
PHYSICAL REVIEW E 91, 013204 (2015)

Elliptical vortex solutions, integrable Ermakov structure, and Lax pair formulation
of the compressible Euler equations

Hongli An*

College of Science, Nanjing Agricultural University, Nanjing 210095, PR China

Engui Fan
School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Science, Fudan University, Shanghai 200433, PR China

Haixing Zhu
College of Economics and Management, Nanjing Forestry University, Nanjing 210037, PR China

(Received 17 August 2014; published 20 January 2015)

The 2+1-dimensional compressible Euler equations are investigated here. A power-type elliptic vortex ansatz
is introduced and thereby reduction obtains to an eight-dimensional nonlinear dynamical system. The latter
is shown to have an underlying integral Ermakov-Ray-Reid structure of Hamiltonian type. It is of interest to
notice that such an integrable Ermakov structure exists not only in the density representations but also in the
velocity components. A class of typical elliptical vortex solutions termed pulsrodons corresponding to warm-core
eddy theory is isolated and its behavior is simulated. In addition, a Lax pair formulation is constructed and the
connection with stationary nonlinear cubic Schrödinger equations is established.
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I. INTRODUCTION

The Navier-Stokes equations describing fluid motion are
fundamental equations in hydromechanics, which were first
introduced by Navier in 1821 and developed by Stokes in 1845.
In many cases, the viscosity of the fluids is quite small and
may be neglected, which reduces the Navier-Stokes equations
to the Euler equations. Hence, one can regard the Euler
equations as the limit cases of the Navier-Stokes equations for
a large Reynolds number [1]. In addition to the fundamental
application in fluids, the Euler equations are also found in many
other physical fields such as plasmas, condensed matters, astro-
physics, oceanic and atmospheric dynamics, etc. [2–6]. Due to
their extensive applications, much literature has been devoted
toward seeking exact solutions of the Euler equations [7–11],
especially for the investigation of their integral structures. For
example, vortex structures underlying the 2D Euler equations
were investigated by Kirchhoff [12], while the Hamiltonian
structures were discussed by Arnold [13]. Extensive studies
on the symplectic structures underlying the 2D Euler model
were carried out by Marsden and Ratiu et al. [14]. Lax pair
formulations were investigated by Friedlander and Vishik in
the Lagrangian coordinates [15] and subsequently by Li in
the Eulerian coordinates [16,17]. Important contributions were
also made by Childress and Lou [18] with regard to the Lax
pairs of the Euler equations.

As an important integrable characteristic of a differential
equation, the Ermakov-Ray-Reid systems have their origin in
the work of Ermakov [19] and were developed by Ray and
Reid [20,21]. The main theoretical interest in the systems
centers around their admittance of a distinctive integral
of motion, namely the Ermakov-Lewis-Ray-Reid invariant
together with a concomitant nonlinear superposition principle
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(e.g., see Refs. [22–25]). In terms of physical applications,
Ermakov systems are found in nonlinear optics [26–29],
hydrodynamics [30], quantum mechanics [31], elasticity [32],
cosmology [33], molecular structures [34], partial differential
equations of mathematical physics such as the Riccati equa-
tions and nonlinear Schrödinger equations, etc. [35,36].

It is known that the rotating shallow water equation is
an approximation to the Euler equations [37]. The former is
shown by Rogers and An to admit an underlying integrable
structure of Ermakov-Ray-Reid type and thereby exact vor-
tex solutions are constructed [30]. Importantly, such vortex
solutions prove to be useful in tidal oscillations, warm-core
rings, and other upper-ocean phenomena et al. [38–40]. This
naturally motivates us to consider whether the Euler equations,
like the rotating shallow water system, have an underlying
integral structure of Ermakov-Ray-Reid type. If so, what
kind of exact solutions can be constructed, accordingly? Can
the solutions obtained be applied to explain or predict any
phenomenon in physical areas mentioned above? With these
questions in mind, we expand the investigations on integral
Ermakov structures for the (2+1)-dimensional compressible
Euler equations.

The plan of this paper is as follows. In Sec. II, a power-type
elliptic vortex ansatz is introduced, and thereby the compress-
ible Euler equations are reduced to a set of nonlinear dynamical
system that generalizes what has been given in Refs. [30,38].
Time-modulated physical variables are introduced and the
dynamical system is reducible to a form amenable to exact
solutions. In Sec. III, it is shown that the nonlinear dynamical
system, remarkably, admits an underlying integrable Ermakov
structure, which also takes a Hamiltonian form. Interestingly,
it is noticed that such an integrable Ermakov structure exists
not only in the density quantities, but also in the velocity
components, at least in a special reduction. In Sec. IV, a class of
typical pulsrodon solutions with a breather-type free boundary
oscillation is isolated and its behaviors are exhibited. In Sec. V,
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a Lax pair formulation for the compressible Euler equations
is constructed and its connection with stationary nonlinear
Schrödinger equations is given. Finally, a short conclusion is
attached.

