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By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger
equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-
dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients.
We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian
parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and
source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse
propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of
gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee
the conservation of the average energy of the system.
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I. INTRODUCTION

Nonlinear physical phenomena with losses (absorptions)
and/or gains (amplifications) have been objects of extensive
experimental and theoretical studies for quite a long time.
Nonlinear physical phenomena can be found in many branches
of physics as, for example, in semiconductor electronics [1],
nonlinear optics [2], Bose-Einstein condensate (BEC) [3], and
plasma physics [4], to mention a few. Usually, the dynamics
of these physical phenomena can be theoretically described
by a nonlinear Schrödinger equation (NLSE) with loss or gain
terms. The construction of exact analytical solutions of the
NLSE with loss or gain terms, including solitary waves, also
called “dissipative solitons” [5], is an important and essential
area of contemporary research. Exact analytical solutions of
NLSE furnishes us a better understanding of those physical
phenomena with loss or gain terms, especially when the
theoretical model bears the main features of the real system
under experimental analysis. Moreover, they help us to design
parameters of control to avoid information losses carried by
optical solitons and to trap BEC, while enhancing its amplitude
as well as the lasting of its lifetime.

Essentially, the nonlinearity and losses and/or gains in a
physical system arise from interactions between their various
parts or from some inherent properties of their constituent
components, as mentioned in Ref. [5]. Nowadays, due to
scientific and technological advances, one has improved
the capability of suitably managing the intensity of those
interactions and inherent properties. In this vein, the nonlinear
differential equations that model the dynamics of nonlinear
physical phenomena with losses and/or gains present coeffi-
cients modulated in space-time. In this case one talks about the
so-called generalized nonautonomous NLSE [6]. Modulation
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of these coefficients allows us to control the width, amplitude,
and center of mass, while maintaining the overall shapes of
the solutions. Theoretically, it would be important to analyze
whether symmetries of the equation of motion, besides the
intrinsic nonautonomy which seems to be a crucial ingredient,
might also play relevant role to guarantee the shapes of
solutions in dissipative systems.

The theoretical study of those systems is carried out, in
general, by the analysis of the solutions (soliton solutions in
particular) of a nonautonomous NLSE with cubic and quintic
nonlinearities (CQNLSE) and with gain or loss term in two
dimensions, given by

i
∂�

∂Z
+ m(X,Z)

∂2�

∂X2
+ v(X,Z)� + g3(X,Z) |�|2 �

+ g5(X,Z)|�|4 � + iw(X,Z)� = 0, (1)

where � = �(X,Z).
From a physical point of view, the dimensionless Eq. (1)

can be associated with the ultrashort pulse propagating in
optical fibers, where X and Z stand for the transverse and
longitudinal directions of propagation, respectively. �(X,Z)
is the complex envelope of the electrical field, m(X,Z) is
the dispersion parameter, v(X,Z) is the linear refractive index,
g3(X,Z) and g5(X,Z) are the strength management of the Kerr
and non-Kerr nonlinearities along the medium, respectively,
and w(X,Z) is the gain or loss coefficient. Likewise, Eq. (1)
can govern the dynamics of BECs, where �(X,Z) plays the
role of the macroscopic order parameter which evolves in
time Z and must be localized in space X; m(X,Z) is the
effective mass of the condensate, v(X,Z) is the coefficient
associated with trapping potential, g3(X,Z) and g5(X,Z)
are the strength management of the interactions between
two atoms (cubic nonlinearity) and three atoms (quintic
nonlinearity) [7], respectively, and w(X,Z) is the gain or loss
potential phenomenologically incorporated, for example, to
take into account that interaction of a particle with the trapping
potential is not absolutely elastic [8]. In the case of BECs one
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can also interpret the term w(X,Z)|�(X,Z)|2, in the continuity
equation, as a source or drain of particles in the system.

In the past few years, a number of efficient methods were
developed to obtain localized exact solutions of the generalized
nonautonomous NLSE in two dimensions, such as the Hirota
bilinear method [9], the similarity transformation method,
which was applied for the first time to solve the nonau-
tonomous CQNLSE in Ref. [10], and later in Refs. [11,12], and
the point canonical transformations [13], which explains the
origin of the ansatz involved in the similarity transformation
method.

Meanwhile, recently there has been an increasing interest in
studying linear and nonlinear physical systems with potentials
exhibiting parity-time (PT ) symmetry. This class of physical
systems was introduced in the seminal paper by Bender and
Boettcher [14]. The definitions of PT -symmetric potentials
and their properties have been discussed in the past few
years [14–17]. Physical systems exhibitingPT symmetry have
motivated investigations on several fronts in physics [18–22].
In particular, it has been suggested that in nonlinear optics
there is a possibility of realizing PT -symmetric structures
[23–26], which are achieved through a suitable distribution of
the regions of gain or loss in the environment [23]. Specifically,
in Ref. [24] the authors found a class of nonlinear self-trapped
modes and examined in detail, for the first time, the interplay
between nonlinearity and PT symmetry. In Ref. [25] the
authors found dissipative localized modes in both self-focusing
and defocusing media withPT symmetry. Furthermore, BECs
confined in PT -symmetric potentials, both in realistic setups
as well as in theoretical models, have been recently studied.
In Ref. [27], the authors proposed a real quantum system in
which a condensate is confined in a double-well potential with
particles being injected into the condensate in one of the wells
and removed from the condensate in the other potential well.
Moreover, Cartarius and Wunner [20] found solutions in an
arrangement of a BEC in two PT -symmetric δ-function traps,
without source or drain terms.

Motivated by the above discussions, we consider nonau-
tonomous CQNLSEs with loss or gain terms [w(X,Z)]
that, together with the real trapping potential for BECs
or with the linear and real part of the refractive index
for ultrashort pulse propagation in optical fibers [v(X,Z)],
comprises a non-Hermitian potential in the NLSE. This
nonlinear equation is useful for describing, for example, the
ultrashort pulse propagation in dissipative nonlinear optical
fibers [24,25,28,29] or the dynamics of trapped cigar-shaped
BEC by taking into account particles in a potential which
is not completely elastic. Specifically, the nonautonomous
CNLSE with loss or gain terms describes the dynamics of
a pulse propagating in a dissipative Kerr nonlinear medium,
whereas the nonautonomous CQNLSE with loss or gain terms
describes the dynamics of an ultrashort pulse propagating in
a dissipative non-Kerr nonlinear medium. Furthermore, the
nonautonomous CQNLSE with loss or gain terms also models
BECs when interactions between two atoms (cubic nonlinear-
ity) and three atoms (quintic nonlinearity) and interactions
not absolutely elastic (loss or gain term) are concurrently
considered.

Here our objective is to obtain localized (in space) exact
solutions of CQNLSE with loss or gain term and variable

coefficients modulated in space-time. The systems we consider
here possess some degree of autonomy attributable to the
choices of the time-independent PT -symmetric potentials
and the value of the constant nonlinearities, as explained
below. Moreover, we notice, without proving it, that the
PT symmetry present in the systems we deal with is an
important feature that ensures the steadiness of the solutions
as well as the maintenance of their shapes during propagation.
We employ point canonical transformations to map nonau-
tonomous CQNLSE with loss or gain term, Eq. (1), onto a
time-independent CQNLSE with loss or gain term whose exact
solutions are known. This method was recently employed [13]
to reduce a CQNLSE with space and time modulated non-
linearities onto a stationary NLSE with constant coefficients,
namely,

μ� = −∂2�

∂x2
+ G3|�|2� + G5|�|4�, (2)

with �(X,Z) = ρ(X,Z) exp(iϕ(X,Z))�(x(X,Z)) and G3 and
G5 constants and homogeneous coefficients.

