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Direct linear term in the equation of state of plasmas
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We discuss a long-standing discrepancy in the equation of state of charge-neutral plasmas, the occurrence of
an e2 direct term. This e2 term may appear in dependence of the way to determine the mean value of the potential
energy. We show that such a contribution should not appear for pure Coulomb interaction.
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I. INTRODUCTION

The determination of thermodynamic functions for a
strongly correlated plasma is an old task of many-body theory.
New experimental measurements and numerical ab initio
simulations that are nowadays accessible will not be discussed
in this paper. We focus on analytic results which are obtained in
limiting situations (only) using quantum statistical approaches
such as the Green’s function method. In particular, in the
low-density limit exact results can be given for the virial
expansion. For very high densities where the temperature does
not play a deciding role, we can treat the strongly degenerate
system. This means that the two limiting cases of very low and
very high degeneracies are tractable by analytic means. Any
exact result may serve as a benchmark to derive interpolation
formulas that, using also the results of simulations, are
applicable in a wide region of plasma parameters. We are
not going to deal with the vast number of papers on numerical
determinations of thermodynamic data; we mention only the
review article by McMahan et al. [1] and references quoted
therein.

Exact expressions for many-body systems with short-range
interaction have long been known. In particular, the Beth-
Uhlenbeck formula expresses the second virial coefficient in
terms of two-particle binding energies and scattering phase
shifts, see, e.g., Ref. [2]. For Coulomb systems several
intricacies occur due to the long-range (∝1/r) character of
the bare Coulomb interaction. The mean-field (Hartree) term
is divergent in the thermodynamic limit. This is only resolved
by considering charge-neutral plasmas where the sum of
the Hartree terms is zero. Therefore we will consider here
a charge-neutral hydrogen plasma. Furthermore, scattering
phase shifts cannot be introduced in the standard way, and
the intrinsic partition function of the hydrogen bound states
diverges. This problem is resolved introducing the Planck-
Larkin partition function. Despite these mathematical (not
physical) problems, it is challenging to find exact results for
the neutral hydrogen plasma because of the exceptional role
of the Coulomb interaction in physics.

The pioneering work in the statistics of Coulomb systems
began in the 1950s. We mention W. Macke, who overcame one
of the typical Coulomb divergencies and found the logarithmic
contribution to the thermodynamic functions [3]. One finds an
essential step forward in the paper by Gellman and Brueckner
[4], whose results were valid at zero temperature up to the
order e4 of the electron charge. In the 1960s, Kelbg found a
way to construct an effective potential which accounts for the

influence of quantum effects on the interaction between two
charged particles [5]. Based on a systematic study of many-
particle systems, a new field of research was devoted to find
thermodynamic functions of plasmas containing all powers
of the charge. Results were achieved by Ebeling, Hoffmann,
and Kelbg [6] following a cluster approach given by Friedman
[7]. Green’s function calculations were given in Ref. [8]. In
Coulomb systems, the lower orders with respect to e2 have
to be dealt with separately as they are subject to the well-
known Coulomb divergencies. The higher orders of the direct
contribution and all orders of the exchange contribution can
be written as a series, see below Eqs. (3) and (4). These results
were, in detail, again given in Ref. [9] in Eqs. (6.218) and
(6.219).

In Sec. II we introduce the virial expansion of the pressure in
terms of the densities, Eq. (5) at fixed temperatures that is the
usual way to introduce virial coefficients. Alternatively, one
considers the expansion with respect to the fugacities that are
natural variables considering the pressure as thermodynamic
potential, see Eq. (1). Both virial expansions are closely
related, see Refs. [2,8]. In deriving the second virial coefficient
for Coulomb systems, the different approaches that have been
used are presented in Sec. III. The main topic of the present
work is to discuss whether a direct linear term arises in
different approaches. This question leads to consequences for
calculating higher virial coefficients or (ne2)5/2 terms and is
dealt with in Sec. IV, see also Ref. [10].