II. A POWER-TYPE ELLIPTIC VORTEX ANSATZ
OF THE EULER EQUATIONS

The 2+1-dimensional compressible Euler equations con-
sidered here take the following form:

ρt + ∇ · (ρU) = 0
(2.1)

ρ[Ut + U · ∇U + f k × U] + ∇p = 0,

where f is the Coriolis force and k denotes a unit orthogonal
basis of the Eulerian coordinates. While ρ, U, and p stands for
the fluid density, velocity and pressure, respectively. And the
pressure p is given by

p = Kργ , (2.2)

with γ > 0, and K is a time-dependent function to be
determined.

A. A power-type elliptic vortex ansatz

Exact solutions and integrable structure of the compressible
Euler Eqs. (2.1) are now sought via a power-type elliptic vortex
ansatz

ρ = [xT E(t)x + d(t)]
1

γ−1 , γ �= 1,

U = L(t)x + H(t),
x =

[
x − q̄(t)
y − p̄(t)

]
,

(2.3)

where L(t) and E(t) are 2 × 2 matrices depending only on
time, and E(t) is symmetric and positive definite, namely

L =
[
u1(t) u2(t)
v1(t) v2(t)

]
, E =

[
a(t) b(t)
b(t) c(t)

]
,

and H =
[

˙̄q(t)
˙̄p(t)

]
. (2.4)

This solution ansatz represents a swirling, rotating fluid mass
in the shape of a horizontally truncated ellipsoid. Its upper
boundary is the flat, horizontal ellipse at ρ(x,y,t) = 0. What
needs to be pointed out is that the precluded case γ = 1 may be
readily treated via the exponential-type vortex ansatz given by
Rogers and An. Readers may refer to Ref. [41] for the details.
Therefore, without loss of generality, we shall proceed with
the case γ �= 1 in the present work.

Substitution of (2.3) into the continuity Eq. (2.1)1 yields

⎛
⎝ȧ

ḃ

ċ

⎞
⎠ +

⎛
⎝2u1 + (γ − 1)(u1 + v2) 2v1 0

u2 γ (u1 + v2) v1

0 2u2 2v2 + (γ − 1)(u1 + v2)

⎞
⎠

⎛
⎝a

b

c

⎞
⎠ = 0, (2.5)

together with

ḋ + d(γ − 1)(u1 + v2) = 0 . (2.6)

Insertion of Eq. (2.3) into the momentum Eq. (2.1)2 produces⎛
⎜⎝

u̇1

u̇2

v̇1

v̇2

⎞
⎟⎠ +

(
LT −f I
f I LT

) ⎛
⎜⎝

u1

u2

v1

v2

⎞
⎟⎠ + 2γK

γ − 1

⎛
⎜⎝

a

b

b

c

⎞
⎟⎠ = 0, (2.7)

augmented by the linear auxiliary equations

¨̄q − f ˙̄p = 0 , ¨̄p + f ˙̄q = 0 . (2.8)

At this stage, the spacial structure of the orignal Euler
equations has been removed. Hence, the solution of the Euler
equations is encoded in the seven-dimensional time-dependent
nonlinear system Eqs. (2.5) and (2.7). Once the solution of the
latter is known, the quantities d, p̄, and q̄ can be easily obtained
via the relation Eqs. (2.6) and (2.8).

Some relations that are key to the subsequent development
are obtained. These may be established by appealing to the
system Eqs. (2.5)–(2.7) and are now recorded in the following
theorem.

Theorem Let

R = v1 − u2 + f , � = ac − b2 ,

M = a (u2 − f/2) + b (v2 − u1) − c (v1 + f/2) ,

Q = −a
(
u2

2 + v2
2

) + 2b (u1u2 + v1v2) − c
(
u2

1 + v2
1

)
+ 4γK

(γ − 1)2
� − 4γ�

(γ − 1)2
exp

[∫
(γ − 1)(u1 + v2)dt

]

×
∫

K̇ exp

[∫
(1 − γ )(u1 + v2)dt

]
dt, (2.9)

then we get the following relations

ḋ = −(γ − 1)(u1 + v2)d
Ṙ = −(u1 + v2)R
�̇ = −2γ (u1 + v2)�
Ṁ = −(γ + 1)(u1 + v2)M
Q̇ = −(γ + 1)(u1 + v2)Q

. (2.10)

Interestingly, the latter two relations constitute a gener-
alization of those derived in the context of shallow water
theory [30,38]. Moreover, appropriate combinations of the
quantities d,R,�,M , and Q lead to the important phys-
ical invariants of the Euler equations, such as the energy
conservation, the potential vorticity and angular momentum
conservation, etc.

B. Associated reductions via canonical variables

In the sequel, it proves convenient to proceed in terms of
new variables as previously employed in a hydrodynamics
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context in Refs. [30,38], namely

G = u1 + v2, GR = 1
2 (v1 − u2),

GS = 1
2 (v1 + u2), GN = 1

2 (u1 − v2), (2.11)

B = a + c, BS = b, BN = 1
2 (a − c).

