of
the solution algorithm for an unsteady simulation and also to
assess the iterative solution procedure proposed for providing
the required initial conditions. The doubly periodic shear layer
problem is simulated here to show that the CCSLBM does
not need any filtering for the solution to be stable, unlike
the other LBM solvers. Results obtained from these cases
are compared with the analytical solutions and the available
numerical results.

To further assess the accuracy and performance of the
CCSLBM, the present results are also compared with the stan-
dard streaming-collision (classical) LBM and two other finite-
difference LBM solvers, namely, the fourth-order CFDLBM
[44] and the developed second-order central FDLBM. Note
that both these finite-difference LBM solvers require a filtering
procedure to damp high-frequency oscillations associated with
the central differencing of the spatial derivatives in the LB
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TABLE IV. Comparison of error norms, CPU time, and memory usage for the solution of the 2D regularized cavity at Re = 100 obtained
by the CCSLBM with the FDLBM and the classical LBM.

Grid L∞ L2 CPU time (h) Memory usage (kilobytes)

CCSLBM
9 × 9 1.8 × 10−2 6.5 × 10−3 0.20 864
13 × 13 1.5 × 10−3 4.8 × 10−4 0.27 880
17 × 17 1.1 × 10−4 3.1 × 10−5 0.44 960
21 × 21 6.6 × 10−6 1.9 × 10−6 0.63 992
25 × 25 3.1 × 10−6 2.9 × 10−7 0.84 1124

FDLBM
31 × 31 1.7 × 10−2 4.0 × 10−3 3.40 1216
61 × 61 5.4 × 10−3 1.1 × 10−3 12.67 1896
121 × 121 1.1 × 10−3 2.35 × 10−4 29.96 4792

Classical LBM
31 × 31 2.8 × 10−2 8.4 × 10−3 0.11 732
61 × 61 1.3 × 10−2 3.9 × 10−3 0.07 1280
121 × 121 5.9 × 10−3 1.8 × 10−3 0.53 3368
241 × 241 2.5 × 10−3 7.8 × 10−4 4.01 11400
481 × 481 1.2 × 10−3 2.6 × 10−4 30.89 43800

equation. The high-order implicit filtering technique applied
for the CFDLBM [44] is also used for the stabilization of the
developed FDLBM. All the calculations are performed on Intel
core i7-3630QM 2.4-GHz processor with a 64-bit operating
system (N46VZ laptop).

A. Steady flow in a two-dimensional regularized cavity

In order to show the high accuracy of the Chebyshev
collocation spectral LBM proposed, a 2D regularized driven
cavity flow is simulated. In this problem, the singularity at
the upper corners is resolved using a parabolic horizontal
velocity distribution instead of a constant velocity. The results
presented are based on the Chebyshev-Gauss-Lobatto grid
points of 17 × 17 up to 81 × 81 depending on the value of
Reynolds numbers.

The regularized square driven cavity [see Fig. 3(a)] is a
model for the flow in a cavity where the upper boundary moves
to the right with the velocity distribution

u = [u016x2(1 − x)2,0] (28)

and u = (0,0) on the other wall boundaries. The horizontal
velocity distribution has a maximum velocity umax = u0 and
the Reynolds number is defined as Re = umaxLc/υ. The
estimation of the error for the convergence study is based
on the nondimensional vorticity variable defined as ω =
∂v/∂x − ∂u/∂y by the following criteria:∑N−1

i=1

∑M−1
j=1

∣∣ωn+1
i,j − ωn

i,j

∣∣
�t
∑N−1

i=1

∑M−1
j=1

∣∣ωn+1
i,j

∣∣ < ε = 10−8. (29)