Based on the success of the point canonical transformation
method applied also in the study of Schrödinger equations
with time and space-dependent non-Hermitian potential [30],
we resort to a slight modification of the method [31] to map
Eq. (1) onto the stationary CQNLSE with a non-Hermitian
PT -symmetric potential of the form

i
∂ψ

∂z
+ ∂2ψ

∂x2
+ [V (x) + iW (x)]ψ

+G3|ψ |2ψ + G5|ψ |4ψ = 0, (3)

where ψ(x,z) is related to �(X,Z) by a similarity trans-
formation as shown in the next section. We remark that
the very same point canonical transformations are applied
to reach both Eqs. (2) and (3) and, at first view, the main
modifications in the approach seems to be in the similarity
transformation relating �(X,Z) with �(x) and the one relating
�(X,Z) to ψ(x,z). As a matter of fact, one can verify by
comparing Sec. II of Ref. [13] with Sec. II of the present
work that the system described Eq. (3) possesses some degree
of autonomy concerning the choices of the PT -symmetric
external potential V (x) + iW (x), which constitutes part of the
potential v(X,Z) and part of the gain or loss term w(X,Z) in the
original system whose dynamics is governed by Eq. (1), while
in Eq. (2) the information about the external potential v(X,Z)
is hidden in the behavior of �(x(X,Z)) and in the chemical
potential; that is, the external potential enjoys a lesser degree of
autonomy.

The method is explained in detail in the next section, where
we also discuss the particular case in which the dispersion
parameter m(X,Z) and the nonlinearity coefficients g3(X,Z)
and g5(X,Z) depend only on Z. In such particular cases the
form of the non-Hermitian “potential” v(X,Z) + iw(X,Z) is
simplified and Eq. (1) becomes more manageable. In addition
we can recover most of the situations treated in the literature
concerning Eq. (3) that seem to be relevant in real-world
applications. In Sec. III we use the formalism described
in Sec. II to obtain solutions of nonautonomous CQNLSE
with some specific PT -symmetric external potentials. We
work out three different examples that are generalizations
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of previously studied cases of NLSE with PT -symmetric
external potentials. Such a generalization comes in two
ways: the generalizations of the potentials V (x) + iW (x) in
Eq. (3), and the introduction of the quintic nonlinearities in
problems with PT -symmetric external potentials in NLSEs.
As far as we know, quintic nonlinearities—the last term in
Eq. (3)—has not been considered up to now. The quintic
nonlinearity accounts for three-body interaction in BECs
and for corrections to the refraction index in media where
ultrashort pulses propagate. By having in mind the case of
BECs, we conjecture that the injection of particles in one
side of a double-well trapping potential concurrently to the
removal of particles on the other well of the potentials can be

implemented with a gain or loss term which, together with the
trapping double-well potential, constitutes a PT -symmetric
potential.

In all cases we are able to find only bright solitonlike
solutions, due to the boundary conditions �(X → ±∞,Z) =
0 imposed on the wave functions. That should be confronted
with the cases when one deals with (2), for which one may
find bright, dark, as well as gray solitons [13]. In Sec. IV,
we analyze numerically the stability of the localized exact
solutions we have obtained. We employ numerical simulations
based on operator splitting Crank-Nicolson algorithm.

Finally, the Sec. V is devoted to further comments and to
the conclusions.

II. METHOD OF SOLUTION

The specific forms of the coefficients m(X,Z),v(X,Z), g3(X,Z), g5(X,Z), and w(X,Z) in Eq. (1) are taken to be

m(X,Z) = ζ (Z)

[γ (Z)h]2
, (4)

v(X,Z) = ω1(X,Z)X2 + f1(X,Z)X + f2(X,Z) + ζ (Z)V [F (h)] − ζ (Z)

h2

[(
hξ

2h

)2

− d

dξ

(
hξ

2h

)]
, (5)

g3(X,Z) = G3
ζ (Z)

β(Z)
h, g5(X,Z) = G5

ζ (Z)

β2(Z)
h2, (6)

w(X,Z) = f3(X,Z)X + f4(X,Z) + ζ (Z)W [F (h)], (7)

where h is an invertible, differentiable and positive function: h = h[γ (Z)X + δ(Z)], hξ = dh(ξ )
dξ

|ξ=γ (Z)X+δ(Z), and F (h) is a
function of h[ξ ]. The reason for choosing the nonhomogeneous coefficients and the potential in this way is clarified below.

We now perform a coordinate transformation and time rescaling [13,30,32],

X = ξ

γ (z)
− δ(z)

γ (z)
, Z − Z0 =

∫ z

0

dz′

ζ (z′)
, (8)

with γ [z(Z)] = γ (Z), δ[z(Z)] = δ(Z), and ζ [z(Z)] = ζ (Z) and, in order to remove the first derivative of � with respect to ξ ,
which arises from the transformation (8), we redefine the wave function �(X,Z) as

�[X(ξ,z),Z(z)] =
√

β(z)e−iα(ξ,z)�(ξ,z), (9)

where α(ξ,z) = −a(z) + 1
2

∫ ξ

0 h2(ξ ′)[ γ z

γ
(ξ ′ − δ) + δz]dξ ′, with a(z) being an arbitrary function. By substituting Eqs. (4)–(9) into

Eq. (1), one gets

iζ
∂�

∂z
+ ζ

h2

∂2�

∂ξ 2
+

{[
ω1 + ζ (h)2

4
γ 2

z

](
ξ − δ

γ

)2

+
[
f1 + ζ (h)2

2
γ zδz

](
ξ − δ

γ

)

+ f2 + ζ (h)2

4
δ

2
z + ∂

∂z

{
− a + 1

2

∫ ξ

0
h2(ξ ′)

[
γ z

γ
(ξ ′ − δ) + δz

]
dξ ′

}
+ ζV [F (h)]

− ζ

h2

[(
hξ

2h

)2

− d

dξ

(
hξ

2h

)]}
� + G3ζh|�|2� + G5ζh2|�|2�

+ i

{
f4 − hξζ

h
δz +

(
f3 − hξ

h
ζγ z

)(
ξ − δ

γ

)
+ ζ̄

2

d

dz
ln

(
β

γ

)
+ ζW [(h)]

}
� = 0, (10)

where fk = fk (ξ,z) (k = 1,2,3,4). From the last equation one can see why the factors involving γ (Z), ζ (Z), β(Z), and
h[γ (Z)X + δ(Z)] are present in the expressions of v(X,Z), m(X,Z), g3(X,Z), and g5(X,Z) and why we have chosen the specific
dependence of h, V , and W on ξ = γ (Z)X + δ(Z). Now, one may choose γ (z), δ(z), ζ (z), β(z), and h(ξ ) such that

ω1 = −ζh2

4
γ 2

z, f1 = −ζh2

2
γ zδz,

f2 = −ζh2

4
δ

2
z − ζ

∂

∂z

{
−a + 1

2

∫ ξ

0
h2(ξ ′)

[
γ z

γ
(ξ ′ − δ) + δz

]
dξ ′

}
, (11)

f3 = hξζ

h
γ z and f4 = hξ ζ̄

h
δz − ζ̄

2

d

dz
ln

(
β

γ

)
.
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In terms of the original variables (X,Z), the functions ω1,fi,i = 1,2,3,4 are given by