Thus, G and GR represent the modified versions of the
divergence and spin of the velocity field, while GS and GN

represent the modified shear and normal deformation rates.
Then, the system Eqs. (2.5)–(2.7) adopts the form

Ḃ + γBG + 4(BNGN + BSGS) = 0,

ḂS + γBSG + BGS − 2BNGR = 0,

ḂN + γBNG + BGN + 2BSGR = 0,

Ġ + 1

2
G2 + 2

(
G2

N + G2
S − G2

R

) − 2f GR + 2γK

γ − 1
B = 0,

ĠR + GGR + 1

2
f G = 0,

ĠN + GGN − f GS + 2γK

γ − 1
BN = 0,

ĠS + GGS + f GN + 2γK

γ − 1
BS = 0,

(2.12)

together with

ḋ + d(γ − 1)G = 0. (2.13)

The form of Eq. (2.12)4 suggests introducing a function � via

G = 2�̇

�
, (2.14)

so that Eqs. (2.12)5 and (2.13) show that

GR = c0

�2
− f

2
, d = c1�

2(1−γ ), (2.15)

where c0 and c1 are integration constants.
New �-modulated variables involving the gas parameter γ

are now introduced according to

B̄ = B�2γ , B̄S = BS�
2γ , B̄N = BN�2γ ,

(2.16)
ḠS = GS�

2, ḠN = GN�2,

whence the nonlinear system Eq. (2.12) reduces to

˙̄B + 4(B̄NḠN + B̄SḠS)

�2
= 0,

˙̄BS + f B̄N + B̄ḠS − 2c0B̄N

�2
= 0,

˙̄BN − f B̄S + B̄ḠN + 2c0B̄S

�2
= 0, (2.17)

˙̄GS + f ḠN + 2γ

γ − 1

KB̄S

�2(γ−1)
= 0,

˙̄GN − f ḠS + 2γ

γ − 1

KB̄N

�2(γ−1)
= 0,

together with the second-order nonlinear differential
equation

�3�̈ + 1

4
f 2�4 + Ḡ2

N + Ḡ2
S − c2

0 + γ

γ − 1

KB̄

�2(γ−2)
= 0.

(2.18)

It is the seven-dimensional nonlinear dynamical system
Eqs. (2.17)–(2.18) that will be analyzed in details to construct
explicit solutions of the 2+1-dimensional compressible Euler
equations.

C. The constraints and first integrals

It is seen that combination of Eqs. (2.17)2 and (2.17)3

together with use of Eq. (2.17)1 produces an integral of
motion

B̄2
S + B̄2

N − 1
4 B̄2 = c2. (2.19)

While, in a similar way, combination of Eqs. (2.17)4 and
(2.17)5 delivers

Ḡ2
S + Ḡ2

N − γ

γ − 1

∫
K ˙̄B�2(2−γ )dt = 0. (2.20)

Observation shows that when

B̄ = const or K = k′
1�

2(γ−2), B̄ �= const, (2.21)

a second integral of motion is obtained. The former case leads
to the pulsrodon solutions in warm-core eddy theory, which
is discussed in Sec. IV. While, the latter gives rise to the
integrable Hamiltonian Ermakov structure of the compressible
Euler equations. For convenience, we first proceed with the
latter case, wherein B̄ �= const and the modulation variable K

adopts

K = k′
1�

2(γ−2), (2.22)

so that the second integral of motion is

Ḡ2
S + Ḡ2

N − k1B̄ = c3. (2.23)

with arbitrary constant c3 and k1 = γ k′
1

γ−1 . Remarkably, in
this case, the above two integral variants coincide with that
have been obtained in the f -plane elliptic warm-core eddy
analysis in Refs. [30,38], which is shown to be integrable in
the sense of Liouville [42]. However, in the current context,
these first integrals exist for the arbitrary γ . Moreover, the
nonlinear dynamical system Eq. (2.17) is shown to admit
another “hidden” integrals of motion,

2(B̄NḠS − B̄SḠN ) − c0B̄ = c4,

4c2k1

�2
− 1

2
˙̄BG�2 + 2GR(c4 + c0B̄) (2.24)

− B̄

�2

[
c3 + k1B̄ + �4

(
G2

R + G2

4

)]
= c5.

These can be considered as an avatar of the last two relations
of Eq. (2.10) and may be readily validated with the aid of the
computation software Maple.

In summary, under the constraint of Eq. (2.22), the nonlinear
dynamical system Eqs. (2.17)–(2.18) admits four integrals of
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motions, namely

B̄2
S + B̄2

N − 1

4
B̄2 = c2, Ḡ2

S + Ḡ2
N − k1B̄ = c3,

2(B̄NḠS − B̄SḠN ) − c0B̄ = c4,

4c2k1

�2
− 1

2
˙̄BG�2 + 2GR(c4 + c0B̄)

− B̄

�2

[
c3 + k1B̄ + �4

(
G2

R + G2

4

)]
= c5. (2.25)

These invariants prove to be important in the construction of
exact solutions and integrable Ermakov structure of the 2+1-
dimensional Euler equations. Their relevance will be analyzed
in the following section.

