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Ion cooling in collisionless plasma expansion
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The ion cooling in collisionless plasma expansion is revisited. It is shown that, in the case of an initial
Maxwellian ion distribution, the ion cooling is much slower than predicted by an adiabatic law linking the ion
temperature to the ion density. The origin of this behavior is a strong distortion of the ion distribution function
resulting in a large ion heat flow (not predicted by a simple water-bag model). Also noticeable is the increase of
the electron heat flux in the unperturbed plasma compared to the zero ion temperature case.

DOI: 10.1103/PhysRevE.91.013107 PACS number(s): 52.38.Kd, 52.40.Kh, 52.25.−b, 52.65.Ff

I. INTRODUCTION

The problem of the expansion of a collisionless plasma into
a vacuum has been widely studied since the pioneering work of
Gurevich, Pariiskaya, and Pitaevskii [1], in particular in recent
years, in the context of the interaction of an ultraintense laser
pulse with a solid target and of the resulting generation of high
energy ion beams [2–9]. For instance, recent theoretical works
address the charge separation effects and the maximum ion
velocity [10–12], the electron cooling [13–21], and the effect
of a two-temperature electron distribution function [20–23].

In most of these works the ions are assumed to be cold
throughout the expansion, or at least to cool down very quickly,
so that the ion temperature can be neglected. However, in some
specific cases, the ion cooling can be treated exactly, as in the
case of the expansion of a Gaussian plasma, in the quasineutral
limit, and when the electron and ion distribution functions are
self-similar [14].

In this paper we revisit the ion cooling in the expansion
of a one-dimensional semi-infinite collisionless plasma, in the
quasineutral limit. The analysis is relevant to the cases when
the plasma heating is such that the initial ion temperature is
comparable to the electron temperature and when some source
of energy maintains the electron temperature at its initial value.
In typical laser-plasma experiments, this corresponds to the
case of a laser pulse in the hundreds of picoseconds or in the
nanosecond range impinging on a thick foil, in contrast with
the case of a femtosecond range laser impinging on a thin foil,
for which the ion temperature can be neglected (temperature
balance between ions and electrons has not enough time to
be reached) and for which the electron cooling occurs on the
same time scale as the expansion.

Though the ion cooling in the expansion of a one-
dimensional semi-infinite collisionless plasma was tackled in
the original paper of Gurevich et al. [1], all of its characteristics
have not been revealed. We show in particular that when the
initial ion distribution function is a Maxwellian distribution,
the strong distortion of the ion distribution function during
the expansion leads to an ion cooling that is much slower
than predicted by the often accepted law stating that the ion
temperature varies as the square of the ion density in such a
one-dimensional system, and we show that the very large ion
heat flux is responsible for this behavior. The comparison of

*patrick.mora@cpht.polytechnique.fr

the cases of initial ion distribution functions in the form of
a water bag and in the form of a Maxwellian is particularly
illustrative in this respect. A significant increase in the electron
heat flow in the unperturbed plasmas is also evidenced, about
38% for equal ion and electron temperature and singly ionized
ions.

II. MODEL AND FUNDAMENTAL EQUATIONS

We consider the expansion into a vacuum of a one-
dimensional collisionless semi-infinite plasma. At time t = 0,
the plasma is assumed to occupy the half-space x < 0. The
ions have initially a density ni = ni0 for x < 0 and ni = 0 for
x > 0 with a sharp boundary, with no mean velocity, vi = 0.
The ion charge number is Z and the ion mass is mi . The ions
are described by a distribution function f (x,v,t) that evolves
according to the Vlasov equation

∂f

∂t
+ v

∂f

∂x
− Ze

mi

∂�

∂x

∂f

∂v
= 0, (1)

where e is the elementary charge and �(x,t) is the electrostatic
potential. The ion density ni , mean velocity vi , and temperature
Ti are easily deduced from f :

ni =
∫

f dv, (2)

nivi =
∫

f v dv, (3)

and

nikBTi = mi

∫
f (v − vi)

2 dv. (4)