II. THERMODYNAMICS

We consider a two-component system, in particular a
neutral hydrogen plasma consisting of electrons (e) and
protons (p), interacting via the Coulomb potential V Coul

ab =
Vab(r) = eaeb/r . Here and subsequently we use Heaviside
units. The equation of state p({zc},T ), which relates the
pressure to the independent variables temperature T and the
fugacities za = (2sa + 1)/�3

a exp[μa/(kBT )], may be derived
from the cluster expansion for the grand-canonical ensemble
(see, e.g., Refs. [8,9,11–14]). The thermal wavelength is
given by �a = h/(2πmakBT )1/2, where μa is the chemical
potential.

From the determination of the mean value of the potential
energy 〈V Coul〉 we derive thermodynamic quantities in the
usual manner. We mention here that we consider the mean
value of the Coulomb potential thus restricting the considera-
tion to Coulomb systems. We have then for the pressure up to
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the order z2 in the weakly degenerate case (a,b,c = e,p)

p({zc}T )

kBT
=

∑
a

za + κ̃3

12π
+

∑
ab

zazb

[
π

2
(βeaeb)3 ln(κ̃λab)

+ π

2
β3e2

ae
4
b + 2πλ3

ab K0(ξab,sa)

]

+O
({

z5/2
c ln zc

})
. (1)

Here z is the “modified” fugacity, approaching the number
density in the low-density limit, and it differs from the usual
fugacity z̃a = exp(βμa). The thermal wavelengths are given
by λab = �/(2mabkBT )1/2, where mab = mamb/(ma + ma) is
the reduced mass, β = 1/(kBT ), and ξab = −eaeb/(kBT λab)
is the Born parameter. The “modified” screening quantity
(Debye) is given by κ̃2 = ∑

a 4πzae
2
a/(kBT ). The functions

occurring in Eq. (1) are given by

K0(ξab,sa) = Q(ξab) ± δab

(−1)2sa

2sa + 1
E(ξab), (2)

Q(ξ ) = −
√

πξ 2

8
− ξ 3

6

(
C

2
+ ln 3 − 1

2

)

+
∞∑

n=4

√
πζ (n − 2)



(

n
2 + 1

) (
ξ

2

)n

, (3)

E(ξ ) =
√

π

4
+ ξ

2
+

√
π

4
ln 2 ξ 2 + π2

72
ξ 3

+
∞∑

n=4

√
π (1 − 22−n)ζ (n − 1)



(

n
2

) (
ξ

2

)n

. (4)

The term E(ξ ) represents exchange contributions for identical
particles and contains the degeneracy contribution (virial
expansions at finite temperatures starting with the limit of
the ideal gas), while Q(ξ ) stands for the direct ones. Here
C is Euler’s number, 
 is Euler’s Gamma function, and ζ is
Riemann’s Zeta funtion. In addition to the lower orders, the
contributions to the second virial coefficient are given as power
series with respect to the Born paramen ξab. In contrast to the
exchange contribution E(ξ ) which contains a linear term in ξ ,
no linear term arises in the direct contribution Q(ξ ) as well as
in the lower order terms in Eq. (1). The separate Hartree terms
are divergent and compensate each other for charge-neutral
Coulomb systems.

The thermodynamic equation of state, i.e., the pressure as
a function of the temperature T and the particle densities nc

may be derived from Eqs. (1)–(4) excluding the fugacities za

using na = βza
∂p

∂za
|T ,zc �=za

. The result of such procedure reads

up to the order ξ 3
ab (cf. Ref. [8]),

p({nc}T )

kBT

=
∑

a

na − κ3

24π

−
∑
ab

nanb

{
−π

3
(βeaeb)3 ln(κλab) + π

2
β3e2

ae
4
b

+ 2πλ3
ab

[
− ξ 2

ab

8

√
π − ξ 3

ab

6

(
C

2
+ ln 3 − 1

2
+ 1

)

± δab

(−1)2sa

2sa + 1

(√
π

4
+ ξab

2
+

√
π

4
ξ 2
ab ln 2 + π2

72
ξ 3
ab

) ]}
,

(5)

Here we use κ2 = ∑
a 4πnae

2
a/kBT . We find that also this

version of a second virial coefficient (with respect to the
density expansion) does not deliver direct contributions of the
order ξ .

Both expressions (1) and (5) may be considered as exact
results that are useful to give benchmarks for the low-density
limit of the equation of state of neutral Coulomb systems.