At first, a sensitivity study is performed to examine the effects
of the grid size and the value of characteristic velocity u0 on the
results obtained for the 2D regularized cavity by applying the
CCSLBM. Figure 4 shows a grid refinement study on the local
compressibility ∇ · u and the vorticity on the cavity walls for
Re = 100 using u0 = 0.03. It is observed that by increasing
the number of grid points, the level of local compressibility
significantly decreases on all the walls and a more accurate

solution is obtained. However, it is demonstrated that the
physical variables, such as the vorticity, do not depend on
the grid size for the grids used and the results are free of any
oscillation. The maximum vorticity on the upper wall obtained
by the present solution applying the CCSLBM is in agreement
with the available numerical results obtained by the spectral
Navier-Stokes solvers (see Table I). The effect of the value of
characteristic velocity on the local compressibility error and
the vorticity for all the cavity walls for the same Reynolds
number considering the 33 × 33 grid is investigated in Fig. 5.
It is shown that by selecting a smaller value of the characteristic
velocity the compressibility error decreases on all the cavity
walls and the incompressibility condition is nearly satisfied.
Note that the level of the compressibility error close to the
upper corners is slightly higher than other regions. The study
indicates that the value of the characteristic velocity should
be selected as small as possible to reduce the compressibility
effect to provide reasonable results of incompressible flows.
It is indicated that the value of the characteristic velocity does
not significantly affect the vorticity on all the cavity walls.

Next the flow field characteristics obtained by applying the
CCSLBM are compared with the other computations by ap-
plying the spectral methods [60–62]. Martinez and Esperanca
[60] and Botella [61] used the Chebyshev collocation spectral
method to solve the incompressible Navier-Stokes equations
by using the projection method and Ehrenstein and Peyret
[62] also applied the Chebyshev collocation spectral method
to solve incompressible flows by the vorticity-stream function
formulation. To compare the present computations with the
available results, the variables M1 and M2, based on the study
of Martinez and Esperance, are used in which

M1 = max|ω(xi,1)|, xi = cos(iπ/Nx), i = 0, . . . ,Nx,

(30)
based on the collocation points, and

M2 = max|ω(x̃i ,1)| , x̃i = −i/100 + 1, i = 0, . . . ,200,

(31)
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FIG. 12. Effect of different initial conditions for the pressure field on P2(t) (left) and K(t) (right) for a grid size of 17 × 17 with υ = 0.0002
(top) and υ = 0.002 (bottom).

based on the interpolation of the solution on 201 equally spaced
grid points where ω(x̃i ,1) is reconstructed as

ω(x̃i ,1) =
Nx∑
k=0

2

c̄kNx

cos[kcos−1(x̃i)]

×
⎡
⎣ Nx∑

j=0

1

c̄j

ω(Nx − j,Ny)cos

(
kπj

Nx

)⎤⎦ . (32)

Tables I and II display these comparisons for Re = 100
and 400, respectively, and indicate that the present results
for the values of M1 and M2 are in good agreement with
those reported in [60–62]. When the spatial resolution Nx (the
polynomial degree in the x direction) increases, the distribution
of the Chebyshev-Gauss-Lobatto points changes. In contrast
with M1, the variable M2 is implemented in a fixed distribution

of the points when Nx increases. In Tables I and II it can be
seen that M2 gives a precise spectral convergence, which is
not the case for M1.

To accurately compute the flow field in the 2D regularized
cavity, for Reynolds numbers up to 2000 a mesh of 33 × 33
and for Re = 5000 and 8000 a mesh of 49 × 49 and 81 × 81,
respectively, are used. Here the time step �t = τ is adopted
to obtain a stable solution at high-Reynolds-number flows.
The locations of the center of the primary and secondary
vortices are obtained by applying the Chebyshev collocation
spectral LBM given in Table III and compared with the
available numerical results [60,46]. The comparison is based
on the nomenclature shown in Fig. 3(b). Shen [46] used
the projection scheme in conjunction with a Chebyshev-Tau
space discretization and his results are based on a mesh of
17 × 17 up to 49 × 49 depending on the Reynolds numbers
(see Table III). The present results obtained by implementing
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FIG. 13. Computed flow field for the Taylor vortex problem
shown by streamlines with Re = u0L/υ = 10π at t∗ = u0t/L =
1/20π .

the Chebyshev collocation spectral LBM are in good
agreement with those of Chebyshev collocation spectral
Navier-Stokes flow solvers [60,46].

