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Laser-driven Rayleigh-Taylor instability: Plasmonic effects and three-dimensional structures
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The acceleration of dense targets driven by the radiation pressure of high-intensity lasers leads to a Rayleigh-
Taylor instability (RTI) with rippling of the interaction surface. Using a simple model it is shown that the
self-consistent modulation of the radiation pressure caused by a sinusoidal rippling affects substantially the wave
vector spectrum of the RTI, depending on the laser polarization. The plasmonic enhancement of the local field
when the rippling period is close to a laser wavelength sets the dominant RTI scale. The nonlinear evolution is
investigated by three-dimensional simulations, which show the formation of stable structures with “wallpaper”
symmetry.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) is the classical pro-
cess occurring when a heavy fluid stands over a lighter one in
hydrodynamics or, equivalently, when a light fluid accelerates
a heavier one. The latter case is of crucial importance in
inertial confinement fusion [1] and in the astrophysical context,
as exemplified in a spectacular way by the Hubble Space
Telescope images of the Crab Nebula [2]. A peculiar example
of the RTI arises in the context of ultraintense laser-plasma
interactions where the radiation pressure of the laser pulse is
large enough to drive a strong acceleration of a dense plasma
target. Surface rippling attributed to RTI-like phenomena has
been observed in simulations since early investigations of
the ultraintense regime [3] and in several studies devoted
to the concept of radiation pressure acceleration of thin
targets [4–8], i.e., the “light sail” scheme which is being
extensively studied experimentally [9,10] as one of the most
promising approaches to laser-plasma acceleration of ions [11]
especially at intensities beyond 1023 W cm−2 (foreseen with
next-generation laser facilities), i.e., in the regime where the
ions become relativistic and high energy gain is predicted
[12–15]. The RTI may cause early breakthrough of the laser
pulse through the thin foil target, leading to inefficient ac-
celeration. Some experimental evidence of radiation-pressure-
driven RTI in thin targets has been reported [10].

Analytical modeling of the laser-driven RTI of a thin foil in
the ultraintense regime [4,8] predicts that the instability growth
rate γRT increases monotonically with the wave vector q,
similarly to the classic result for the hydrodynamic instability
γRT = (gq)1/2, where g is the acceleration, thus apparently
favoring the generation of small scales. However, simulations
show that the size of the structures generated by the instability
is finite and close to the laser wavelength [4,7,8].

In this paper, in order to explain the dominant spatial
scales in the observed structures, we consider the effect of
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the transverse modulation of the radiation pressure caused
by the rippling of the laser-plasma interface. By studying
the reflection of a plane monochromatic wave by a shallow
sinusoidal grating, we show that when the laser polarization is
not parallel to the grating grooves the local radiation pressure
can be significantly enhanced in the valleys of the grating,
particularly when the grating period is close to the laser
wavelength. We calculate the modified linear growth rate and
the unstable wave vector spectrum which is found to depend
on the laser polarization. (An independent theoretical study
leading to similar conclusions has been recently reported [16].)

Our analysis is supported by particle-in-cell (PIC) simu-
lations in two (2D) and three dimensions (3D). For circular
polarization the observed hexagonal shape of RTI-generated
structures resembles that predicted on the general basis of
symmetry considerations. Hence, the 3D simulations provide
an additional example of the recurrence of such geometry
in the various contexts where the RTI plays a role, with the
peculiar feature that the medium is strongly relativistic in our
case. More generally this analysis provides an example of
spontaneous symmetry breaking in a classical system.