ω1(X,Z) = h2γ 2
Z

4ζ (Z)
, f1(X,Z) = h2

2ζ (Z)
γZδZ,

f2(X,Z) = h2

4ζ (Z)
δ2
Z − ∂

∂Z

[
−a + γ

2ζ

∫ X

0
h2(ξ ′)(γZX′ + δZ)dX′

]
, (12)

f3(X,Z) = hξ

h
γZ and f4 = hξ

h
δZ − 1

2

d

dZ
ln

(
β

γ

)
,

where γZ = dγ

dZ
, δZ = dδ

dZ
, revealing the intrinsic connection between ω1(X,Z), fk(X,Z) (k = 1,2,3,4) on the functions γ (Z),

δ(Z), ζ (Z), and β(Z) and h[ξ = γ (Z)X + δ(Z)]. Thus, Eq. (10) takes the form

i
∂�

∂z
+ 1

h2

∂2�

∂ξ 2
+ G3h|�|2� + G5h

2|�|4� + iW [F (h)]� +
{
V [F (h)] − 1

h2

[(
hξ

2h[ξ ]

)2

− d

dξ

(
hξ

2h

)]}
� = 0, (13)

and the wave function (9) is written as

�(X,Z) =
√

β(Z)e−iα(X,Z)�[ξ (X,Z),z(Z)], (14)

where α(X,Z) = −a(Z) + γ (Z)
2ζ (Z)

∫ X

0 h2(ξ ′)(γZX′ + δZ)dX′.
Since we still have a CQNLSE with nonhomogeneous

nonlinearities, gain or loss coefficient, and potential, we are
going to make further transformations in order to arrive at a
CQNLSE with constant nonlinearities and nonhomogeneous
gain or loss coefficient and potential. For that, we redefine ξ

as a function of another variable x

ξ − ξ0 =
∫ x

x0

dx ′

h(x ′)
, (15)

where h(x) = h[ξ (x)] and x − x0 = F (h) = ∫ ξ

ξ0
h(ξ ′)dξ ′. In

order to remove the first derivative of � with respect to x,
which arises from the transformation (15), we redefine the
wave function � as

�(ξ (x),z) = ψ(x,z)√
h(x)

. (16)

By substituting Eqs. (15) and (16) into Eq. (13), one can
check that ψ ≡ ψ(x,z) satisfies Eq. (3), where V (x) =
V [F (h)] and W (x) = W [F (h)]. Note that the variable z

can be formally identified with the temporal variable and
Eq. (3) can be interpreted as a CQNLSE with non-Hermitian
potential V (x) + iW (x). We are going to consider cases for
which the potential V (x) + iW (x) is invariant under the PT
transformation, that is, x → −x, z → −z, and i → −i [33].

By returning to the original space-time coordinates (X,Z),
the wave function can be obtained from Eqs. (16) and (14);
that is,

�(X,Z) =
√

β(Z)

h[ξ (X,Z)]
e−iα(X,Z)ψ(x,Z), (17)

where α(X,Z) = −a(Z) + γ (Z)
2ζ (Z)

∫ X

0 h2(ξ ′)(γZX′ + δZ)dX′.
Thus, we have shown, by means of point canonical trans-

formations, how the nonautonomous and nonhomogeneous
CQNLSE with gain or loss term, Eq. (1), can be mapped onto
a CQNLSE with constant nonlinearities and non-Hermitian
potential, Eq. (3).

Particular case h[ξ ] = 1. In this case the nonautonomous
and nonhomogeneous CQNLSE (1) is written as

i
∂�

∂Z
+ m(Z)

∂2�

∂X2
+ v(X,Z)� + g3(Z)|�|2�

+ g5(Z)|�|4� + iw(X,Z)� = 0. (18)

The coefficients are reduced to

m(Z) = ζ (Z)

γ 2(Z)
, (19)

v(X,Z) = −γ
d

dZ

(
γZ

ζ

)
X2

4
− γ

d

dZ

(
δZ

ζ

)
X

2

+ da

dZ
+ δ2

Z

4ζ
+ ζ (Z)V (ξ ), (20)

g3(Z) = G3
ζ (Z)

β(Z)
, g5(Z) = G5

ζ (Z)

β2(Z)
, (21)

w(X,Z) = −1

2

d

dZ
ln

(
β

γ

)
+ ζ (Z)W (ξ ) , (22)

where ξ = γ (Z)X + δ(Z). From Eq. (15) we deduce that ξ =
x. Thus, by means of Eq. (8) and the wave function (17), which
can be rewritten as

�(X,Z) =
√

β(Z)ψ(x,Z)

× exp

{
−i

[
γ γZ

4ζ
X2 + γ δZ

2ζ
X − a(Z)

]}
, (23)

we can map the nonautonomous and nonhomoge-
neous CQNLSE with gain or loss term (18) onto a
CQNLSE with constant nonlinearities and complex potential,
Eq. (3).

In this work we are interested in localized exact solutions
which obey the zero boundary conditions, i.e., |�|2 → 0
when X → ±∞. We present three examples and find the
corresponding localized (in X coordinate) exact solutions
for nonautonomous and nonhomogeneous CQNLSE with
PT -symmetry external potentials. Specifically, in the first
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example, we work with the CNLSE which governs the optical
wave propagation in a self-focusing Kerr nonlinear medium
[24]. In the last two examples, we consider the CQNLSE and
find localized exact solutions whose amplitudes and width
can be modulated. In all examples we find only bright-soliton
solutions as a consequence of the zero boundary conditions
above and in the case of CQNLSE we are able to modulate the
amplitude and width in such a way that a narrow bright soliton
becomes a wide bright soliton.

III. EXAMPLES

In this section we present some examples for which
localized exact solutions can be obtained and analyze their
behaviors in terms of the original variables X and Z. For this,
some interesting and useful complex external potential with
PT symmetry and management coefficients are given with
the suitable choices of γ (Z), δ(Z), h[ξ ], and β(Z).

Explicitly, we take h[ξ ] = eξ 2/b2
, γ (Z) = γ0√

ε1+ε2 cos(νZ)
,

ζ (Z) = γ 2

2 , β(Z) = β0γ0

γ
, and δ(Z) = a(Z) = 0, with |ε1| >

|ε2|. We refer to Refs. [12,13] for more details on the functions
h[ξ ] and γ (Z). As we saw in the previous section, these
functions are related to the management coefficients m(X,Z),
g3(X,Z), and g5(X,Z) by Eqs. (4) and (6), that is

m(X,Z) = 1

2
e
− 2γ 2

0
b2[ε1+ε2 cos(νZ)]

X2

,

g3(X,Z) =
γ 2

0 G3 exp
{ γ 2

0
b2[ε1+ε2 cos(νZ)]X

2
}

2β0[ε1 + ε2 cos(νZ)]3/2
, (24)

g5(X,Z) =
γ 2

0 G5 exp
{ 2γ 2

0
b2[ε1+ε2 cos(νZ)]X

2
}

2β2
0 [ε1 + ε2 cos(νZ)]2

.