The electrons are in equilibrium with the electrostatic
potential and are assumed to correspond to a Boltzmann
distribution

ne = ne0 exp

(
e�

kBTe

)
, (5)

where ne0 = Zni0 is the electron density in the unperturbed
plasma (i.e., for x = −∞) and Te is the electron temper-
ature. We are interested here in the late time expansion,
when the characteristic density scale length cs0t , where
cs0 = (ZkBTe/mi)1/2 is the ion-acoustic velocity, is much
larger than the initial Debye length λD0 = (ε0kBTe/ne0e

2)1/2.
This corresponds to the condition ωpit � 1, where ωpi =
(ne0Ze2/miε0)1/2 is the ion plasma frequency. In this limit,
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the plasma can be considered quasineutral, with ne = Zni ,
and

� = kBTe

e
ln ni = kBTe

e
ln

∫
f dv, (6)

where the ion density has been normalized to ni0.
In such a condition the motion is self-similar [1], f =f (ξ,v)

with ξ = x/t , and the Vlasov equation reads as

(v − ξ )
∂f

∂ξ
− Ze

mi

d�

dξ

∂f

∂v
= 0. (7)

If we normalize the velocities (i.e., v and ξ ) to cs0 and use
Eq. (6), it can be written

(v − ξ )
∂f

∂ξ
+ E(ξ )

∂f

∂v
= 0, (8)

where E(ξ ) is the dimensionless electric field (i.e., normalized
to Ess = mics0/Zet , which is the electric field of the self-
similar solution in the Ti0 = 0 case, where Ti0 is the ion
temperature in the unperturbed plasma),

E(ξ ) = − d

dξ

(
ln

∫
f dv

)
. (9)

The characteristics of Eq. (8) satisfy

dv

dξ
= E(ξ )

v − ξ
. (10)

Note that the limits of the integrals over velocity are normally
−∞ and +∞. However, as explained in Ref. [1], f vanishes
for v < ξ , so that the lower limit of the integral can be taken
equal to ξ .

III. CASE OF A WATER-BAG ION DISTRIBUTION

In this section we assume that the ions are described by a
top-hat or water-bag model, i.e.,

f (ξ,v) =
{
f0 if v−(ξ ) < v < v+(ξ ),
0 otherwise, (11)

where the functions v±(ξ ) are equal to ±v0 in the unperturbed
plasma (for ξ sufficiently negative), and where f0 = 1/2v0, so
that the normalized ion density ni and mean velocity vi are
simply

ni = v+ − v−
2v0

, (12)

vi = 1

2
(v+ + v−), (13)

the dimensionless electric field E is

E(ξ ) = − d

dξ
ln (v+ − v−) , (14)

the ion temperature Ti is given by

Ti

ZTe

(ξ ) = 1

3
n2

i v
2
0, (15)

and the ion heat flux is equal to zero.
To perform the integration of Eq. (10), one needs to know

the position of the boundary ξ0 between the expanding plasma
and the unperturbed plasma, and the value of the dimensionless

electric field at this point, i.e., E(ξ0). Both quantities can be
determined by the following analysis.

Applying Eq. (10) to the characteristics v−(ξ ) and v+(ξ ),
one obtains

dv±
dξ

= E(ξ )

v± − ξ
= − 1

v± − ξ

d

dξ
ln (v+ − v−) . (16)

Combining the two equations for v±, one obtains the following
condition in the expanding plasma (where the electric field
does not vanish):

(v+ − ξ )(v− − ξ ) = 1. (17)

This condition is valid at the unperturbed plasma boundary, so
that

(v0 − ξ0)(v0 + ξ0) = −1, (18)

or

ξ0 = −
√

1 + v2
0 , (19)

for an expansion of a semi-infinite plasma toward the right and
a rarefaction wave going to the left with an absolute velocity
(in physical units)

vs0 =
[
kB(ZTe + 3Ti0)

mi

]1/2

. (20)

Combining Eqs. (12), (13), and (17), one can write

vi − ξ = vs(ξ ) =
√

1 + n2
i v

2
0 , (21)

where vs(ξ ) is the local normalized sound velocity.
It is convenient to introduce the auxiliary quantities

u± = v± − ξ, (22)

with

u+u− = 1, (23)

ni = 1

2v0

u2
+ − 1

u+
, (24)

and

vi − ξ = u2
+ + 1

2u+
, (25)

where we have eliminated u−. Using Eq. (16), one gets

du+
dξ

= −u2
+(u2

+ − 1)

u4+ + 1
(26)

and

E(ξ ) = u+(u2
+ + 1)

u4+ + 1
. (27)