III. HAMILTONIAN ERMAKOV STRUCTURE
AND INTEGRABILITY

Here, it is demonstrated that the nonlinear dynamical
system Eqs. (2.17) and (2.18) has a remarkable underlying
integrable structure of the Ermakov-Ray-Reid type, which
turns out to also be Hamiltonian. Further investigations show
that such Hamiltonian Ermakov systems not only exist in the
density quantities but also in the velocity components, at least
in a particular reduction.

A. A Hamiltonian Ermakov system in the density quantities

In order to show that the dynamical system Eqs. (2.17)
and (2.18) admits Ermakov-Ray-Reid system of Hamiltonian
type, we now turn back to reconsider the integral of motions
Eq. (2.25). It is noted that the identity

(B̄NḠN + B̄SḠS)2 + (B̄NḠS − B̄SḠN )2

= (
B̄2

S + B̄2
N

)(
Ḡ2

S + Ḡ2
N

)
(3.1)

holds. Thus, on the one hand, combination of the relation
Eqs. (2.17)1 and (2.25) leads to

˙̄B2 = 4

�4
[(c4 + c0B̄)2 − (c3 + k1B̄)(B̄2 + 4c2)], (3.2)

whereas the differential Eq. (2.17)4,5 yields

arctan(ḠN/ḠS) = f t −
∫

c4 + c0B̄

�2
dt, (3.3)

under the constraint condition Eq. (2.22). It reminds us to
consider the nonlinear Eq. (2.18), namely

�3�̈ + 1
4f 2�4 + c3 − c2

0 + 2k1B̄ = 0. (3.4)

The latter, as it stands, is intractable unless B̄ = λ + μ�3 +
ν�4 (λ,μ,ν ∈ R) when it reduces to the Steen-Ermakov-
Pinney equation [19,43,44]. However, in general, it is shown
that the nonlinear dynamical system Eqs. (2.17) and (2.18) is
encoded in the coupled pair of differential Eqs. (3.2) and (3.4),
namely

�̈ + 1

4
f 2� = 1

�3

(
c2

0 − c3 − 2k1B̄
)
,

¨̄B + 2�̇

�
˙̄B − B̄

B̄2 + 4c2

˙̄B2

= 2

�4

[
k1(B̄2 + 4c2) + 2(c4 + c0B̄)(c4B̄ − 4c0c4)

(B̄2 + 4c2)

]
. (3.5)

Accordingly, once the functions � and B̄ are known, the
remaining quantities B̄S, B̄N , ḠS, ḠN may be readily obtained
via Eqs. (2.25) and (3.3).

Interestingly, it turns out that the coupled Eqs. (3.5) may
be reformulated as a Ermakov-Ray-Reid system. Indeed, for
instance, in the case of c1 > 0 and B̄2 � −4c2 > 0 > B̄, then,
at any fixed time t , the semiaxes of the elliptic curves of
constant density ρ = const are given by

� =
√

2d(t)

−
√

(a − c)2 + 4b2 − (a + c)
= �

√
c1

−2c2
(−B̄ +

√
B̄2 + 4c2),

(3.6)

	 =
√

2d(t)√
(a − c)2 + 4b2 − (a + c)

= �

√
c1

−2c2
(−B̄ −

√
B̄2 + 4c2),

as proposed by Rogers and An in Ref. [30] in the hydrodynamic shallow water theory. Then, in these variables, the system
Eq. (3.5) adopts the form of Ermakov-Ray-Reid type:

�̈ + 1

4
f 2� = 1

�2	
F (	/�) = 1

�2	

[
J (�/	) − �

	
J ′(�/	) − 2k1c

2
1√−c2

]

	̈ + 1

4
f 2	 = 1

�	2
G(�/	) = 1

�	2

[
J (�/	) + �

	
J ′(�/	) − 2k1c

2
1√−c2

] , (3.7)

with

J (ω) = J (ω−1) = c2
1

2c2
2

[
(c4 + 2c0

√−c2)2 ω

(ω + 1)2
+ (c4 − 2c0

√−c2)2 ω

(ω − 1)2

]
. (3.8)

Moreover, deep inspection shows that the associated Ermakov-Ray-Reid system Eq. (3.7) has an additional property of adopting
a Hamiltonian form

d

dt

∂H
∂�̇

= −∂H
∂�

,
d

dt

∂H
∂	̇

= −∂H
∂	

, (3.9)
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with the Hamiltonian invariant

H = 1

2
(�̇2 + 	̇2) + 1

8
f 2(�2 + 	2) + 1

�	
J (�/	) − 1

�	

2k1c
2
1√−c2

+ c1

2c2
(c5 + c4f ). (3.10)

Accordingly, the two integrals of motion, namely, the Ray-Ray invariant and Hamiltonian invariant of the system Eq. (3.7), allow
their completely integrable and analytical solutions may be explicitly obtained via the procedure described in Ref. [30].

B. A Hamiltonian Ermakov system in the velocity quantities

It has been established that the semiaxes {�,	} of the time-
modulated ellipse associated with the density representation
Eq. (2.3) are governed by an integrable Ermakov-Ray-Reid
system, albeit of some complexity. But now, we would like to
show that such a Ermakov-Ray-Reid system is also associated
with the velocity components, at least, in a particular reduction.