It is important to remark that with this choice and from
Eqs. (8) and (15), we obtain the relationship between the
original variables (X,Z) and the variables (x,z), namely,

x = b
√

π

2
Erfi

[
γ0

b
√

ε1 + ε2 cos(νZ)
X

]
,

z = γ 2
0

ν

√
ε2

1 − ε2
2

arctan

[√
ε1 − ε2

ε1 + ε2
tan

(
ν

2
Z

)]
,

where Erfi is the imaginary error function [34]. Then, we notice
that (X,Z) → (−X,−Z) implies into (x,z) → (−x,−z), such
that we can establish the PT symmetry in the examples we
treat below.

In the particular case h[ξ ] = 1, and with the same functions
γ (Z), ζ (Z), and β(Z) chosen above, the relationship between

the original variables (X,Z) and the variables (x,z) are

x = γ0√
ε1 + ε2 cos(νZ)

X,

z = γ 2
0

ν

√
ε2

1 − ε2
2

arctan

[√
ε1 − ε2

ε1 + ε2
tan

(
ν

2
Z

)]
.

Thus, when (X,Z) → (−X,−Z) one also has (x,z) →
(−x,−z) . Moreover, from Eqs. (19) and (21) we get

m(Z) = 1

2
, g3(Z) = G3γ

2
0

2β0[ε1 + ε2 cos(νZ)]3/2
,

(25)

g5(Z) = G5γ
2
0

2β2
0 [ε1 + ε2 cos(νZ)]2

,

such that, from (24) and (25), one has m(X,Z) = m(−X,−Z),
g3(X,Z) = g3(−X,−Z), and g5(X,Z) = g5(−X,−Z).

A. Example 1

As a first example, we consider a model involving only
cubic nonlinearity, i.e., G5 = 0. For our purposes, we assume
a PT -symmetric Scarf II potential [15,24,25],

V (x) = V0sech2 (x) , W (x) = W0sech(x) tanh(x), (26)

where V0 and W0 are the amplitudes of the real and imaginary
parts of the potential, respectively. We want to point out
that an analysis of the linear model associated with the
potential of Eq. (26) was studied in Ref. [15]. There it was
demonstrated that when W0 � V0 + 1/4 the linear model
presents a completely real energy spectrum. Moreover, the
most interesting feature corresponding to the linear model is
the existence of a critical value for the imaginary amplitude
W0 = V0 + 1/4. Above this critical value, an abrupt phase
transition takes place, the PT symmetry is spontaneously
broken, and the real eigenvalue spectrum becomes partly or
completely a complex spectrum. In the nonlinear model, such
a restriction is not applied. Notwithstanding, one can check
that the envelope of ψ(x,z) is given by the lowest energy
eigenfunction of the corresponding problem in the linear
Schrödinger equation [24,25].

This first example, Eq. (3), with V (x) and W (x) given by
Eq. (26) and G3 = 1, can be linked to optical wave propagation
in a self-focusing Kerr nonlinear medium with PT -symmetric
potential [24] and it admits a nonlinear mode of the form

ψ(x,z) =
√

2 − V0 +
(

W0

3

)2

sech(x)ei{z+ W0
3 arctan[sinh(x)]},

(27)

corresponding to zero boundary condition at x → ±∞.
In order to find the complex external potential and the wave

function that solves Eq. (1), we substitute Eq. (26) in Eqs. (5)
and (7), obtaining the refraction index v(X,Z),

v(X,Z) = −
[
4γ 4

0 + e
4γ 2

0
b2[ε1+ε2 cos(νZ)]

X2

b4ε2
2ν

2 sin2(νZ)
]

8b4[ε1 + ε2 cos(νZ)]2
e
− 2γ 2

0
b2[ε1+ε2 cos(νZ)]

X2

X2 − b2e
2γ 2

0
b2[ε1+ε2 cos(νZ)]

X2

ε2ν
2 cos(νZ)

8γ 2
0

+ γ 2
0 e

− 2γ 2
0

b2[ε1+ε2 cos(νZ)]
X2

2b2[ε1 + ε2 cos(νZ)]
+ V0γ

2
0

2[ε1 + ε2 cos(νZ)]
sech2

{√
πb

2
Erfi

[
γ0

b
√

ε1 + ε2 cos(νZ)
X

]}
, (28)

013205-5



MEZA, DUTRA, HOTT, AND ROY PHYSICAL REVIEW E 91, 013205 (2015)

and the gain or loss coefficient w(X,Z),

w(X,Z) = γ 2
0 ε2ν sin(νZ)

b2[ε1 + ε2 cos(νZ)]2
X2 + ε2ν sin(νZ)

2 [ε1 + ε2 cos(νZ)]

+ W0γ
2
0

2 [ε1 + ε2 cos(νZ)]
sech

(√
πb

2
Erfi

{
γ0

b
√

[ε1 + ε2 cos(νZ)]
X

})
tanh

(√
πb

2
Erfi

{
γ0

b
√

[ε1 + ε2 cos(νZ)]
X

})
.

(29)

The later expressions satisfy the symmetry properties v(X,Z) = v(−X,−Z) and w(X,Z) = −w(−X,−Z); i.e., the refraction
index and gain or loss coefficient are even and odd, respectively, with regard to X and Z reversals. Therefore, we can
say that v(X,Z) + iw(X,Z) works as a complex PT -symmetric potential and, due to the specific choices of h[ξ ], γ (Z),
δ(Z), ζ (Z), and β(Z), the nonautonomous NLSE in Eq. (1) is invariant under “time” (Z → −Z, i → −i) and space
(X → −X) reversals. The wave function �(X,Z), which is the solution of Eq. (1), is obtained by substituting Eq. (27) into
Eq. (17),

�(X,Z) =
√

β0

[
2 − V0 +

(
W0

3

)2]
sech

{√
πb

2
Erfi

[
γ0

b
√

ε1 + ε2 cos(νZ)
X

]}

× [ε1 + ε2 cos(νZ)]1/4 e
− γ 2

0
2b2[ε1+ε2 cos(νZ)]

X2

eiϕ(X,Z), (30)

where

ϕ(X,Z) = −b2ε2ν sin(νZ)

8γ 2
0

exp

{
2γ 2

0 X2

b2 [ε1 + ε2 cos(νZ)]

}
+ W0

3
tan−1

(
sinh

{√
πb

2
Erfi

[
γ0X

b
√

ε1 + ε2 cos(νZ)

]})

+ γ 2
0

ν

√
ε2

1 − ε2
2

tan−1

[√
ε1 − ε2

ε1 + ε2
tan

(
νZ

2

)]
.

From Eq. (30), we notice that �∗(−X,−Z) = �(X,Z); that is, �(X,Z) is even under X and Z reversals.
A physically interesting situation arises in the particular case h[ξ ] = 1. In this case, the refractive index v(X,Z) and the gain

or loss coefficient w(X,Z) are

v(X,Z) = −ε2ν
2 {4ε1 cos(νZ) + ε2 [3 + cos (2νZ)]}

16 [ε1 + ε2 cos(νZ)]2 X2 + V0γ
2
0

2 [ε1 + ε2 cos(νZ)]
sech2

[
γ0X√

ε1 + ε2 cos(νZ)

]
,

w(X,Z) = ε2ν sin(νZ)

2 [ε1 + ε2 cos(νZ)]
+ W0γ

2
0

2 [ε1 + ε2 cos(νZ)]
sech

[
γ0X√

ε1 + ε2 cos(νZ)

]
tanh

[
γ0X√

ε1 + ε2 cos(νZ)

]
. (31)

Even in this particular case, the refraction index and gain or loss coefficient are even and odd, respectively, with regard to X and
Z reversals. Thus, the potential v(X,Z) + iw(X,Z) is PT symmetric.