II. ANALYTICAL MODEL

A. Field enhancement at a grating surface

The general problem of the reflection of an electromagnetic
(EM) wave from surfaces having various modulations and
arbitrary refractive index and of related phenomena, such as
local field enhancement and excitation of surface waves and
plasmonic modes, has a long history (see, e.g., [17]) and can be
solved exactly in many cases of interest. However, for our aim
it will be sufficient to consider normal incidence on perfectly
reflective and shallow gratings, whose depth is small with
respect to the laser wavelength, and to use a perturbative
approach. We consider a plane monochromatic wave of
frequency ω0 impinging along the x direction on a perfect
mirror filling the x > xm(y) region where xm = (δ/2) cos qy

describes the sinusoidal rippling of the mirror surface [see
Fig. 1(a)], with q = 2π/a, where a is the period of the ripple
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FIG. 1. (Color online) (a) The geometry used in the model
calculations. (b) Phase matching between surface waves (SWs) and
an EM plane wave at normal incidence on a grating. The thick lines
give the dispersion relation of SWs in the (ω,ky) plane, folded into
the Brillouin zone |ky | < π/a. The oblique dashed lines give the
ωp/ω → ∞ limit of the SW dispersion relation. The vertical arrow
represents the incident wave, i.e., (ω = ω0, ky = 0).

and δ the peak-to-valley depth. Note that y = 0 corresponds
to a valley of the rippling. Our aim is to evaluate the EM field
at all points on the surface, via a perturbative approach in the
small parameter kδ where k = ω0/c.

Let the electric field of the incident wave be Ei = (Eipŷ +
Eis ẑ)eikx−iω0t where Eip = E0 and Eis = 0 correspond to P

polarization, Eip = 0 and Eis = E0 to S polarization, and
Eip = iEis = E0/

√
2 to circular (C) polarization. From the

general solution of Helmholtz’s equation, taking into account
the symmetry and periodicity of the system, the components
of the electric and magnetic fields along z (i.e., parallel to the
grating grooves) may be written as [we omit everywhere the
harmonic temporal dependence ∼ exp(−iω0t)]

Ez = Eise
ikx − Erse

−ikx +
∞∑

�=1

E�e
κ�x cos(�qy), (1)

Bz = Eipeikx + Erpe−ikx +
∞∑

�=1

B�e
κ�x cos(�qy), (2)

where κ2
� = (l2q2 − k2). Other components are simply ob-

tained from B = −i∇ × E/k and E = i∇ × B/k. Modes with
�q > k and κ� real are evanescent modes, while �q < k and
imaginary κ� correspond to propagating waves scattered at
an angle α with respect to the normal direction such that
tan α = �q/|κ�|. For a shallow modulation we assume that
E� is of order O(klδl) and we truncate the expansion (1)
up to � = 1. In this case, the terms of order O(kδ) are only
evanescent for q > k (grating with subwavelength period) and
only propagating for q < k. The boundary conditions at the
surface are Ez(x = xm(y),y) = 0, (B · n̂)(x = xm(y),y) = 0,
and (E × n̂)(x = xm(y),y) = 0, where n̂ = (−x̂ + x ′

mŷ)(1 +
x

′2
m)1/2 � −[x̂ + ŷ(qδ/2) sin qy] + O(k2δ2) is the unit vector

normal to the surface. We thus obtain Ers = Eis , Erp =
Eip, E1x = −i(qkδ/κ1)Eip, E1y = −ikδEip, E1z = −ikδEis ,
B1x = qδEis , B1y = κ1δEis , and B1z = (k2δ/κ1)Eip.

The above relations imply that locally the field is enhanced
at the peaks of the grating for S polarization and in the valleys
for P polarization. To check this result we performed simula-
tions of plane wave reflection from a reflecting, sinusoidally
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FIG. 2. (Color online) Two-dimensional simulations of plane
wave reflection from a grating surface. The figures show the temporal
average (over one laser period) of B2

t , where Bt is the transverse
magnetic field (in arbitrary units) for the cases of S and P polarization,
i.e., for the electric field of the plane wave perpendicular and parallel
to the simulation plane, respectively. For the P -polarization case, the
field amplitude is locally enhanced in the valleys of the grating, while
for S polarization enhancement occurs at the grating peaks.