III. ξ/6 TERM IN THERMODYNAMICS

A. Slater sum scheme

We discuss the question of the existence of ξ/6 in connec-
tion with papers by Angel Alastuey [15] and Lowell Brown
[16]. A more recent statement is given in Ref. [10]. In the three
papers just mentioned, the existence of a ξ/6 term is assumed.

The classical pair distribution function for a Coulomb
system expressed in terms of the Debye function gab according
to Meeron and other researchers [17–19] reads

Fab = exp(−β V ′
ab + gab)

×
⎧⎨
⎩1 +

∑
c

nc

∫ (
1

2
gacg

2
bc + 1

2
g2

acgbc

)
dqc

+
∑
cd

ncnd

∫
1

2
gacg

2
cdgbddqcdqd

⎫⎬
⎭ . (6)

Here

gab(r) = −βeaeb

1

r
e−κr (7)

is the Debye function. The short-range potential V ′
ab is now

expressed in terms of the two-particle Slater sum Sab(r) for
Coulomb systems, and we write according to the idea of Morita
[20] and thus getting results quantum statistically correct in
the range of low degeneracy (we see later that V ′ = V Kelbg −
V Coul) [see Eq. (17)],

Fab = exp(gab + βVab)Sab

×
⎧⎨
⎩1 +

∑
c

nc

∫ (
1

2
gacg

2
bc + 1

2
g2

acgbc

)
dqc

+
∑
cd

ncnd

∫
1

2
gacg

2
cdgbddqcdqd

⎫⎬
⎭ . (8)

The two-particle Slater sum is given using momentum eigen-
functions (see, e.g., Ref. [21]),

Sab(r1,r2) =
∫

dk1dk2

∑
σ1σ2

{
ψ∗

k1k2ab(r1r2) exp(−βHab)

×ψk1k2ab(r1r2)
}
. (9)
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The wave functions account for the symmetry

ψk1k2ab(r1r2) = C{exp(ik1r1 + ik2r2)χa(σ1)χb(σ2)

+(−1)2sa δab exp(ik1r2 + ik2r1)

×χa(σ2)χb(σ1)}. (10)

The Hamiltonian has the usual shape with Vab being the
Coulomb potential

Hab = − �
2

2ma

�a − �
2

2mb

�b + Vab . (11)

We are going to determine the correlation energy via

Ecorr = 1

2

∑
ab

naNb

∫
Vab(r)Fab(r)dr . (12)

Here, again, Vab(r) is the Coulomb potential and not some
effective potential and Nb is the particle number. Any influence
caused by the existence of other particles influences the binary
distribution function Fab; we will apply here Eq. (8), and,
therefore, formula (12) accounts for quantum diffraction and
exchange effects. The expression (12) is another version
of Ecorr = n2

2 Tr12(V12F12), and, again, V12 is the Coulomb
potential (only). The Slater sum has to be determined [9,22,23],
and with the first terms of the Born series, we get from Eq. (8)

Fab = (
1+gab+βVab + 1

2g2
ab + gabβVab + 1

2β2V 2
ab+· · ·)

×(
1 + S0

exch + S1
dir + S1

exch + · · · ) . (13)

As we are interested in the lowest-order terms only, we did
not have to take into account the integral terms in the curly
brackets of (8) (leading to n2e6 terms in Eq. (12) as shown
in Refs. [22,23]). We will see later that the contribution S1

dir
corresponds to the Kelbg potential [5].

In Eq. (12), we need terms from (13) multiplied by the
Coulomb potential. We write only the lowest-order terms of
the integrand I of (12)

I = Vab + VabS
0
exch + Vabgab

+[
VabS

1
dir + βV 2

ab

] + VabS
1
exch + · · · , (14)

where the right-hand side terms represent the following: (1) the
Hartree contribution, separately diverging, but canceling in a
two-component neutral plasma; (2) Fock (exchange) of order
n2e2; (3) limiting law, order (ne2)3/2; (4) (square brackets)
diffraction terms, order n2e4; and (5) the exchange term, order
n2e4.