Equation (26) can be integrated to give

ξ − ξ0 = g(u+) − g(u0), (28)

where

g(u) = ln

(
u + 1

u − 1

)
− u2 + 1

u
(29)

013107-2



ION COOLING IN COLLISIONLESS PLASMA EXPANSION PHYSICAL REVIEW E 91, 013107 (2015)

and

u0 = u+(ξ0) = v0 +
√

1 + v2
0 . (30)

Using Eqs. (27) and (30), one can express the electric field in
ξ0 as

E(ξ0) =
√

1 + v2
0

1 + 2v2
0

. (31)

Note that g can also be expressed as a function of vi or ni via
Eq. (21) and

g(u+) = 1

2
ln

(
vs + 1

vs − 1

)
− 2vs. (32)

Equivalent results were obtained by Medvedev [24] by solving
directly the fluid equations with zero heat flux, i.e., by using
the closure relation Ti/n2

i = Ti0/n2
i0.

According to Eq. (28), u+ is decreasing from u0 for ξ = ξ0

to 1 for ξ → ∞. The asymptotic behavior for ξ → ∞ is easily
obtained as

g(u+ → 1) � ln 2 − 2 − ln(u+ − 1). (33)

In the same limit, one has

ni � u+ − 1

v0
(34)

and

vi − ξ � 1. (35)

Combining Eqs. (28), (33), and (34), one gets in the ξ → ∞
limit

ni � C0 exp(−ξ ), (36)

with

C0 = 2

v0

⎛
⎝

√
1 + v2

0 − 1√
1 + v2

0 + 1

⎞
⎠

1/2

exp
(√

1 + v2
0 − 2

)
. (37)

For v0 = 0 one recovers C0 = exp (−1).
The case Ti0 = ZTe is of particular interest as it corresponds

to a plasma with singly charged ions and equal ion and electron
temperatures in the unperturbed plasma. It corresponds to
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FIG. 1. Water-bag case. Quantities v−, v+, and vi as functions of
ξ for v0 = √

3, i.e., Ti0 = ZTe.
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FIG. 2. Water-bag case. Normalized electric field as a function of
ξ for v0 = √

3, i.e., Ti0 = ZTe. The dashed line corresponds to the
zero ion temperature case (v0 = 0).

v0 = √
3, ξ0 = −2, and u0 = 2 + √

3, with E(ξ0) = 2/7 and
C0 = 2/3.

Figure 1 shows the quantities v−, v+, and vi as functions
of ξ for the case v0 = √

3. Figure 2 shows the corresponding
normalized electric field and Fig. 3 shows the ion density.
In Figs. 2 and 3 the dashed lines correspond to the zero ion
temperature case, v0 = 0.

IV. CASE OF AN INITIAL MAXWELLIAN
ION DISTRIBUTION

The case where the initial ion distribution is a Maxwellian
one is more realistic and presents more interesting features.
In contrast with the water-bag case, the analytic approach
is limited and one has to resort to the numerical integration
of Eq. (10) to determine the solution of Eq. (8), taking into
account the constancy of f along the characteristics. To do
so, one has to use self-consistently Eq. (9) to determine the
electric field.

The ion distribution function in the unperturbed plasma is
given by

f (ξ → −∞,v) = 1√
2π vti0

exp

(
− v2

2v2
t i0

)
, (38)

where vti0 = (Ti0/ZTe)1/2 in the normalized units used here.
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FIG. 3. Water-bag case. Density as a function of ξ for v0 = √
3,

i.e., Ti0 = ZTe. The dashed line corresponds to the zero ion
temperature case (v0 = 0).
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FIG. 4. Case of an initial Maxwellian ion distribution. Character-
istics as functions of ξ for vti0 = 1, i.e., Ti0 = ZTe.