Figures 6(a)–6(f) give the steady-state results shown by
the streamlines for the 2D regularized cavity for Reynolds
numbers up to 8000. As the value of Re increases, the
flow structure becomes more complex. Figure 7 shows that
at Re = 8000 the secondary, tertiary, and also quaternary
vortices are well resolved, due to the condensed distribution
of the Chebyshev-Gauss-Lobatto points near the boundary.
The present study indicates that a quaternary corner vortex
is observed in the flow field near the right-side region of the
bottom wall at a steady-state solution. Figure 8 shows the
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FIG. 14. Comparison of the u- and v-velocity profiles for the
Taylor vortex problem with Re = u0L/υ = 10π at t∗ = u0t/L =
1/20π .
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FIG. 15. Effect of the value of the characteristic velocity u0 on
the spectral convergence of the solution for the Taylor vortex problem
for Re = u0L/υ = 10π at t∗ = u0t/L = 1/(20π ) based on L2-norm
error of solution compared with (a) the analytical solution (b) the most
refined grid.

vorticity contours for the 2D regularized cavity flow at different
Reynolds numbers. As the value of Re increases, the regions of
high-vorticity gradients evolve and are shown by concentrating
the vorticity contours. The u- and v-velocity profiles along
the centerlines of the regularized cavity for Reynolds numbers
up to 8000 computed by the CCSLBM are shown in Fig. 9
and when compared with those of Martinez and Esperanca
[60] exhibit excellent agreement. Figure 10 illustrates the
convergence history of the solution obtained by employing
the CCSLBM based on the L2 norm of the u-velocity profile
in the flow field at Re = 100 and 1000. For a higher Re, more
iterations are needed for the solution to converge.
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the local compressibility error for the Taylor vortex problem for Re =
u0L/υ = 10π at t∗ = u0t/L = 1/20π .

The computational efficiency of the proposed solution
methodology based on the CCSLBM is examined by
comparison with two other LBM solvers, namely, the standard
collision-streaming (classical) LBM and the developed
second-order central FDLBM. To do this the regularized
cavity problem is investigated at Re = 100 with u0 = 0.02.
Figure 11 shows a comparison of the L2-norm error obtained
by the CCSLBM with the classical LBM and the FDLBM.
The L2-norm error is defined based on the u-velocity profile
in the entire flow field compared to the most refined grid. It
is observed that the CCSLBM, when considering the same
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FIG. 17. Comparison of the L2-norm error of the solution for
the Taylor vortex problem for Re = u0L/υ = 10π at t∗ = u0t/L =
1/5π obtained by the CCSLBM with the CFDLBM, the FDLBM,
and the classical LBM.

number of grid points, gives more accurate results than both
the classical LBM and the FDLBM, and an exponential
convergence is achieved rather than polynomial rates. The
computational efficiency of the proposed solution methodol-
ogy, the CCSLBM, in comparison with these two LBM solvers
is shown in Table IV for the cavity problem at the same Re. As
indicated, the CCSLBM reduces the CPU time and memory
usage compared to both the classical LBM and the FDLBM
when a high-accuracy solution is needed and the performance
of the CCSLBM is highlighted in such conditions.

B. The Taylor vortex problem

The Taylor vortex problem is solved to demonstrate the
capability of the proposed CCSLBM for the unsteady calcu-
lations. This problem was introduced by Taylor [63] based on
the incompressible Navier-Stokes equations in terms of the
stream function-vorticity formulation. The exact solution for
the velocity and pressure field for this problem is known as

u(x,y,t) = −u0cos(kxx)sin(kyy)e−k2υt ,

v(x,y,t) = kx

ky

u0cos(kyy)sin(kxx)e−k2υt ,

p(x,y,t) = −1

4
u2

0

[
cos(2kxx) +

(
kx

ky

)2

cos(2kyy)

]
e−2k2υt

+P0, (33)

where u0 is the initial value of the characteristic velocity, υ

is the kinematic viscosity, kx = 2π/Lx and ky = 2π/Ly are
the wave numbers in the x and y directions, respectively, k =√

k2
x + k2

y , and P0 is an arbitrary constant pressure (here P0 =
0). Periodic boundary conditions are applied to all sides of the
computational domain (0 � x � L, 0 � y � L, and L = 2π ).
The analytical initial conditions for the velocity and pressure
field are obtained by setting t = 0 in Eq. (33).