modulated surface using the particle-in-cell code PICCANTE

(see Sec. III) at very small intensity so that only the linear
response of electrons is relevant. Figure 2 shows snapshots of
the cycle-averaged field from one of such simulations, where
the local enhancement of the field in the grating valleys for P

polarization is particularly evident.
In particular, for P polarization, in the limit q → k we have

|κ1| → 0 and thus E1y and B1z diverge. This is due to the exci-
tation of a resonant, standing surface wave (SW) in the periodic
medium: in fact, because of the folding of the SW dispersion
relation in the Brillouin zone |k| < π/a = q/2 [see Fig. 1(b)],
there is an intersection between the dispersion curves of the
EM wave at normal incidence (ky = 0) and of the SW: for a
collisionless plasma and a sufficiently shallow grating, ky =
(ω/c)(ω2

p/ω2 − 1)1/2(ω2
p/ω2 − 2)−1/2 → ω/c in the perfect

mirror limit ωp/ω → ∞, with ωp the plasma frequency; the
latter case is equivalent to q = k, i.e., to a grating period equal
to the laser wavelength. The EM wave is able to excite the
SW because of the modulation, so that locally the electric
field is not strictly parallel to the surface and can drive surface
charge and current densities also at normal incidence. Due to
the inversion symmetry, a superposition of +q and −q modes,
i.e., a standing wave, is excited.

B. Spatial modulation of radiation pressure

We now turn to evaluate the local radiation pressure on the
grating, i.e., the flow of the EM momentum through the mirror
surface as a function of the position. Such flow is given by
P = T · n̂ where where Tαβ = (1/8π )[Re(EαE∗

β + BαB∗
β) −

1
2 (|E|2 + |B|2)δαβ]x=xm(y) is Maxwell’s stress tensor evaluated
at the surface and averaged over an oscillation period. For S

and P polarization we obtain for the Px component, up to
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order O(kδ),

Px � E2
0

4π

{
Re(1 − κ1δ cos qy) (S),

Re
(
1 + k2

κ1
δ cos qy

)
(P ),

(3)

while Py � (E2
0/8π )qδ sin qy for both polarizations. We thus

see that to first order there is no transverse modulation in Px

when q < k since in this case κ1 is an imaginary number. The
modulation, to order O(kδ) occurs only for q > k and it is
due to the field enhancement associated with the evanescent
modes.

From now on we assume q > k and consider how the
modulated radiation pressure may act to either smooth or
enforce the surface modulation. Noting that E2

0/4π = 2I/c ≡
P0, i.e., the radiation pressure on a plane mirror, the local
pressure due to EM momentum flow normal to the surface is

P⊥ = −P · n̂ � P0[1 + K(q)δ cos qy], (4)

where K(q) = −κ1 = −(q2 − k2)1/2 for S polarization,
K(q) = k2/κ1 for P polarization, and K(q) = (2k2 − q2)/2κ1

for C polarization. Equation (4) implies that when a surface
rippling occurs the radiation pressure will be modulated in
the transverse direction with a different phase depending on
the polarization: for P polarization P⊥ locally is higher in the
valleys and lower at the peaks, thus enforcing the growth of
the modulation, while the opposite holds for S polarization.

C. Modified RTI growth rate

To analyze the impact of radiation pressure modulation
on the RTI, we use the model of Ott [18] for the RTI of
a thin foil driven by a pressure difference between the two
sides. A similar extension of this model has been used in
Ref. [4] to study the relativistic regime of the instability. Here
for simplicity we restrict our analysis to the nonrelativistic
case. We consider a thin foil of surface density σ , initially
plane and placed at the position x = 0, with a pressure P on
the x < 0 side. Using Lagrangian coordinates r = r(r0,t), the
equation of motion for an infinitesimal fluid element of length
dr = r(y0 + dy0,t) − r(y0,t) and mass dm = σdy0 is

∂2
t r = (P/σ )(x̂∂0y − ŷ∂0x), (5)

where ∂0 ≡ ∂/∂y0. We look for an approximate solution in the
form

x(y0,t) � ξ0(t) + 1
2ξx(t)eiqy0 + c.c., (6)

y(y0,t) � y0 + 1
2ξy(t)eiqy0 + c.c. (7)