This finding is in agreement with Refs. [22,23] and with
Eq. (5.85) in Ref. [21]. Equation (5.86) of this paper, however,
leads to the expansion

I1 = O((ne2)3/2) + (
1 + S0

exch + S1
dir + S1

exch + · · · )
×(

1 + gab + βVab + 1
2g2

ab + 1
2β2V 2

ab + · · · )
−1 − gab − 1

2g2
ab. (15)

The essential difference between (15) and (14) is the occur-
rence of the bare term S1

dir in Eq. (15) leading (in combination
with βVab) to the occurrence of the ξ/6 contribution in
thermodynamic functions. The origin is due to the fact that,
from the beginning, in (5.86) in Ref. [21], the interaction

potential was taken to be Vab + V ′
ab instead of the “bare”

Coulomb potential Vab, see Ref. [6]. In Ref. [6], Eqs. (74)
and (78) contain the direct contribution of the order ξ ; there is,
however, an exchange term of the same order. In the electrolyte
theory, e.g., the single particles are ions having, as a model,
a hard core, and so they do not represent a pure Coulombic
system. On the other hand, the potential is assumed to occur in
the pair distribution function and prevents two particles from
coming close to each other. The short-range potential occurs,
in this sense, at two places, see the appendix. The essential
integral producing the term linear in ξ reads (constants are
omitted)∫ ∞

0
dr

∫ ∞

0
ds

∫ 1

0
dx

×
{

r

s
sin(rs){exp[−As2(1 − x2)] − 1}

}
= −πA

3
. (16)

For the determination of (3), the integral (16) does not occur
[9]; the constant A is zero if the linear term in Q(ξ ) does not
exist. The integral (16) represents the difference between the
Coulomb and the Kelbg potentials, i.e., it represents the short-
range potential, while the long-range (divergent) contributions
are compensated. Up to a constant and the factor 1/s2, the
curly brackets of (16), (1/s2){exp[−As2]

∫ 1
0 dx exp[As2x2] −

1}, represent the difference between the Fourier transforms of
the Kelbg and Coulomb potentials. The Kelbg potential and
its Fourier transform are given by the following two formulas
in position (r) and momentum (k) spaces, respectively [5]:

V
Kelbg
ab (r) = eaeb

r

[
1 − exp

(
− r2

λ2
ab

)

+√
π

r

λab

(
1 − �

(
r

λab

)) ]
, (17)

Ṽ
Kelbg
ab (k) = 4πeaeb

1

k2 1F1

(
1,

3

2
; −λ2

ab k2

4

)
. (18)

B. Starting from grand partition function

In this subsection, we will derive the results of Sec. III A
by use of another method.

In Ref. [8], some expressions, e.g., Eq. (6.3), contain the
term ξ/6, which should not show up, while Eqs. (3.21),
(3.25), (3.85), and (5.90) do not have such a contribution. The
appearance of the ξ/6 term is seen in Ref. [21], in Eqs. (5.86)
and (5.94), while there is no such term in Eqs. (5.85) and
(6.14).

We repeat some equations from Refs. [8,9,21–24] in order
to show that the different approaches described in this and the
preceding subsection give identical results, i.e., they especially
do not give a ξ/6 term for charge-neutral H-plasmas. The grand
partition function reads

Zg = Tr[exp(−β(H − μN ))] (19)

with H = Hid + λV , where λV is the Coulomb potential and
λ is a formal coupling parameter, which is finally identified
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with e2. The mean value of the potential is then

∂

∂λ
ln Zg = −β〈V 〉. (20)

The pressure p is then (� volume)

βp� = [ln Zg]λ=1, (21)

or, with the charging procedure,

p − pid = − 1

�

∫ 1

0

dλ

λ
〈λV 〉λ, (22)

where the potential energy may be expressed in terms of
Green’s functions,

〈λV 〉 = 1

2

∫
dr1dr2λV (r1 − r2)G2(12,1++2+,λ)t2=t+1 .

(23)
In the integrand of (23), the two-particle Green’s function may
be replaced by the single-particle Green’s function and the
self-energy �,∫

dr2V (r1 − r2)G2(12,1++2+,λ)t2=t+1

= i

∫ −iβ

0
d1̄�′(1 − 1̄)G1(1̄ − 1+) . (24)

The evaluations of (23) and (24) carried out in
Refs. [4,8,9,11,22–24] do not find a “direct” contribution
of the type ξ/6. We remark that the sum over the species
vanishes, i.e.,

∑
ab λ3

abξab = −∑
ab λ2

abeaeb/(kBT ) = 0, i.e.,
the term in question does not contribute to thermodynamics.
This fact could lead to the opinion that in thermodynamics it
does not really matter whether such a term linear in ξ exists.
However, products with ξab prior to summation can lead to∑

ab e2
ae

2
b �= 0. This is the problem occurring in Refs [15,16],

leading to questionable results of the order (ne2)5/2.