Here kx = ky = 2 and the study is performed for two values
of the kinematic viscosity υ = 0.0002 and 0.002. The value
of the characteristic velocity u0 is set equal to 0.01 in this
study unless otherwise specified. The normalized total kinetic
energy K(t),

K(t) = 2

4π2u2
0

∫
(u2 + v2)dxdy, (34)

and the normalized projection of the pressure field P2(t),

P2(t) = 16

4π2u2
0

∫
p(x,y,t)

× cos[kx(x + y)] cos[ky(x − y)]dxdy, (35)

are compared for three different initialization schemes, includ-
ing (a) using a constant pressure field for the initialization,
(b) using the analytical solution of the pressure for the
initialization, and (c) using the applied iterative scheme for
the initialization.

Figure 12 shows the numerical results of P2(t) and K(t)
using the 17 × 17 grid for the two values of the kinematic
viscosity υ = 0.002 and 0.0002 and the analytical results are
also given in this figure for the sake of comparison. From the
plots P2(t), it can be seen that the initialized field considering a
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TABLE V. Comparison of error norms, CPU time, and memory usage for the solution of the Taylor vortex problem obtained by the
CCSLBM with the CFDLBM, the FDLBM, and the classical LBM.

Grid L∞ L2 CPU time (h) Memory usage (kilobytes)

CCSLBM
9 × 9 4.0 × 10−2 2.2 × 10−2 0.14 2752
13 × 13 5.2 × 10−3 3.0 × 10−3 0.31 2844
17 × 17 1.2 × 10−4 5.3 × 10−5 0.51 2956
21 × 21 1.6 × 10−6 5.8 × 10−7 0.93 3411

CFDLBM
9 × 9 4.4 × 10−2 2.3 × 10−2 0.03 1864
13 × 13 6.2 × 10−3 4.2 × 10−3 0.06 1884
31 × 31 1.2 × 10−4 8.3 × 10−5 0.37 2264
91 × 91 1.4 × 10−6 4.7 × 10−7 3.41 5648

FDLBM
21 × 21 4.8 × 10−2 1.0 × 10−2 0.91 2700
61 × 61 4.8 × 10−3 2.0 × 10−3 7.41 3580
121 × 121 1.2 × 10−3 6.2 × 10−4 29.26 6336
241 × 241 3.1 × 10−4 1.65 × 10−4 130.29 17500

Classical LBM
21 × 21 1.6 × 10−1 3.6 × 10−2 0.0016 548
61 × 61 5.4 × 10−2 1.25 × 10−2 0.04 1320
121 × 121 2.7 × 10−2 6.3 × 10−3 0.16 3620
241 × 241 1.4 × 10−2 3.15 × 10−3 1.01 12952
481 × 481 6.9 × 10−3 1.5 × 10−3 7.51 49100
961 × 961 3.6 × 10−3 7.8 × 10−4 69.02 194300

constant pressure value generates several acoustic oscillations
due to the inaccurate initial condition. However, for the cases
in which the pressure field is initialized by the analytical
formula or by the iterative initialization procedure, there are
no severe acoustic oscillations. It is observed that the total
kinetic energy K(t) is not affected by all the initialization
schemes and there is no deficit between the calculated and
analytical solutions. It can also be seen that the performance
of the solution algorithm based on the CCSLBM is nearly the
same for different values of kinematic viscosity υ and even
for a small υ the solution obtained is stable without using
a filtering procedure. Therefore, it can be concluded that by
applying the iterative initialization procedure the CCSLBM
can provide accurate unsteady solutions comparable with the
analytical results.