Moreover, Eq. (18) reduces to the form

i
∂�

∂Z
+ 1

2

∂2�

∂X2
+ g3(Z)|�|2� + v(X,Z)� + iw(X,Z)� = 0, (32)

where g3(Z), v(X,Z), and w(X,Z) satisfy Eqs. (25) and
(31). Equation (32) can be associated with the optical wave
propagation in the self-focusing Kerr nonlinear medium with
modulated refractive index along both the transverse and the
longitudinal axes [35]. Kartashov and Torner discovered that,
under proper conditions, longitudinally periodic lattices can
exhibit amplification of spatial soliton but they did not take
into account radiative losses that occur when a high-frequency
wing of the soliton spatial spectrum is transmitted through
the potential barrier and leaves the guiding channel [35].
By means of this example, we consider a refractive index
modulated along both the transverse and longitudinal axes,
similar to that considered in [35]. Besides, we take into
account the losses and gains of the system and explore the

effects of Kerr nonlinearity, refraction index and gain or loss
coefficient on the optical wave propagation.

Figure 1 presents the plot of the refractive index v(X,Z)
and gain or loss coefficient w(X,Z). From Fig. 1, one can
see that v(X,Z) forms a regular distribution of potential
barriers along the longitudinal axis Z [Fig. 1(a)], and each
potential barrier is correlated with a sudden change of w(X,Z)
in the transverse direction X [Fig. 1(b)]. Moreover, the
strength of the non-Kerr nonlinearity, g3(Z), is maximum
in every place where the potential barrier appears. The
changes of w(X,Z) are interpreted as a power outflow
in one side of the fiber while a power inflow is provided
by an external source of energy on the other side of the
fiber, which can be appreciated by means of the continuity
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FIG. 1. (Color online) Periodic evolution of (a) the refraction index v(X,Z) and (b) the gain or loss coefficient w(X,Z) [Eq. (31)], with
ν = 5, ε1 = 6, ε2 = −4, V0 = 37, W0 = 18, and γ0 = 2.

equation (Poynting’s theorem) ∂Z |�|2 + ∂X[i/2(�∂X�∗ −
�∗∂X�)] = −2w(X,Z)|�|2, with � = �(X,Z) given
below.

By using Eqs. (23) and (27), we obtain the wave function
�(X,Z), which is the solution of Eq. (32),

�(X,Z) =
√

β0

[
2 − V0 +

(
W0

3

)2]

× sech

[
γ0√

ε1 + ε2 cos(νZ)
X

]

× [ε1 + ε2 cos(νZ)]1/4 eiφ(X,Z), (33)

where

φ(X,Z) = W0

3
ϕ(X,Z)

+ γ 2
0

ν

√
ε2

1 − ε2
2

arctan

[√
ε1 − ε2

ε1 + ε2
tan

(
ν

2
Z

)]

− ε2ν sin(νZ)

4 [ε1 + ε2 cos(νZ)]
X2,

with ϕ(X,Z) = arctan[sinhγ0X/
√

ε1 + ε2 cos(νZ)]. We no-
tice that again �∗(−X,−Z) = �(X,Z).

The evolution and behavior of the intensity of the localized
exact solution |�(X,Z)|2 is shown in Fig. 2. From that figure,
one can see that the intensity of the localized exact solution
forms a dip due to the effects produced on it by the potential
barrier and the maximum strength of g3(Z). The sudden change
of w(X,Z) does not affect |�(X,Z)|2, it affects only the phase
of �(X,Z). The role played by the external source or drain
of energy can be appreciated through the source or drain term
on the right-hand side of the continuity equation (Poynting’s
theorem), as discussed above. We recall that thePT symmetry
imposes that w(X,Z) must be odd under X and Z reversals
and this leads to the conservation of the average energy in one
period ν−1, as one can check explicitly by integrating in X and
by taking the average of the continuity equation. Thus, one can
say that the PT symmetry must be present in order to have
stable solutions of those kind of systems.

A simpler example happens when only the potential and the
gain or loss term are space-time dependent and the nonlinearity
is homogeneous and time independent. By considering this
case and by taking h[ξ ] = 1, γ (Z) = γ0√

ε1+ε2 cos[νZ]
, ζ (Z) =

β(Z) = γ 2

2 , and δ(Z) = a(Z) = G5 = 0, with |ε1| > |ε2|,
Eq. (1) reduces to the form

i
∂�

∂Z
+ 1

2

∂2�

∂X2
+ G3|�|2� + v(X,Z)� + iw(X,Z)� = 0,
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FIG. 2. (Color online) (a) |�(X,Z)|2 like a breathing bright soliton. (b) Contour plot of “breathing bright soliton,” Eq. (33), with ν = 5,

ε1 = 6, ε2 = −4, V0 = 37, W0 = 18, β0 = 1/
√

2, and γ0 = 2.

where v(X,Z) and w(X,Z) are the same given by Eq. (31).
The solution to the latter differential equation is

�(X,Z) =
√

γ0

2

[
2 − V0 +

(
W0

3

)2]

× sech

[
γ0

ε1 + ε2 cos(νZ)
X

]

× [ε1 + ε2 cos(νZ)]−1/2 eiφ(X,Z).

B. Example 2

In this example we present a generalization of the model
considered in the previous example. Here we take into account
both cubic and quintic nonlinearities. To achieve our goal, we
assume a generalized PT -symmetric Scarf II potential,

V (x) = 2V0λ

μ + λ cosh(2x)
, W (x) = (2λ)3/2W0 sinh(2x)

2[μ + λ cosh(2x)]3/2
,

(34)

where μ � λ > 0 are parameters of the model. An interesting
feature of the PT -symmetric potential in Eq. (34) is its
continuous deformation as λ varies. From Figs. 3(a) and 3(b),
one can observe that the amplitudes of the real and imaginary

parts decrease while spacing between the regions of loss and
gain of the imaginary part increases as λ approaches zero.

Thus, Eq. (3) with V (x) and W (x) given in Eq. (34) models
optical wave propagation in a non-Kerr nonlinear medium
with a PT -symmetric potential, and it admits, with G5 =
− 3G2

3(μ+λ)(μ−λ)
4λ2(2μ/λ−V0+W 2

0 /9)2 , a localized exact solution of the form

ψ(x,z) =
√

2λ

G3

[
2
μ

λ
− V0 +

(
W0

3

)2]

×
exp

{
i
[
z + W0

3

√
2λ

λ+μ
F (ϕ|m)

]}
√

μ + λ cosh(2x)
, (35)

where F (ϕ|m) is the incomplete elliptic integral of the first
kind [34], with amplitude ϕ = arctan[sinh(x)] and elliptic
parameter m = (μ − λ)/(μ + λ).