C. Comparison

In deriving the relations given so far, different approaches
have been used. Whereas in the Green-function approach [9]
no direct contributions of the order ξ occur at all, the special
approach using the mean value of the potential energy [6]
introduces a slightly different expression,

Q1(ξab) = Q(ξab) − ξab

6
, (25)

as shown in Fig. 1. The quasiclassical approach using a cluster
expansion and taking into account the quantum effects by an
appropriately chosen additional short-range interaction term,
that leads to the expression (25), has been introduced in such
a manner that it gives the exact second virial coefficient (see
Ref. [6]). However, this approach cannot be used to evaluate
higher orders in the virial expansion or other thermodynamic
properties.

In Ref. [6], the occurrence of a contribution ξab/6 originates
from the fact that the mean value of the potential energy
of a plasma is taken using the Coulomb potential plus
a short-range one instead of the Coulomb potential only.

-4 -2 0 2 4
ξ

0

1

2

3

Q
(ξ

), 
Q

1(
ξ)

Q (ξ)
Q1(ξ)

FIG. 1. (Color online) Function Q(ξ ) according to Eq. (3) and
Q1(ξ ) = Q(ξ ) − ξ/6.

[Equation (A9)–(A12) below are the relevant integrals for the
mean value of Coulomb potential plus short-range correction.]
The two functions Q(ξab) and Q1(ξab) give the same results
in thermodynamics if one considers approximations up to z2

only; if one wants to go beyond, then there is a differnce, see
below, Sec. IV A.

We remark that the structure of the lower orders of (1) is
in agreement with that of Ref. [11], i.e., the occurrence of the
direct terms of the orders (ne2)3/2, n2e4, n2e6 ln n, and n2e6

and exchange terms of the orders n2e2, n2e4, and n2e6. The
ideal pressure contains quantum effects, too, represented by
the contribution

√
π/4 of Eq. (4).

IV. SPECIAL FEATURES OF THE EQUATION OF STATE

A. Thermodynamics up to (ne2)5/2

We now stress once more that the proper determination of
the mean value of the potential energy is crucial.

The Kelbg potential does not give the proper result for the
mean value of the potential energy of Coulomb systems if
applied in the following frame:

〈V 〉 = 1

2

∫
drV Coul(r)F quant(r)

= 0 + O((e2)3/2) + exch. + · · · ,

�= 1

2

∫
drV Kelbg(r)F quant(r)

= c × e2 + O((e2)3/2) + exch. + · · ·

with some finite constant c. In this example, the Coulomb
potential is the right choice for Coulomb systems, while
the application of V Kelbg leads to the linear term in
question.

In papers by Alastuey and Perez [15] and by Brown and
Yaffe [16], the contribution linear in e2 is used leading to
contributions of order O(ne2)5/2 that are not justified (see
Ref. [25]).
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Thermodynamic functions up to the order n5/2, or z5/2,
respectively, are given by [26–28]

βp =
∑

a

za + κ̃3

12π

+
∑
ab

zazbλ
3
ab

[
K0(ξab) − ξ 3

ab

6
ln κ̃λab

]

+ κ̃3

12π

∑
a

[
1

8
κ̃2

aλ2
aa+ 3

2(2sa+1)

(
κ̃2

aλ2
aa− za�

3
a√

2

)
κ̃2

a

κ̃2

]
.

(26)

Here we have, again, κ̃2 = ∑
a 4πzae

2
a/(kBT ), but κ̃2

a =
4πzae

2
a/(kBT ). For λab, �a see near Eq. (1). However, there

is no agreement between [27] on one hand and Alastuey
and Perez [15], Brown and Yaffe [16], and Alastuey and
Ballenegger [29] on the other; in Refs. [15,16,29], the existence
of ξ/6 is assumed.

As outlined in Ref. [25], in the latter papers, a function
Q1(ξab) = Q(ξab) − ξab/6 is used and multiplied by some
expression proportional to eaeb, leading to

∑
ab eaebξab �= 0.