Figure 13 shows the Taylor vortices for Re = u0L/υ =
10π at t∗ = u0t/L = 1/20π . The number of vortices is
defined by 2kx in each direction. The present computa-
tions obtained by the CCSLBM for the normalized velocity
components (u/u0, v/u0) at the midlines y = π and x = π

employing the 17 × 17 grid are compared with the exact
solution at t∗ = 1/20π , as shown in Fig. 14, and exhibit
excellent agreement. To verify the spectral convergence of
the solution, different grid sizes, namely, 9 × 9, 11 × 11,
13 × 13, 15 × 15, 17 × 17, 21 × 21, and 25 × 25 are
used. The error of the solution for this test case is shown in
Fig. 15 and is calculated based on the L2 norm of the u-velocity
profile in two ways: (a) compared with the analytical solution
and (b) compared with the most refined grid solution for
Re = u0L/υ = 2π at t∗ = 1/20π . Here three different values
of the characteristic velocity u0 = 0.01, 0.0025, and 0.001 are
used to investigate the effect of the value of the characteristic

velocity on the accuracy of the solution. It is found that
considering a small value for the characteristic velocity u0

leads to a more accurate solution. In other words, a smaller
characteristic velocity reduces the compressibility error (see
Fig. 16 for the most refined 25 × 25 grid) and the exponential
decay of the error and thus the spectral convergence can be
achieved independent of the spatial resolution. When the error
is calculated based on the most refined grid solution, it can
be seen that the convergence depends on the value of the
characteristic velocity.

The accuracy and performance of the present solution
methodology are also examined for the Taylor vortex problem.
This test case is computed for the characteristic velocity
u0 = 0.001 at the nondimensional time t∗ = u0t/L = 1/5π .
The L2-norm error of the solution obtained by the CCSLBM
is compared with the classical LBM, the FDLBM, and the
CFDLBM, as shown in Fig. 17. The error is defined as the L2

norm of the u-velocity profile in the entire flow field compared
to the exact solution. It is illustrated that the CCSLBM for
the same number of grid points gives more accurate results
than the other LBM solvers. It is shown that the exponential
convergence is achieved by the CCSLBM whereas other
LBM solvers have a polynomial rate. Table V compares the
performance of the CCSLBM with the classical LBM and the
two finite-difference LBM solvers in terms of the CPU time
and memory usage for the Taylor vortex problem. The error
decays at an exponential rate when employing the CCSLBM,
resulting in a lower number of grid points needed to provide a
specified accuracy compared to the other LBM solvers. Table V
indicates that when a high-accuracy solution is needed, the
CCSLBM reduces the CPU time and memory usage compared
to the other LBM methods.
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FIG. 18. Comparison of the vorticity contours for doubly periodic shear layers with υ = 0.0001 at t∗ = 1 obtained by the (a) and (b)
FDLBM, with and without filtering, respectively; (c) and (d) CFDLBM, with and without filtering, respectively; and (e) CCSLBM, without
filtering.
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FIG. 19. Comparison of the vorticity profile at (a) x = 0.25 and
(b) x = 0.75 for doubly periodic shear layers with υ = 0.0001 at
t∗ = 1 obtained by the CCSLBM with the CFDLBM and the FDLBM.

C. Unsteady doubly periodic shear layers

The simulation of the unsteady doubly periodic shear flow
problem [64,65] is performed to further assess the accuracy
and robustness of the CCSLBM. In this problem, the initial
conditions for the normalized velocity field are given by

u

u0
=
{

tanh[4(y − 1/4)/w], y � 1/2
tanh[4(3/4 − y)/w], y > 1/2,

(36)