A relevant aspect of the behavior of the intensity of
the localized exact solution is that its width as well as its
amplitude increase when λ approaches zero, going from a
bright soliton to a wide bright soliton [13], as it is shown in
Figs. 3(c) and 3(d). Otherwise, if the value of λ increases,
then the strength of the non-Kerr nonlinearity G5 decreases

to its minimum value −3G2
3

4[4−(W 2
0 /9−V0)2]

when λ = (V0−W 2
0 /9)μ

2 ;

beyond that point G5 increases to zero. The amplitude of

(a) (b) (c) (d)

FIG. 3. (Color online) Continuous deformation of (a) V (x) real part of the PT -symmetric potential [Eq. (34)]. (b) W (x) imaginary part of
the PT -symmetric potential [Eq. (34)]. (c) Profile of |ψ(x)|2 [Eq. (35)] for different values of λ. (d) |ψ(x)|2 similar to a wide bright soliton,
for λ = 1/73. With V0 = 37, W0 = 18, μ = 1.
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FIG. 4. (Color online) (a) Deformed refraction index v(X,Z) [Eq. (36)]. (b) Continuous separation of regions of loss and gain, w(X,Z)
[Eq. (37)], with ν = 5, γ0 = 2, ε1 = 0.6, ε2 = −0.4, V0 = 37, W0 = 18, μ = 1, and λ = 1/73.

the transverse power-flow density S = i
2 (ψ∂xψ

∗ − ψ∗∂xψ) =
W0(2μ/λ−V0+W 2

0 /9)
3G3

[ 2λ
μ+λ cosh(2x) ]

3/2 associated with the above
localized exact solution increases when λ decreases.

It is noteworthy that, when λ = μ, the non-Kerr nonlin-
earity vanishes (G5 = 0) and the PT -symmetric potential,
Eq. (34), the localized exact solution, Eq. (35), and the
transverse power-flow density S are reduced precisely to those
equations presented in Refs. [24,25] (first example). It is in
this sense that we say the second example is a generalization
of the first one. Thus, when G3 = 1 (self-focusing case) or

G3 = −1 (self-defocusing case) our model is a generaliza-
tion of the models given in Refs. [24,25] and Ref. [29],
respectively.

We now study the evolution Eq. (18) using the generalized
PT -symmetric Scarf II potential. In this case, Eq. (18) might
describe the optical wave propagation in a non-Kerr nonlinear
medium with refractive index and gain or loss term modulation
along both transverse and longitudinal axes. From Eqs. (20),
(22), and (34), we find that the refraction index v(X,Z) and
the gain or loss coefficient w(X,Z) are

v(X,Z) = −ε2ν
2 {4ε1 cos(νZ) + ε2[3 + cos(2νZ)]}

16 [ε1 + ε2 cos(νZ)]2 X2 + V0γ
2
0

[ε1 + ε2 cos(νZ)]

λ

μ + λ cosh
[ 2 γ0X√

ε1+ε2 cos(νZ)

] , (36)

w(X,Z) = ε2ν sin(νZ)

2 [ε1 + ε2 cos(νZ)]
+ W0γ

2
0

4 [ε1 + ε2 cos(νZ)]
sinh

[
2γ0X√

ε1 + ε2 cos(νZ)

]
(2λ)3/2{

μ + λ cosh
[ 2γ0X√

ε1+ε2 cos(νZ)

]}3/2 . (37)

From the last expressions, one can check that v(X,Z) =
v (−X, − Z) and w(X,Z) = −w(−X,−Z). Then, the com-
plex potential v(X,Z) + iw(X,Z) is PT symmetric. In this
case, the refractive index and gain or loss term have a develop-
ment such as that shown in Fig. 1, but with a peculiar behavior;

that is, when λ is approaching zero the width and height
of the potential barriers formed by v(X,Z) are continuously
deformed, which leads to regions of gain and loss that are con-
tinuously separated. This peculiar behavior is shown in Fig. 4.
Moreover, the maximum strength of the Kerr and minimum
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FIG. 5. (Color online) (a) Intensity, |�|2, similar to a breathing wide bright soliton. (b) Contour plot of the period evolution the “breathing
wide bright soliton” (38), with ν = 5, ε1 = 0.6, ε2 = −0.4, γ0 = 2, β0 = 10

√
5, V0 = 37, W0 = 18, μ = 1, and λ = 1/73.

strength of the non-Kerr nonlinearities, g3(Z) and g5(Z), are in
phase with the potential barriers. Now we examine the reper-
cussions of Kerr and non-Kerr nonlinearities and of the de-
formed v(X,Z) and w(X,Z) on the optical wave propagation.

The wave function �(X,Z), which is the solution of
Eq. (18), is obtained from Eq. (23), using Eq. (35), and is
given by

�(X,Z) =
√

2β0λ

G3

[
2
μ

λ
− V0 +

(
W0

3

)2]
eiφ(X,Z)

× [ε1 + ε2 cos(νZ)]1/4√
μ + λ cosh

[ 2γ0X√
ε1+ε2 cos(νZ)

] , (38)

where

φ(X,Z) = − ε2ν sin(νZ)

4[ε1 + ε2 cos(νZ)]
X2

+W0

3

√
2λ

λ + μ
F

[
ϕ(X,Z)

∣∣∣∣μ − λ

μ + λ

]

+ γ 2
0

ν

√
ε2

1 − ε2
2

arctan

[√
ε1 − ε2

ε1 + ε2
tan

(
νZ

2

)]
,

with ϕ(X,Z) = arctan{sinh[γ0X/
√

ε1 + ε2 cos(νZ)]}. From
Eq. (38) we can deduce that �∗(−X,−Z) = �(X,Z).

The intensity of the beam is similar to that shown in Fig. 2.
However, in this case we can also modulate the width and
amplitude of the intensity by varying the parameter λ. That is,
when λ approaches zero, the width and amplitude increases
due to the decreasing of the potential barriers and due to the
separation of the regions of loss and gain and those effects
produced by the maximum and minimum strength of the g3(Z)
and g5(Z), respectively. Thus, when λ is near zero, the intensity
of the beam is similar to a wide breathing bright soliton [13],
as shown in Fig. 5.

It is worth noting that, when λ = μ (G5 = 0), Eqs. (39) and
(38) are reduced exactly to Eqs. (31) and (33), as expected.

We also notice that the above example may be applied
to the case of BEC. In that case, the equation ∂Z|�|2 +

∂X[i/2(�∂X�∗ − �∗∂X�)] = −2w(X,Z)|�|2 is interpreted
as governing the continuity of the number of particles in the
system. Again, the odd parity of w(X,Z) under X and Z

reversals implies the conservation of the average number of
particles. As a matter of fact, the term on the right-hand side of
the continuity equation may be interpreted as source or drain of
particles, where the supplying and draining of particles occur
simultaneously and in opposite sides of the potential wells,
very similar to the effect described in Ref. [27].

It is noteworthy that for the case when the nonlinear
coefficients are constants, i.e., g3(Z) = G3 and g5(Z) = G5,
the system also presents analytical solutions. For example,
if we consider h[ξ ] = 1, γ (Z) = √

2, ζ (Z) = β(Z) = 1, and

a(Z) = − ∫ δ2
Z

4 dZ, Eq. (1) takes the form

i
∂�

∂Z
+ 1

2

∂2�

∂X2
+ G3|�|2� + G5|�|4�

+ v(X,Z)� + iw(X,Z)� = 0,

where v(X,Z) = − δZZ√
2
X + V0sech2[X + δ(Z)]andw(X,Z) =

(2λ)3/2W0
sinh{2[X+δ(Z)]}

(μ+λ cosh{2[X+δ(Z)]})3/2 , and the analytic solution of
the differential equation which describes the dynamics of the
system is

|�(X,Z)| =
√

2λ

G3

(
2μ

λ
− V0 + W 2

0

9

)

× (μ + λ cosh{2[X + δ(Z)]})−1/2.

The evolution of the intensity of the analytical solution in
this case has a snakelike behavior, which was first studied in
Ref. [31].