In this sense, in Refs. [15,16], contributions to the equation
of state of the order n5/2 are produced. Such terms cannot
be produced this way, since, for the Coulomb system, the
contribution in question ξ/6 does not arise. Results of the
order n5/2 are also included in Eq. (6.5) in Ref. [8] and in
Eqs. (2.50)– (2.57) in Ref. [21]; the latter have to be considered
to be unjustified. For details, see Ref. [27].

B. Kinetic energy at low temperatures

After discussing of the problem of the linear term, we
mention still another special feature of Coulomb systems. One
may observe an unexpected behavior of the kinetic energy in
interacting quantum systems, see Kraeft et al. [26] and Militzer
and Pollock [30]. By those authors, the kinetic and correlation
energies and distribution functions of dense plasmas were
considered. The internal energy U has to be decomposed as

U = 〈K〉id + 〈K〉corr + 〈V 〉 = 〈K〉id + U corr.

The mean value of the potential energy 〈V 〉 differs from
the correlation energy U corr due to the fact that, in quantum
systems, the mean value of the kinetic energy has a correlation
part 〈K〉corr. For classical systems the correlation energy is
equal to the mean value of the potential energy, i.e., we have
〈K〉corr = U corr − 〈V 〉 = 0. For quantum systems at T = 0
and in most cases also for T �= 0 we find 〈K〉 > 〈K〉id.
However, for quantum systems at T �= 0 we have temperature
regions where the mean value of the kinetic energy is
smaller than the ideal kinetic energy, 〈K〉 < 〈K〉id; this means
〈K〉corr < 0, see Refs. [26,30].

Recent publications on thermodynamic functions of dense
plasmas are found, e.g., in Refs. [31,32]. In those papers,
special attention is paid to the role of the protons or ions,
respectively. For results from numerical work, see, again
Ref. [1].

V. CONCLUDING REMARKS

In a short formulation, the direct linear ξ term appears if and
only if, in Eq. (19), instead of the bare Coulomb potential, the
sum of the Coulomb potential and an additional short-range
potential is taken, i.e., V short + V Coul instead of V Coul. Most
notably, the difference between the Kelbg potential and the
Coulomb potential is such a short-range potential leading to
the ξ/6 term in thermodynamics. For a pure Coulomb system,
such as a charge-neutral hydrogen plasma, no direct linear
term occurs in the thermodynamic functions.

The question of the existence of a direct ξ term is of interest
as the proper determination of orders like n5/2 is of relevance
for applications in helioseismology [33–39]. There exists an
exchange term of the order ξ ; however, there is no direct term
linear in ξ for charge-neutral plasmas, e.g., in Refs. [4,9,11,22–
24]. See also Ref. [25].

Up to the linear direct term ξ/6, the two ways discussed
(mean value of the Coulomb potential and mean value of the
Kelbg potential) give identical results in the limiting case of
very low degeneracy.

The introduction of the linear direct term leads to unjustified
results for Coulomb systems, among them our own ones in
Ref. [8], Eq. (6.3), and [21], Eqs. (2.52) and (2.53), if it
is applied in the derivation of terms higher than n2 or z2,
respectively. The more general case away from hydrogen leads,
again, to the nonexistence of an e2 term if the potential in
question remains of Coulomb type. If the internal structure
of the corresponding ion is taken into account, the effective
potential deviates from the Coulomb one. This question will
not be considered here.
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APPENDIX

We discuss the role of an additional short-range potential
in deriving the virial expansion, i.e., if, instead of the bare
Coulomb potential, the Coulomb potentila plus a short-range
potential is used. To determine the equation of state, we may
start from the free energy, which is then given by

F − Fid = 1

2

∑
ab

naNb

∫∫ 1

0

dλ

λ
[λUab(r)Fab(r)]dr . (A1)

Here Uab(r) = Vab(r) + Vab(r), where Vab is the Coulomb
potential and Vab is the short-range potential, which is
assumed, for our discussion, to have the same factor λ. The
binary distribution function is given by

Fab(r) = exp (gab(r) − βV ′
ab(r)){1 + · · · }

= exp (−βV ′
ab(r))

{
1 + gab(r) + 1

2g2
ab(r) + · · · }.