Thus, our attention here is restricted to the irrotational
motions with L and E in Eq. (2.3) given by

L =
[
α̇(t)/α(t) 0

0 β̇(t)/β(t)

]
, E =

[
a(t) 0

0 c(t)

]
.

(3.11)

It is observed that this kind of solution is indeed a specialization
of Eq. (2.4). Insertion of Eq. (3.11) into the continuity Eq. (2.1)
produces

ȧ

a
+ (γ − 1)

β̇

β
+ (γ + 1)

α̇

α
= 0 ,

ċ

c
+ (γ − 1)

α̇

α
+ (γ + 1)

β̇

β
= 0 , (3.12)

ḋ

d
+ (γ − 1)

(
α̇

α
+ β̇

β

)
= 0 ,

whence

a = CIα
−2(αβ)1−γ , c = CIIβ

−2(αβ)1−γ ,

d = CIII (αβ)1−γ . (3.13)

Substitution of Eq. (3.11) into the momentum Eq. (2.1) now
gives

α̈ + 2γK

γ − 1
aα = 0, β̈ + 2γK

γ − 1
cβ = 0. (3.14)

On use of the first two relations of Eq. (3.13), the system
Eq. (3.14) is reducible to the following coupled equations:

α̈ = 1

α2β

−2γK

(γ − 1)(αβ)γ−2
, β̈ = 1

αβ2

−2γK

(γ − 1)(αβ)γ−2
.

(3.15)
This becomes a Ermakov-Ray-Reid system if the modulation
K adopts the form

K = γ − 1

γ
(αβ)γ−2F

(
α

β

)
, (3.16)

namely,

α̈ = − 2

α2β
F (α/β), β̈ = − 2

αβ2
F (α/β). (3.17)

This system constitutes a corresponding Hamiltonian if we
additionally require F (α/β) to be

F (α/β) = −c∗
1/2 = const. (3.18)

Hence the Hamiltonian Ermakov system is now written down
as

α̈ = c∗
1

α2β
β̈ = c∗

1

αβ2
, (3.19)

with the Hamiltonian invariant

H = 1

2
(α̇2 + β̇2) + c∗

1

αβ
. (3.20)

Now, the remaining thing is to consider the constraint
condition Eq. (3.16). According to the analysis in the above
section, we have

trL = u1 + v2 = 2�̇

�
= α̇

α
+ β̇

β
, (3.21)

whence

αβ = c∗
2�

2. (3.22)

Therefore, substitution of Eqs. (3.22) and (3.18) into Eq. (3.16)
yields

K = �2(γ−2) (1 − γ )c∗
1

2γ c∗
2

2−γ
. (3.23)

This is nothing, remarkably, but the constraint condition of
Eq. (2.22).

It has been shown that the reduction Eq. (3.19) to a
Hamiltonian Ermakov system involves the velocity component
parameters, in contrast to the reduction Eq. (3.7), which
involves only the density parameters. The existence of integral
Hamiltonian Ermakov systems not only in the density quan-
tities but also in the velocity emphasizes the importance of
studying the 2+1-dimensional compressible Euler equations.

IV. THE PULSRODON SOLUTIONS AND
NUMERICAL SIMULATIONS

The preceding analysis has been completed with B̄ �= const
and the modulated variable K described in Eq. (2.22). In the
sequel, we shall discuss the other case B̄ = const, which leads
to a subclass of typical solutions that corresponds to pulsating
elliptical eddies. These are termed as pulsrodons since they
combine the pulsating characteristic of the circular pulson with
the more general elliptic geometry of the rodon.

It is observed that in the particular case B̄ = const, the
second integral of motion is recorded by

Ḡ2
S + Ḡ2

N = C̃2. (4.1)

This expression inspires us to introduce a parametrization
via

ḠS = C̃ cos η, ḠN = C̃ sin η, (4.2)

with η = η(t) to be determined. It is seen from Eq. (2.17)1

that the nonlinear dynamical system Eqs. (2.17) and (2.18) is
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constrained by

B̄SḠS + B̄NḠN = 0, (4.3)

which may be conveniently parametrized as

B̄S = αḠN = αC̃ sin η, B̄N = −αḠS = −αC̃ cos η,

(4.4)
with α = α(t) to be determined.

Combinations of Eqs. (2.17)2 and (2.17)3 on use of
Eqs. (4.2) and (4.4) yield that

η̇ − f + B̄ + 2c0α

α�2
= 0, α̇ = 0. (4.5)

Similarly, Eqs. (2.17)4,5 are reducible to a single condition:

η̇ − f − 2αγ

γ − 1

K

�2(γ−1)
= 0. (4.6)

Comparison of these two relations shows that the variable
B̄ is given by

B̄ = −2c0α − 2α2γ

γ − 1

K

�2(γ−1)
. (4.7)

Interestingly, in the present case B̄ = const again requires
the modulation K to be of the type of Eq. (2.22). Hence, the
constant B̄ is determined by the relation

B̄ = −2c0α − 2α2k1; (4.8)

accordingly, η is given by

η = f t + 2αk1

∫
1

�2
dt. (4.9)

Moreover, the system Eq. (2.18) is now reducible to an
equation of Steen-Ermakov-Pinney type

�̈ + 1

4
f 2� = δ0

�3
, δ0 = c2

0 − C̃2 + 2k1c0α + 2α2k2
1 .