with 0 � x � 1 and 0 � y � 1, and

v

u0
= δ sin[2π (x + 1/4)],

where w approximates the initial shear layer width and δ

is the strength of the initial perturbation. In this problem,
the roll-up of the shear layer between the Kelvin-Helmholtz
vortices is due to stretching. Simulations performed in the
literature have shown that numerical instabilities may occur
when the shear layers begin to roll up after several time steps
and a special treatment should be applied to alleviate this
problem when solving the LB equation [44,66]. The main
advantage of applying the CCSLBM compared to the existing
modes of solving the BGK formulation of the LB equation is
that the proposed approach provides more accurate solutions
and does not need any filtering, unlike other LBM solution
procedures. To show this, the results obtained by applying
the CCSLBM without filtering for the doubly periodic shear
layer problem are compared with two other LBM solvers,
namely, the CFDLBM [44] and the developed FDLBM
with and without filtering. Here two computational grids,
namely, 61 × 61 and 121 × 121, are used for the CCSLBM
in the doubly periodic domain 0 � x,y � 1 and the kinematic
viscosity is set to be υ = 0.0001. The perturbation parameter
and the shear layer width are initialized by δ = 0.05 and
w = 0.05, respectively, and the value of u0 is set equal to
0.1. Figure 18 illustrates the vorticity field for these LBM
flow solvers at the nondimensional time t∗ = u0t/L = 1. The
implementation of the CCSLBM leads to a stable solution and
the roll-up of the shear layers due to the Kelvin-Helmholtz
vortices is accurately resolved. The stability of the solution
without using a filtering procedure is clearly observed for
solving this problem that has flow nonlinearities. Note that
the two other LBM solvers require filtering for the solution
to be stable. Figure 19 gives the vorticity profiles at two
sections x = 0.25 and 0.75 at the same time predicted by
the CCSLBM compared with these two finite-difference LBM
solvers for a different number of grid points. This indicates
that the CCSLBM with 121 × 121 grid points provides results

FIG. 20. The D3Q19 lattice and the microscopic velocities.
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comparable to the CFDLBM and the FDLBM using 241 × 241
and 481 × 481 grid points, respectively.

VII. EXTENSION OF THE METHODOLOGY TO
THREE DIMENSIONS

Here the formulation of the CCSLBM is extended to three
dimensions. In three dimensions, the discrete Boltzmann-BGK

equation can be written as

∂fk

∂t
+ ek · ∇fk = − 1

τ

(
fk − f

eq

k

)
, k = 0,1, . . . , 18,

(37)
where the subscript k denotes the direction of the particle
speed. In the D3Q19 discrete Boltzmann model (see Fig. 20),
the microscopic velocities are given as [67]

ek =
⎡
⎣ekx

eky

ekz

⎤
⎦ =

⎡
⎣0 1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1 1 −1 1 −1

⎤
⎦ .

(38)

In this formulation, the equilibrium distribution function is
defined as

f
eq

k = αk

{
p + p0

[
3(ek · u) + 9

2 (ek · u)2 − 3
2 (u · u)

]}
, (39)

where

αk =

⎧⎪⎪⎨
⎪⎪⎩

2
36 , k = 1,2, . . . ,6
1

36 , k = 7,8, . . . ,18
12
36 , k = 0

(40)

and the pressure p and the velocity vector u are obtained from
the relations

p =
18∑

k=0

fk, p0u =
18∑

k=0

ekfk. (41)

The 3D LB equation (37) can be written in the form

∂fk

∂t
= Rk, (42)

where

Rk = −
(

ekx

∂fk

∂x
+ eky

∂fk

∂y
+ ekz

∂fk

∂z

)
− 1

τ

(
fk − f

eq

k

)
.

(43)
Again, the spatial derivatives in the 3D LB equation are
discretized by the Chebyshev collocation spectral method to
obtain high-accuracy solutions. Thus, the right-hand side of
Eq. (42) can be written as

Rkm,n,p
= −

⎛
⎝ekx

Nx∑
i=0

Dxm,i
fki,n,p

+ eky

Ny∑
i=0

DT
yi,n

fkm,i,p

+ ekz

Nz∑
i=0

DT
zi,p

fkm,n,i

)
− 1

τ

(
fkm,n,p

− f
eq

km,n,p

)
, (44)

where m, n, and p indicate the grid number in the x, y, and z

directions, Dx indicates the derivative matrix in the x direction,
and DT

y and DT
z are the transpose of the collocation derivative

matrices in the y and z directions, respectively. In addition,
Nx , Ny , and Nz are the polynomial degrees in each direction.
Similar to the 2D simulations, the temporal term in Eq. (42) is
discretized by the fourth-order Runge-Kutta scheme.

To apply the proposed method to an irregular geometry, one
should use a mapping to transform the LB equation from the

physical plane into the computational one. The calculation of
the derivatives of the distribution function in the computational
plane can be easily performed and the metrics and the Jacobian
of the transformation should be calculated analytically if
possible, or numerically with a high-order accuracy. Such a
strategy has been used in literature for other LBM solvers
(see, for example, [38,68]). The use of the spectral methods
for solving the Navier-Stokes equations in the generalized
curvilinear coordinate has also been applied in the literature
(see, for example, [69,70]). Thus, the implementation of the
CCSLBM in the generalized curvilinear coordinate seems to
be straightforward.