Equation (10) is solved for a sufficiently large number of
characteristics (typically 1 × 103) from the left to the right,
beginning at an initial position ξ1 (typically ξ1 = −6 for
vti0 = 1). The spatial mesh is on the order of dξ = 1 × 10−3.

Let us suppose that the solution is known up to a point
ξn. Between the two successive mesh points, ξn and ξn+1,
with ξn+1 − ξn = dξ , Eq. (10) is solved analytically, assuming
a constant electric field En+1/2 (as it is in fact not initially
known, En−1/2 is used as a first guess value for En+1/2 in a
first iteration), i.e.,

vj,n+1 − ξn+1 − En+1/2 = (vj,n − ξn − En+1/2)

× exp

(
−vj,n+1 − vj,n

En+1/2

)
. (39)

This implicit equation is in fact solved iteratively by a
Newton method (two iterations are sufficient). In Eq. (39)
vj,n corresponds to the value of the velocity of a given
characteristic (labeled j ) at the position ξn and En+1/2 is
the electric field taken at the intermediate position ξn+1/2 =
(ξn + ξn+1)/2. Once all the vj,n+1 are known, the distribution
function is determined at the position ξn+1, the ion density is
evaluated, and the electric field En+1/2 is then determined by
the discretized version of Eq. (9). The solving of Eq. (39) is
then iterated with this more accurate value of En+1/2, and so
on until convergence is obtained.
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FIG. 5. Case of an initial Maxwellian ion distribution. Normal-
ized electric field as a function of ξ for vti0 = 1, i.e., Ti0 = ZTe. The
dashed line corresponds to the zero ion temperature case (vti0 = 0).
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FIG. 6. Case of an initial Maxwellian ion distribution. Density
as a function of ξ for vti0 = 1, i.e., Ti0 = ZTe. The dashed line
corresponds to the zero ion temperature case (vti0 = 0).

Figure 4 shows a selected number of characteristics
corresponding to the case vti0 = 1, i.e., Ti0 = ZTe, while
Figs. 5 and 6 show the corresponding normalized electric field
and the ion density, respectively. Note that the ion velocity
behaves as vi � ξ + 1 and that the ion density behaves as
ni � C0 exp(−ξ ) in the ξ → ∞ limit, with C0 ≈ 0.726 65
(Ref. [1] gives C0 = 0.70 with a far less precise numerical
scheme). The quantity C0 is a function of the ion temperature
which can be obtained numerically. It is shown as a function
of Ti0/ZTe in Fig. 7.

The case of an initial Maxwellian ion distribution differs
significantly from the water-bag case when one studies the
ion temperature. In Fig. 8 one shows the ion temperature
and the ion density as functions of ξ . It appears that the ion
temperature does not decrease as n2

i as in the water-bag case.
On the contrary, its decreasing is much slower. This is more
apparent in Fig. 9, where one plots the ratio Ti/n2

i as a function
of ξ . As a matter of fact, the Ti ∝ n2

i behavior appears for quite
large values of ξ (ξ � 8), with Ti � 193.7 n2

i , that is, more than
two orders of magnitude larger than predicted by the water-bag
model.

This result may be related to the distorted form of the ion
distribution function. This distortion is illustrated in Fig. 10,
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C
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/ZT

e

FIG. 7. Case of an initial Maxwellian ion distribution. The
quantity C0 is shown as a function of the ion temperature, where
C0 = limξ→∞ ni exp(ξ ).
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FIG. 8. Case of an initial Maxwellian ion distribution. Tempera-
ture and density as functions of ξ for vti0 = 1, i.e., Ti0 = ZTe. Also
shown is the square of the density.

which shows the ion distribution function at the position ξ = 9,
where the mean velocity is almost equal to its asymptotic
expression, vi � ξ + 1, and where vti ≈ 1.2 × 10−3. One
notes the strongly asymmetric shape of the ion distribution
function. This asymmetry also results in a large ion heat
flow, as shown in Fig. 11, on which is plotted the ion heat
flow, normalized to the ion free-streaming value nimiv

3
t i , as a

function of ξ . For ξ → ∞, one has qi � 5.64 nimiv
3
t i .