(A2)
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Here we introduced, again, a short-range potential V ′
ab(r). So

far, we have a different notation for the short-range potentials,
according to the place in which they occurred in this section.
The Debye function reads gab(r) = − eaeb

kBT r
exp(−κr).

We now give a (new) derivation of the final result including
the Slater sum, Eq. (A12).

The free energy is then decomposed as

F − Fid = 1

2

∑
ab

naNb

∫∫ 1

0

dλ

λ
[λVab(r)(1 + gab(r))

+ λVab(1 + gab)(exp (−βV ′
ab) − 1)

+ λVab[exp (gab) − 1 − gab] exp (−βV ′
ab)

+ λVabFab]dr. (A3)

The first line of the right-hand side of Eq. (A3) corresponds to
the well-known limiting law. The second line contains orders
of VabV

′
ab and higher which will not be considered here. The

third line is rewritten using the first step of an iteration of the
screening equation (see Schmitz [40]) Vab = −kBT gab + · · ·
and neglecting terms of the order V ′

abg
2
ab. We get for the third

line of the right-hand side of Eq. (A3), I3,

I3 = −λkBT gab[Fab − 1 − gab] . (A4)

We write the following derivative:

H ′ =−kBT
∂

∂λ

{
exp(gab − βV ′

ab) − 1 − gab − 1
2g2

ab

}
. (A5)

The result is

H ′ =−kBT

(
∂g

∂λ
−β

∂V ′

∂λ

)
Fab+kBT

∂gab

∂λ
(1+gab). (A6)

We rewrite Eq. (A6) and get

H ′ = −kBT
∂g

∂λ
[Fab − 1 − gab] + ∂V ′

∂λ
Fab. (A7)

If one wants to perform a simple integration from Eq. (A5)
inserted in Eq. (A1), one has to identify the corresponding
outcome of Eq. (A2) with Eq. (A7), i.e., one has to make the
following identification:

Vab(r) = V ′
ab(r). (A8)

Only under this assumption can one make the final statement
for the free energy [6],

F − Fid = −kBT V

12π
κ3 − kBT V

2

∑
ab

nanb

∫
dr

×
{

exp[gab(r) − βV short
ab (r)] − 1 − gab − 1

2
g2

ab

}
.

(A9)

The short-range potential is now indicated by V short
ab , as its

origin is somehow between V ′
ab(r) and Vab(r). Equation (A9)

originates from the mean value of the Kelbg potential instead
of the mean value of the Coulomb one and is in agreement with
Eqs. (16) and (17) of [6] where, in Eq. (17) of Ref. [6], the
Slater sum according to Eq. (8) of this paper was introduced to
replace the short-range potential, i.e., by V Kelbg − V Coul. If, in
Eq. (A9), the short-range potential V short

ab is substituted in the
manner outlined above, the final result for the thermodynamic
functions contains the contribution in question ξ/6. This term
does not show up, however, if and only if Vab = 0. The
conclusion is that one cannot use expression (A9) if, as for
Coulomb systems, Vab has to be taken to be zero in Eq. (A1).

We give the shape of three formulas. We write the integral
occurring in Eq. (16) of Ref. [19], which was already given
above [see Eq. (A9)],∫

dr
[

exp (−βV ′
ab + gab) − 1 − gab − 1

2
g2

ab

]
, (A10)

while the integral of Eq. (17.14) of Ref. [7] reads

4π

[∫ ∞

aij

[
exp gij − 1 − gij − 1

2
g2

ij

]
r2dr

−
∫ aij

0

(
1 + gij + 1

2
g2

ij

)
r2dr

]
. (A11)

This expression was derived for particles interacting via the
Coulomb potential plus a short-range potential. In the special
shape of Eq. (A11), hard spheres with the parameter aij were
assumed to produce the potential V ′

ab occurring in (A10), i.e.,
V ′

ij (r) = ∞,r < aij ; = 0,r > aij . One more expression of
the identical contents is given in Eq. (5.87) of Ref. [21], and
looks like Eq. (A10), if V ′

ab is expressed in terms of the Slater
sum Sab(r), namely∫

dr
[
Sab(r) exp (gab + βVab) − 1 − gab − 1

2
g2

ab

]
. (A12)
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