On the other hand, when we take h[ξ ] = 1, γ (Z) =
γ0√

ε1+ε2 cos(νZ)
, ζ (Z) = β(Z) = 1, and δ(Z) = a(Z) = 0, with

|ε1| > |ε2|, Eq. (1) reduces to the expression

i
∂�

∂Z
+ m(Z)

∂2�

∂X2
+ G3|�|2� + G5|�|4�

+ v(X,Z)� + iw(X,Z)� = 0,
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(a) (b) (c) (d)

FIG. 6. (Color online) (a) Profile of the real part of the complex potential [Eq. (39)] . (b) Profile of the imaginary part of the complex
potential [Eq. (39)] . (c) Transverse section of the intensity for different values of r . (d) Intensity of the exact solution similar to wide bright
soliton [Eq. (40)] for r = 0.01. With V0 = 25.5, W0 = 0.5, s = 0.5.

where m(Z) = [ε1 + ε2 cos(νZ)]/γ 2
0 ,

v(X,Z) = ν2γ 2
0 ε2 [(ε2 − 4ε1) cos(νZ) − 5ε2]

32 [ε1 + ε2 cos(νZ)]3 X2

+V0sech2

[
γ0X√

ε1 + ε2 cos(νZ)

]
,

w(X,Z) = ε2ν sin(νZ)

4 [ε1 + ε2 cos(νZ)]

+W0 sinh

[
2γ0X√

ε1 + ε2 cos(νZ)

]

× (2λ)3/2{
μ + λ cosh

[ 2γ0X√
ε1+ε2 cos(νZ)

]}3/2 .

The analytic solution for the latter differential equation is

|�(X,Z)| =
√

2λ

G3

(
2μ

λ
− V0 + W 2

0

9

)

×
{
μ + λ cosh

[
2γ0X√

ε1 + ε2 cos(νZ)

]}−1/2

.

C. Example 3

In this last example we present a generalization of the
model proposed by Midya and Roychoudhury [36], and then
we analyze the evolution of �(X,Z) governed by Eq. (18).
For our purpose, we consider a generalized PT -symmetric
Rosen-Morse II potential,

V (x) = − 2V0r

s + r cosh(2x)
, W (x) = 2W0r sinh(2x)

s + r cosh(2x)
, (39)

where s � r > 0 are parameters of the generalized model. It
is important to mention that the linear problem for the PT -
symmetric Rosen-Morse II potential was studied by Lévai and
Magyari [37]. There the authors demonstrated that the energy
spectrum of the linear problem is always real and the energy
eigenvalues can take positive or negative values, depending on
a suitable choice of the values of the amplitudes of the real
and imaginary parts of this potential. This feature might be
due to the imaginary part of the potential, which in contrast to
the real part is asymptotically nonvanishing. For this reason,
there is no breaking of symmetry and consequently there is no
phase transition in such systems.

The generalized PT -symmetric Rosen-Morse II poten-
tial is continuously deformed when r approaches to zero.
Figures 6(a) and 6(b) present the profiles of both real and
imaginary parts of the potential V (x) + iW (x) for different
values of r .

In this case, Eq. (3) with V (x) and W (x) given by Eq. (39)

and with G5 = − 3G2
3(s−r)(s+r)

4(V0r+2s)2 would describe the optical
wave propagation in a non-Kerr medium with nonlinear PT -
symmetric potential and it admits a localized exact solution of
the form

ψ(x,z) =
√

2 (V0r + 2s)

G3

ei[(1−W 2
0 )z+W0x]

√
s + r cosh(2x)

. (40)

From Eq. (40), one can observe that |ψ(x,z)| does not
depend on W0. Furthermore, the width and the amplitude
of the intensity of the localized exact solution increases and
decreases, respectively, at the same time that r approaches
zero, so the intensity goes from a bright solitonlike to a wide
bright solitonlike, as presented in Figs. 6(c) and 6(d). On
the other hand, the strength of the non-Kerr nonlinearity G5

decreases when r approaches zero and reaches its minimum

value, − 3G2
3

16 , when r = 0. Furthermore, the energy associ-
ated to the localized exact solution, ε = ∫ ∞

−∞ |ψ(x,z)|2dx =
4(2s+V0r)arccoth[

√
(s+r)/(s−r)]

G3
√

(s+r)/(s−r)
, increases when r is near zero.

Note that when r equals s, the strength of the non-Kerr
nonlinearity vanishes (G5 = 0), the PT symmetric complex
potential Eqs. (39), the localized exact solution Eq. (40), and
the energy ε are reduced exactly to those presented in Ref. [36].
In view of this, we say that the our model is a generalization
of the model studied in aforementioned reference.

Now we study the evolution of the solution of Eq. (1) in
the presence of the PT -symmetric Rosen-Morse II potential,
Eq. (39), and β(Z) = β0

γ0
γ (Z). In this case, from Eqs. (20) and

(22), we get the refraction index v(X,Z) and the gain or loss
coefficient w(X,Z) given by

v(X,Z) = −ε2ν
2{4ε1 cos(νZ) + ε2[3 + cos(2νZ)]}

16[ε1 + ε2 cos(νZ)]2
X2

− γ 2
0

ε1 + ε2 cos(νZ)

V0r

s + r cosh
[ 2γ0X

ε1+ε2 cos(νZ)

] , (41)

w(X,Z) = γ 2
0 W0r

ε1 + ε2 cos(νZ)

sinh
[ 2γ0X

ε1+ε2 cos(νZ)

]
s + r cosh

[ 2γ0X

ε1+ε2 cos(νZ)

] .
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FIG. 7. (Color online) (a) Deformed refraction index. (b) Continuous separation of regions of loss and gain [Eq. (39)], with ν = 5, γ0 = 2,
ε1 = 0.6, ε2 = 0.4, V0 = 25.5, W0 = 0.5, s = 0.5, and r = 0.01.

From these last expressions it is easy to check that v(X,Z) =
v (−X, − Z) and w(X,Z) = −w(−X,−Z). In this case the
complex potential v(X,Z) + iw(X,Z) is PT symmetric, too.
In this context, the refraction index forms a regular distribution
of potential wells along the longitudinal axis Z [Fig. 7(a)],
and each potential well is associated with a change of the
gain or loss coefficient in the transverse axis X [Fig. 7(b)].
Furthermore, the width and depth of each potential well formed
by v(X,Z) is continuously deformed, whereas the regions of
gain and loss in w(X,Z) are continuously kept apart from each
other when r approaches zero, as shown in Fig. 7. Also, the
strength of the Kerr nonlinearity g3(Z) is maximum wherever
the potential wells appear and non-Kerr nonlinearity g5(Z)
is constant.

The localized exact solution �(X,Z), which is the solution
of Eq. (1), is obtained from Eq. (23) by using Eq. (40),

�(X,Z) =
√

2(V0r + 2s)β0

G3
eiϕ(X,Z)

× [ε1 + ε2 cos(νZ)]−1/4√
s + r cosh

[ 2γ0X

ε1+ε2 cos(νZ)

] , (42)

where

ϕ(X,Z) = − ε2ν sin(νZ)

4 [ε1 + ε2 cos(νZ)]
X2 + W0γ0√

ε1 + ε2 cos(νZ)
X

+ γ 2
0

(
1 − W 2

0

)
ν

√
ε2

1 − ε2
2

tan−1

[√
ε1 − ε2

ε1 + ε2
tan

(
νZ

2

)]
.