(4.10)
The latter originated in the work of Steen [43] and arises

in a wide range of areas of physical importance, most notably
in nonlinear optics, quantum mechanics (see, e.g., Refs. [45–
47]). Another version of this equation has appeared recently
in a study of pulsons by Sutyrin [48]. It is distinguished by
its admittance of a nonlinear superposition principle, which
was derived by the Lie group method [49]. Thus, the general
solution of Eq. (4.10) is given by

� =
√

δ1�
2
1 + 2δ2�1�2 + δ3�

2
2, (4.11)

where �1, �2 are linearly independent solutions of the
associated linear oscillator equation

�̈ + 1
4f 2� = 0,

with unit Wronskian, namely W (�1,�2) = �1�̇2 − �2�̇1 =
1 and the constants δi are constrained by the relation

δ1δ3 − δ2
2 = δ0. (4.12)

If we choose �1 and �2 as

�1 = cos
f

2
t, �2 = 2

f
sin

f

2
t, (4.13)

then the general solution of the Steen-Ermakov-Pinney equa-
tion is determined by

� =
√

δ4 cos(f t + θ ) + δ5, (4.14)

where the constants δ4 and δ5 are related by

f 2(δ2
4 − δ2

5

) + 4δ0 = 0, θ = arctan
2δ2

f (δ5 − δ1)
. (4.15)

The reality constraints associated with the relations
Eqs. (4.14) and (4.15) require that

δ5 > δ4 � 0, C̃2 < α2k2
1 + (c0 + αk1)2, (4.16)

without loss of generality.
Thus, in the present case of B̄ = const, a subclass of ana-

lytical solutions of the 2+1-dimensional compressible Euler
equations is now obtained, where the velocity components are
given by

u1 = �̇

�
+ C̃

�2
sin η, v1 = C̃

�2
cos η + c0

�2
− 1

2
f,

(4.17)

u2 = C̃

�2
cos η − c0

�2
+ 1

2
f, v2 = �̇

�
− C̃

�2
sin η,

and the density components are

a = −1

�2γ
(2αc0 + 2k1α

2 + αC̃ cos η), b = 1

�2γ
αC̃ sin η,

(4.18)

c = −1

�2γ
(2αc0 + 2k1α

2 − αC̃ cos η), d = c1

�2(γ−1)
.

Remarkably, these subclass solutions are analogous to the
pulsrodons in the f -plane elliptic warm-core eddy theory [38]
and if γ = 2, they are nothing but the solutions derived in
Ref. [38].

Below, the exact solutions for the moving shoreline ρ = 0
are used to exhibit typical eddy boundary evolution. Figure 1
shows the time evolution of a small eccentricity elliptical eddy.
From the figure, one can see that the clockwise rotation of the
elliptical mode is successive but irregular, being faster when
the eddy is expanded (wider rim) and slower when the eddy is
contracted (smaller rim). A plausible explanation is as follows:
for a given eccentricity, the larger the eddy, the greater the
radius of curvature at the extremities compared to the radius

FIG. 1. The temporal evolution of a small eccentricity elliptical
eddy.
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FIG. 2. The temporal evolution of a large eccentricity elliptical
eddy.

of inertia, and the lesser the inertial tendency for a particle to
overshoot the rim’s curve at its point of maximum curvature.
In Fig. 2, the eccentricity of the eddy is increased and the same
behavior is displayed. Interestingly, this evolution of the upper
free surface for such a typical pulsrodon coincides with an
oscillating “breather-type” motion.

V. A LAX PAIR FORMULATION

It is now shown that for the arbitrary γ , the nonlinear
dynamical system Eqs. (2.5)–(2.7) arising from the power-
type elliptic vortex ansatz admits an associated Lax pair
representation. For this purpose, we reformulate the nonlinear
dynamical system Eqs. (2.5)–(2.7) into a compact matrix form,

Ė + EL + LT E + (γ − 1)E trL = 0,
(5.1)

L̇ + L2 + f ML + 2γK

γ − 1
E = 0, γ �= 1,

together with the linear system

ḋ + d(γ − 1)trL = 0, Ḣ + f MH = 0, (5.2)

where M is the Pauli matrix:

M =
(

0 −1
1 0

)
. (5.3)

In the sequel, it proves convenient to proceed with the gauge
transformation,

L̃ = DLD−1 + 1
2f M, Ẽ = DED−1, (5.4)

with

D = exp
(

1
2 Mf t

)
. (5.5)

Thus, the matrix system Eq. (5.1) may be readily reducible to

˙̃E + ẼL̃ + L̃T Ẽ + (γ − 1)Ẽ trL̃ = 0,
(5.6)

˙̃L + L̃2 + 1

4
f 2I + 2γK

γ − 1
Ẽ = 0.