VIII. NUMERICAL RESULTS FOR A 3D PROBLEM

A. Steady flow in a three-dimensional regularized cavity

In the previous test cases, the CCSLBM has been imple-
mented to solve different 2D problems and now it can be
used for more interesting 3D flows. Herein, the 3D accurate
developed code is used to compute the flow in a regularized
cubic cavity. The no-slip boundary conditions are used for all
the velocity components on all the walls except for the upper
wall. Three lid velocity profiles are considered in the upper
wall boundary as follows:

u1 = u0[16x(1 − x)y(1 − y)] , v = w = 0, (45)

u2 = u0[16x(1 − x)y(1 − y)]2, v = w = 0, (46)

u3 = u0[1 − (2x − 1)18]2[1 − (2y − 1)18]2, v = w = 0.

(47)

The calculations are performed for the computational
25 × 25 × 25 grid and for different flow conditions. The three-
dimensional cavity geometry and three velocity distributions
on the upper wall are shown in Fig. 21. For u1, the mean value
of this distribution over the driving surface is um = 0.85u0,
and the area over which the velocity is above the mean value is
75% that of the lid [71]. Figure 22 shows the graphs of u/u0–z

and w/u0–x at the midlines of the cavity (x = 0.5 , y = 0.5
and y = 0.5 , z = 0.5, respectively) and for the three velocity
distributions u1, u2, and u3 for the upper wall for Re = 100,
400, and 1000 in which the Reynolds number is defined as
Re = u0L/υ. As shown in this figure, the results obtained
by implementing the CCSLBM in three dimensions for the
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FIG. 21. The (a) 3D regularized cavity problem and (b)–(d) different velocity distributions (b) u1, (c) u2, and (d) u3 for the upper wall.
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FIG. 22. Comparison of velocity profiles at the midplanes of the
3D regularized cavity for (a) Re = 100, (b) Re = 400, and (c) Re =
1000.

velocity distributions u1 and u2 are comparable to those of
the finite-element solution of the Navier-Stokes equations by
Notsu [72]. Note that in [72] the same velocity distributions
u1 and u2 are used for the upper lid wall. For the u3 velocity
distribution, good agreement between the present solution,
applying the CCSLBM, and that of the higher-order compact
Navier-Stokes flow solver [73] is observed. Note that in [73]
a uniform velocity distribution (u = 1) for the upper lid wall
was used and the present study shows that using the velocity
distribution u3 provides similar results and thus similar flow
structures. As shown in Fig. 22, choosing a nearly uniform
velocity distribution with higher-velocity magnitudes over the
upper cavity wall results in increasing the gradient of the
velocity normal to the walls and thus causes higher viscous
shear forces there. Increasing the value of the Reynolds
number has a similar effect. The computed flow field shown
by the streamlines in the y–z (x = 0.5), x–z (y = 0.5), and
x–y (z = 0.5) planes for Re = 100, 400, and 1000 using the
velocity distribution u3 is shown in Fig. 23. As observed in
this figure, due to the effect of the sidewalls, the flow patterns
in the y–z plane show a pair of counterrotating vortices. Also
a pair of small counterrotating vortices can be seen near the
upper corners at Re = 1000. The results indicate that with
increasing Re, the centers of the centered vortices are moved
considerably toward the bottom wall and the vortices near the
corners grow. This primary recirculating region and also the
secondary vortices near the corners in the x–z plane are seen
for each case. It is observed that with increasing Re, the center
of the primary vortex is moved toward the center of the cavity,
as also seen in the 2D cavity flow. In addition, in the x–y

plane with increasing Re two vortices are created and move
toward the downstream wall due to the increasing momentum
and inertia. This indicates that the CCSLBM can be used as
a capable and accurate flow solver for simulating 3D flow
problems.