From Eq. (42) we see that �∗(−X,−Z) = �(X,Z). The
amplitude of the localized exact solution is shown in Fig. 8.
From Fig. 8, one can see that the amplitude of the localized
solution is maximum at the bottom of the potential well
(X = 0), which coincides with the maximum strength of
the Kerr nonlinearity and the sudden change of w(X,Z).
Moreover, the intensity of the wave takes the form of a wide
breathing bright soliton when r is close to zero (Fig. 8).

We want to draw attention to the fact that the localized exact
solutions that we have presented in examples 2 and 3 cannot be
recovered from any of the PT -symmetric potentials studied
in Ref. [38].

IV. STABILITY ANALYSIS

So far, we have presented new localized exact solutions of
the nonautonomous CQNLSE with gain or loss term Eq. (1).
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FIG. 8. (Color online) (a) |�(X,Z)|2, like “breathing wide bright soliton.” (b) Contour plot of the periodic evolution of |�(X,Z)|2 [Eq. (42)],
with ν = 5, γ0 = 2, ε1 = 0.6, ε2 = 0.4, β0 = 2, V0 = 25.5, W0 = 0.5, s = 0.5, and r = 0.01.

It is worth mentioning that in real-world applications the stable
solutions are the more important ones for the dynamics of
physical phenomena.

In this section, we analyze by means of a numerical method
and by resorting to Lyapunov criteria, the stability of the
localized exact solutions obtained in the previous section,
Eqs. (33), (38), and (42). For it, we have employed numer-
ical simulations based on operator splitting Crank-Nicolson
algorithm, by working with finite-difference methods. This
approach has already been successfully employed in Ref. [39]
to analyze the stability of two-component vector solitons. We
refer to Refs. [40,41] for more details on the description of the
algorithm by using the Mathematica software platform.

Here we use the steps �X = 0.02 and �Z = 0.01, for the
transverse and longitudinal directions of propagation, respec-
tively, to obtain the numerical results over the longitudinal
direction of propagation in the range [0,400]. Moreover, we
add a white noise in the initial pulse �(X,0), in such a way
that the perturbed pulse reads

�pert(X,0) = �(X,0)[1 + 0.01 R(X)],

where R(X) is a random number between 0 and 1.

The comparison between numerical and analytical results
are shown in Fig. 9, where the solutions are shown only for
X = 0. One can note that the maximum amplitudes of the
perturbed numerical solutions as functions of Z do not coincide
with the corresponding analytical ones. In fact, according to
Lyapunov criteria [42,43], when the perturbed solution evolves
around the analytical one the system is said to be stable. This
can be applied to both solutions (33) and (38). In the later case,
the stability is realized only for λ � μ, since that the solution
becomes more susceptible to the initial perturbation, that is, it
tends to be unstable as λ approaches zero (when the quintic
nonlinearity coefficient becomes predominant).

Moreover, the localized exact solution (42) was found to be
unstable under the considered initial perturbation according to
Lyapunov criteria, since the perturbed solution evolves away
from the exact one. We have not presented the numerical
findings regarding the solution (42) and, once it is unstable, it
should be understood in this study only as an example of the
application of the method.

V. CONCLUSION

In general, a complete description of the propagation of ul-
trashort pulses in optical fibers takes into account higher-order

FIG. 9. (Color online) Analysis of stability. (a) Maximum amplitude of the solution Eq. (33); analytical (red) and perturbed (blue).
(b) Maximum amplitude of the solution Eq. (38); analytical (red) and perturbed (blue) for λ = μ

2 (V0 − W 2
0 /9).
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nonlinearities, which arise from the expansion of the refractive
index n in powers of ultrashort pulse intensity I , namely,
n = n0 + n2I + n4I

2 + · · · , where n0 is the linear refractive
index coefficient, n2 = 3χ (3)/8n0 and n4 = 5χ (5)/32n0 are the
cubic and the quintic nonlinearity coefficients, respectively;
χ (i) the ith-order susceptibility. If the expansion is truncated
at second-order terms with respect to I , the corresponding
differential equation governing the nonlinear evolution of
the ultrashort pulse in the optical fiber is the CQNLSE,
where n0 splits into a real and an imaginary part, which
are sometimes designated as a potential and a gain or loss
(amplification or absorption) term, respectively. The refraction
index may depend on both the longitudinal and transverse
directions of propagation and, when those coefficients are
specifically designed, by managing them in order to guarantee
the propagation without dissipation of the optical wave as a
nondissipative soliton, one has the so-called nonautonomous
CQNLSE.

In this paper we have applied point canonical trans-
formation, together with similarity transformation, to map
nonautonomous CQNLSE onto an autonomous one with a
complex potential. Explicitly, we map Eq. (1) onto Eq. (3).
The potential, V (x), and loss or gain term, W (x), in Eq. (3),
comprise a non-Hermitian potential V (x) + iW (x). We have
dealt with PT -symmetric non-Hermitian potentials, that is,
V (−x) = V (x) and iW (−x) = iW (x), which render Eq. (3)
invariant under x and z reversals. By considering specific
configurations of thePT -symmetric non-Hermitian potentials
in the autonomous NLSE, we have been able to reproduce
results previously obtained in the literature and we have also
generalized them. From the wave functions that are solutions of
Eq. (3), we have obtained the solutions of the nonautonomous
CQNLSE. Most of the cases previously treated in the literature
concerning Eq. (3) do not take into account the quintic
nonlinearity, which in the context of short pulse propagation in
nonlinear media would correspond to a non-Kerr nonlinearity.
By including this term we have obtained a broader class of so-
lutions of Eq. (1) called wide localized (in space) solitons that
lends its name to the title of this article. Although we have fo-
cused our attention on the propagation of ultrashort pulse prop-
agation described by nonautonomous NLSE, we have found
that example 2 may as well be applied to the case of BECs with
injection and drain of particles in different sides of a double-
well trapping potential, as described originally in Ref. [27].

The method is general enough and can be applied to obtain
exact solutions of other potentials if the solution associated
with the NLSE with constant cubic and quintic nonlinearities
is known. We would like to mention that whether the original
CQNLSE Eq. (1) will be PT symmetric or not depends on
several factors, crucial among them being the choice of the
function γ (Z). Here we have chosen a particular form of
γ (Z), although there are many other choices which would
ensure PT symmetry, that is, symmetry under X and Z

reversals of Eq. (1). Remarkably, we have noticed that such
a symmetry, together with the lack of autonomy of (1), is
important to guarantee the propagation, without amplification
or attenuation of stable solitons.

One could ask about the possibility of experimentally
observed systems like those reported in this work, for instance,
whether it is necessary to implement the coefficients appearing
in the differential equation with a high accuracy . Regarding
the nonlinear parameters, it can be said that one can perform
an arbitrary scaling in the amplitude of the solution, such that
the value of the parameter can be continuously changed for
any nonvanishing value. However, the relation between those
parameters shall be kept in order to maintain the solutions
analytical. The same can be said about the other parameters
appearing in the linear terms of the differential equation, but
now the scaling shall be done in the coordinate variables. Thus,
in a real experimental situation, one could adjust some of the
parameters and, even if it is not possible to do this with all
of them, the exact analytical solution could be used in order
to implement an approximation procedure. Furthermore, since
we have verified the stability of some of the solutions found
here, one could expect that even in the case that the parameters
are not strictly equal to those of the exact solutions, the solitons
still will be present in the system.
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