On use of the relation

MPM = PT − (trP)I, ∀ P, (5.7)

together with the Cayley-Hamilton identity,

L̃2 − (trL̃)L̃ + (detL̃)I = 0, (5.8)

then the system Eq. (5.6) becomes

˙̃Q + γ (trL̃)Q̃ + [Q̃, L̃] = 0,
(5.9)

˙̃L + (trL̃)L̃ − (detL̃)I + 1

4
f 2I + 2γ K

γ − 1
Ẽ = 0,

where Q̃ is a trace-free matrix expressed via

Q̃ = MẼ. (5.10)

Since trL = trL̃ = 2�̇/�, the form of Eq. (5.9) suggests
introducing new �-modulated matrices via

L̄ = L̃�2, Ē = Ẽ�2γ , Q̄ = Q̃�2γ , (5.11)

so that the system Eq. (5.9) is now reduced to

˙̄Q + �−2 [Q̄, L̄] = 0,
(5.12)

˙̄L − �−2(detL̄)I + 1

4
f 2�2I + 2γ K

γ − 1
Ē�2−2γ = 0.

It is observed that Eq. (5.12)1 can be reformulated in terms of
two trace-free matrices Q̄ and L̄∗, namely

˙̄Q + �−2 [Q̄, L̄∗] = 0, (5.13)

with L̄∗ = L̄ − 1
2 (trL̄)I denoting the trace-free part L̄. While

Eq. (5.12)2 may be divided into two parts, namely the trace-free
part,

˙̄L∗ + γK

γ − 1
�2−2γ [Q̄, M] = 0, (5.14)

and the trace part,

tr ˙̄L − 2�−2detL̄∗ − 1

2
�−2(trL̄)2

+ 1

2
f 2�2 + 2γK

γ − 1
(trĒ)�2−2γ = 0. (5.15)

Here, it is noted that the matrix system Eq. (5.14) and the
scalar Eq. (5.15) are coupled via the relation

ḋ + d(γ − 1)trL̄ = 0, (5.16)

where the modulated variable K is given by Eq. (2.22):

K = γ − 1

γ
k1�

2γ−4, k1 is constant. (5.17)

Without loss of generality, we scale the modulation K to be

K = γ − 1

γ
�2γ−4, (5.18)

so that Eq. (5.14) becomes

˙̄L∗ + �−2[Q̄ , M] = 0. (5.19)

Now, a new time variable τ is introduced via

dτ = �−2dt, (5.20)

so that the Eqs. (5.13) and (5.20) are reducible to

Q̄′ + [Q̄, L̄∗] = 0, L̄∗′ + [Q̄ , M] = 0, (5.21)

013204-7



HONGLI AN, ENGUI FAN, AND HAIXING ZHU PHYSICAL REVIEW E 91, 013204 (2015)

where the prime denotes d/dτ . It is remarkable to notice that
the matrix system Eq. (5.21) is nothing but the constitutes
compatibility condition

M′(λ) + [M(λ) , L(λ)] = 0, (5.22)

for the Lax pair

	 ′ = L(λ)	, μ	 = M(λ)	, (5.23)

where

L(λ) = L̄∗ + λM, M(λ) = Q̄ + λL̄∗ + λ2M. (5.24)

In the terminology of soliton theory [50], L and M are termed
Lax matrices for the nonlinear matrix system Eq. (5.21).
Analogous results have been obtained in the context of
nonisothermal rotating gas clouds and magnetogasdynamics
in Refs. [51,52]. As in their work, there is an interesting
Steen-Ermakov-Pinney connection. Indeed, on setting

� = �−1, (5.25)

then the scalar relation Eq. (5.15) is readily shown to reduce
to a Steen-Ermakov-type equation, namely

�′′ + (detL̄∗ − trĒ)� = f 2

4�3
. (5.26)

Results of Refs. [51,52] related to the Lax pairs for the gas
cloud and magnetogasdynamic system carry over mutatis
mutandis to the Lax pair Eq. (5.23) obtained in the present
work on the compressible Euler equations.

In the sequel, we would like to show the linear system
Eq. (5.23) is gauge equivalent to the standard Lax pair for
the stationary reduction of the integrable cubic nonlinear
Schrödinger equation. Following the procedure analogous to
that set down in Ref. [51], we parametrize the matrices L̄∗ and
Ē into the form of

L̄∗ =
(

ψ ϕ − Ḡ

ϕ + Ḡ −ψ

)
, Ē =

(
B̄
2 + τ̄ ϕ

ϕ B̄
2 − τ̄

)
,

(5.27)

whence the matrix system Eq. (5.21) is reducible to

σ̄ ′ = −B̄ϕ + 2Ḡτ̄ , ϕ′ = −2σ̄ ,

τ̄ ′ = −B̄φ − 2Ḡσ̄ , ψ ′ = −2τ̄ , (5.28)

B̄ ′ = −4(σ̄ ϕ + τ̄ψ), Ḡ′ = 0.