IX. CONCLUSION

A Chebyshev collocation spectral lattice Boltzmann
method is proposed and applied to accurately compute steady
and unsteady low speed flows. Herein, the discrete Boltzmann
equation with the BGK approximation based on the pressure
distribution function is considered and the spatial derivatives in
this formulation are discretized by the Chebyshev collocation
spectral method and the temporal term was discretized by the
fourth-order Runge-Kutta scheme to provide a highly accurate
LBM-based flow solver. The calculations are performed for
different 2D and 3D problems to examine the accuracy and
robustness of the Chebyshev collocation spectral LBM. Some
conclusions and remarks regarding the present work are as
follows.

(i) The study shows that the calculated results obtained
by applying the Chebyshev collocation spectral LBM exhibit
excellent agreement with the analytical and numerical results.
The results obtained by the Chebyshev collocation spectral
LBM are thoroughly compared and verified with those of
spectral Navier-Stokes flow solvers. Comparisons indicate
that both the solution methodologies give nearly the same
results for the same grid size. Indications are that the present
solution methodology, that is, the Chebyshev collocation
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FIG. 23. Computed flow field for the 3D regularized cavity shown by streamlines for Re = 100 (top row), Re = 400 (middle row), and
Re = 1000 (bottom row) and the x–y midplane (left column), x–z midplane (middle column), and (c) y–z midplane (right column).

spectral LBM, can be considered as a suitable alternative to
spectral Navier-Stokes flow solvers, due to the simplicity of
its formulation to implement.

(ii) A proper implementation of the boundary conditions is
essential to have both numerical stability and accuracy for the
spectral methods. In this study, physical boundary conditions
based on the spectral solution of the governing equations
implemented on the boundaries are used to address these
issues. The results indicate that such a boundary treatment
gives stable solutions for the Chebyshev collocation spectral
LBM and provides accurate results in the whole solution
domain.

(iii) An iterative procedure is applied to generate consistent
initial conditions for the distribution function and the pressure
field for the Chebyshev collocation spectral LBM. The present
study shows that such a procedure can remove some possible
errors that may arise in unsteady flow simulations and can

provide accurate and reliable unsteady solutions comparable
to the analytical results.

(iv) The simulations performed by applying the Chebyshev
collocation spectral LBM verify the exponential convergence
of the solution when the error is evaluated for each grid
compared with the solution of the most refined one. They also
indicate that the value of the characteristic velocity should
be selected as small as possible to reduce the compressibility
effects leading to more accurate solutions. By choosing small
values of the characteristic velocity, the spectral convergence
of the solution is also verified by calculating the error for each
grid compared with the analytical solution.

(v) The computational efficiency of the proposed solution
methodology based on the Chebyshev collocation spectral
LBM is examined by comparison with those of the stan-
dard streaming-collision (classical) LBM and two finite-
difference LBM solvers, namely, the fourth-order compact
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finite-difference LBM and the developed second-order central
finite-difference LBM. It is demonstrated that the CCSLBM
reduces the CPU time and memory usage compared to these
LBM solvers when a high-accuracy solution is required and
the performance of the CCSLBM is highlighted in such
conditions.

(vi) Unlike other high-order accurate numerical methods
used to solve the LB equation, the Chebyshev collocation
spectral LBM applied here does not need any numerical
dissipation or filter for the solution to be stable and that
leads to highly accurate solutions. The decay of the error
at exponential rather than polynomial rates and free of both
dissipation and dispersive errors are the main advantages of
using the Chebyshev collocation spectral LBM compared
to other LBM methods. Note that high-accuracy solutions
obtained by applying the Chebyshev collocation spectral LBM
can be used as benchmark solutions for verifying the results
of other LBM-based flow solvers.

(vii) The extension of the Chebyshev collocation spectral
LBM for simulating 3D flow problems is also performed
and the capability and accuracy of the solution methodology
developed are demonstrated by computing a 3D regularized
cavity flow for different flow conditions. The present compu-
tations indicate that the Chebyshev collocation spectral LBM
implemented is robust, efficient, and accurate for solving 2D
and 3D, steady and unsteady low-speed flows. Such a stable
and highly accurate flow solver can be a reliable tool to
precisely study the physics of more complicated flows such
as transitional and turbulent flows.
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