It is interesting to compare the ion heat flow to the electron
heat flow. To calculate the electron heat flow, one has to resort
to the equation of conservation of energy of the electrons in
the expansion,

Pe

∂ve

∂x
= −∂qe

∂x
, (40)

where Pe = nekBTe is the electron pressure and ve is the
electron mean velocity, and where one has taken into account
the fact that the electron temperature is assumed to be constant
in the expansion. In the self-similar variable, Eq. (40) reads

Pe

dve

dξ
= −dqe

dξ
. (41)

1
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102

-4 -2 0 2 4 6 8
ξ/c

s0

T
i
 /n

i

2

FIG. 9. Case of an initial Maxwellian ion distribution. Ratio
Ti/n2

i , normalized to Ti0/n2
i0, as a function of ξ for vti0 = 1, i.e.,

Ti0 = ZTe. The dashed line corresponds to the water-bag case.
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FIG. 10. Case of an initial Maxwellian ion distribution with
vti0 = 1, i.e., Ti0 = ZTe. Ion distribution function at the position
ξ = 9.

In the quasineutral approximation Pe = nimic
2
s0 and ve = vi ,

so that one has

qe(ξ ) = mic
2
s0

∫ ∞

ξ

ni

dvi

dξ
dξ = −mic

2
s0

∫ ∞

ξ

(vi − ξ )
dni

dξ
dξ,

(42)

where one has used the continuity equation and the fact that
the electron heat flux vanishes for x → ∞. Knowing vi(ξ ) and
ni(ξ ), it is easy to numerically integrate Eq. (42) to obtain the
electron heat flow. The result is shown in Fig. 12, on which
one has plotted the electron heat flow qe, the ion heat flow qi ,
and the total heat flow q, normalized to nimic

3
s0, as functions

of ξ . One observes that the ion heat flux, though noticeable,
stays smaller than the electron heat flux. One also notes that
the electron heat flow is larger than in the zero ion temperature
case (for which it is equal to nimic

3
s0). In particular, in the case

Ti0 = ZTe, one has qe ≈ 1.3776 ni0mic
3
s0 in the unperturbed

plasma, instead of ni0mic
3
s0 in the Ti0 = 0 case.

One can easily verify, from the global energy conservation
law, that the electron heat flux in the unperturbed plasmas is
also given by

qe(−∞) = 1

2

∫ ∞

−∞
ni

[
kB(Ti − Ti0) + miv

2
i

]
dξ. (43)
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FIG. 11. Case of an initial Maxwellian ion distribution with
vti0 = 1, i.e., Ti0 = ZTe. Ion heat flow, normalized to the free-
streaming value nimiv

3
t i , as a function of ξ .
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FIG. 12. Case of an initial Maxwellian ion distribution with
vti0 = 1, i.e., Ti0 = ZTe. Electron heat flow, ion heat flow, and total
heat flow, normalized to nimic

3
s0, as functions of ξ .

V. DISCUSSION AND CONCLUSION

In this paper we have limited the analysis to the self-similar
solution, obtained when ωpit � 1, a condition also written

cs0t � λD0. However, this self-similar solution becomes in
any case invalid for large ξ , when the local Debye length λD =
λD0(ne0/ne)1/2 = λD0 exp(ξ/2cs)/

√
C0 becomes equal to the

density scale length, cs0t . At that point the self-similar solution
predicts a velocity vi = cs ln[C0e(ωpit)2] (where e denotes
the numerical constant 2.718 28 . . .), which is expected to be
approximately the cutoff of the ion velocity spectrum.

In conclusion, we have revisited the expansion of a
one-dimensional semi-infinite collisionless plasma, in the
quasineutral limit, taking into account a finite ion temperature
in the unperturbed plasma. We have shown that, in the case
where the initial ion distribution is a Maxwellian one, the
ion cooling is much slower than expected, ending with a
temperature dependence with self-similar parameter that is
more than two orders of magnitude larger than expected
according to the adiabatic law, for Ti0 = ZTe. This behavior is
due to a very large heat flow, which goes up to more than five
times the ion free-streaming value nimiv

3
t i . Also noticeable

is the increase of the electron heat flux in the unperturbed
plasma (nearly 38% for Ti0 = ZTe) compared to the zero ion
temperature case.
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