It is noticed that the system Eq. (5.28) admits the first integrals

Ḡ = c0, σ̄ 2 + τ̄ 2 − B̄2

4
= c2,

(5.29)
ϕ2 + ψ2 − B̄ = c3, 2(τ̄ ϕ − σ̄ψ) − c0B̄ = c4,

which coincides with relations that set down in Eq. (2.25).
Therefore, the dynamical system may be readily reformulated
as

ϕ′′ − 2(ϕ2 + ψ2 − c3)ϕ − 2c0ψ
′ = 0,

(5.30)
ψ ′′ − 2(ϕ2 + ψ2 − c3)ψ + 2c0ϕ

′ = 0.

The form of this coupled system suggests introducing the
complex variable via

V = ϕ + iψ, (5.31)

so that the pair of second-order differential equations are
combined to produce the single complex-valued differential
equation

ic0V
′ + c3V = − 1

2V ′′ + |V |2V. (5.32)

The latter is nothing but the stationary reduction

V (x,t) = V (x + c0t)e
−ic3t (5.33)

of the integrable (defocusing) nonlinear Schrödinger equation

iVt = − 1
2Vxx + |V |2V. (5.34)

Interestingly, such a stationary Schrödinger equation is shown
to admit Weierstrass function solutions [51] and dressed dark
soliton solutions [53].

VI. CONCLUSIONS

It has been shown in this paper that the 2+1-dimensional
compressible Euler equations admit an underlying integral
Ermakov structure and a Lax pair representation via the power-
type elliptic vortex reduction. The existence of such integral
structures fully demonstrates the importance of investigation
on the Euler equations. Moreover, typical pulsrodon-type
solutions corresponding to the elliptic warm-core eddy theory
are constructed and their behaviors are analyzed. However,
there are still many interesting and challenging problems that
need further consideration:

(1) It is known that pulsrodons are very important in
oceanography, atmospheric dynamics, and other physical
fields. Whether the pulsrodons obtained in this paper can
be applied to explain or predict some physical phenomena
deserves deep investigation.

(2) Since the Euler equations are the limit cases of the
Navier-Stokes (NS) equations for a large Reynolds number, it
is conjectured that such integral Ermakov structures must exist
in the 2+1-dimensional NS equations. However, the involve-
ment of viscosity terms in the NS equations renders the method
proposed invalid. How to improve the elliptic vortex ansatz for
the 2+1-dimensional NS model needs intensive investigations.

(3) In light of the limitations inherent in the elliptic vortex
reductions, it would be of interest to investigate whether
alternative approaches exist, which lead to the integrable
Ermakov-Ray-Reid structure for the 3+1-dimensional Euler
equations and 3+1-dimensional NS equations.

Because of the importance of the Euler equations, NS
equations and the Ermakov-Ray-Reid systems, as well as their
extensive physical applications, the models and all the prob-
lems mentioned above are worthy of further investigations.
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(2008).
[26] W. G. Wagner, H. A. Haus, and J. H. Marburgen, Phys. Rev.

175, 256 (1968).
[27] F. Cornolti, M. Lucchesi, and B. Zambon, Opt. Commun. 75,

129 (1990).

[28] A. M. Goncharenko, Y. A. Logvin, A. M. Samson, P. S.
Shapovalov, and T. I. Surovets, Phys. Lett. A 160, 138
(1991).

[29] C. Rogers, B. Malomed, K. W. Chow, and H. L. An, J. Phys. A:
Math. Theor. 43, 455214 (2010).

[30] C. Rogers and H. L. An, Stud. Appl. Math. 125, 275 (2010).
[31] A. R. Lee, J. Phys. A: Math. Gen. 17, 535 (1984).
[32] M. Shahinpoor, J. Acoust. Soc. Am. 56, 477 (1974).
[33] R. M. Hawkins and J. E. Lidsey, Phys. Rev. D 66, 023523

(2002).
[34] Y. B. Gaididei, K. Ø. Rasmussen, and P. L. Christiansen, Phys.

Rev. E 52, 2951 (1995).
[35] S. Eugene, Int. J. Quant. Chem. 109, 2897 (2009).
[36] D. Schuch, SIGMA 4, 043 (2008).
[37] H. Lamb, Hydrodynamics, 6th ed. (Dover Publications,

New York, 1945).
[38] C. Rogers, Phys. Lett. A 138, 267 (1989).
[39] B. Cushman-Roisin, W. H. Heil, and D. Nof, J. Geophys. Res.

90, 11756 (1985).
[40] A. Rubino and P. Brandt, J. Phys. Oceanogr. 33, 431 (2003).
[41] C. Rogers and H. L. An, Phys. Scr. 84, 045004 (2011).
[42] D. D. Holm, J. Fluid Mech. 227, 393 (1991).
[43] A. Steen, Om Formen for Integralet af den lineare Differential-

ligning af anden Orden, Overs. overd. K. Danske Vidensk Selsk.
Forh., 1 (1874).

[44] E. Pinney, Proc. Am. Math. Soc. 1, 681 (1950).
[45] A. B. Nassar, J. Math. Phys. 27, 755 (1986).
[46] M. Fernández-Guasti, J. L. Jiménez, F. Granados-Agustin, and
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