As noted in Ref. [18] such a solution is not generally sinusoidal
in Eulerian variables but becomes so for small perturbations
(q|ξi | � 1), which is consistent with our calculation of the
pressure modulation. Thus we substitute for P with P0[1 +
K(q)ξx]. To lowest order the equation of motion yields ξ0(t) =
(P0/σ )t2/2, which describes the motion of the “flat” foil. To
next order the equations for ξx and ξy are

∂2
t ξx = (P0/σ )[K(q)ξx + ∂0ξy], (8)

∂2
t ξy = −(P0/σ )∂0ξx, (9)
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FIG. 3. (Color online) RTI growth rate of a thin foil for S, P , and
circular (C) polarization. The dashed curve γRT = (P0q/σ )1/2 gives
the rate for the standard RTI of a “flat” thin foil, to which all curves
are reduced for q < k, i.e., when κ1 is imaginary. The parameter
γ0 = (P0k/σ )1/2.

which have solutions of the form ξx ∼ eγ t and an unstable root
(γ real and positive) given by

γ = (P0/σ )1/2

[(
q2 + K2(q)

4

)1/2

+ K(q)

2

]1/2

. (10)

The growth rate γ is shown in Fig. 3 for the three polarizations
and compared with the standard result γRT = (P0q/σ )1/2,
which still gives the growth rate for q < k, i.e., when there
is no effect of the radiation pressure modulation and thus no
polarization dependence.

Results similar to Fig. 3 are expected for thick targets
because the dominant effect is the plasmonic enhancement
of the field at the surface, which depends only on the period of
the surface rippling. The dependence on the polarization needs
a careful discussion because for high intensity the laser-plasma
coupling is highly sensitive to the laser polarization. For
instance, in the case of P polarization strong electron heating
occurs and the surface rippling may be “washed out” by the
quiver motion of the electrons. We expect the above theory
to be most appropriate for circular polarization (the preferred
option for radiation pressure acceleration), for which electron
heating is strongly reduced and no anisotropy in the transverse
plane is generated. As far as effects of higher order in kδ are
of concern, we speculate that when kδ ∼ 1 the field may be
screened into the grating valleys if q > 2k, similarly to what
happens in a waveguide, thus reducing the RTI growth for such
high-q modes.

III. SIMULATION RESULTS

A. Two-dimensional simulations

In order to test the analytical model we performed 2D PIC
simulations using the PICCANTE open source code [19]. We
considered a circularly polarized plane wave, irradiating a thin
overdense “carbon” plasma slab (ion Z/A = 0.5). A periodic
rippling of the foil is observed and the continuous translational
symmetry is quickly broken. In Fig. 4 we show the results for
a simulation performed with normalized wave amplitude a0 =
(I/2mec

3nc)1/2 = 66, target thickness d = 0.58λ, and density
ne = 37nc (where nc is the cutoff density). The transverse size
of the simulation box was Ly = 15λ and the spatial resolution
�x = �y = λ/204.
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FIG. 4. (Color online) Analysis of the transverse modes in 2D
plane wave simulations. (a), (c) Charge density (t = 20λ/c) of
electrons and ions. For each time step the longitudinal position
x = x(y,t) of the vacuum-plasma interface was reconstructed as a
function of the transverse coordinate y. (b) Temporal evolution of
the Fourier transform x̃(q,t) for electrons. (d) Comparison of x̃ for
electrons (thick line) and carbon ions (dashed line) at t = 20.

A Fourier analysis of the target profile shows that the
dominant modes during the onset of the instability are
approximately in the range 0.8 < q/k < 2 [Fig. 4(b)]. As
expected, electrons and ions show a very similar behavior
as is evident in Figs. 4(a), 4(c), and 4(d). In a very wide range
of simulation parameters, we consistently observe the same
behavior and a rather sharp cutoff for the modes q > 2k, which
supports a waveguidelike screening of the field for such modes.
In contrast, for linear P polarization the RTI is quenched as
anticipated above.

B. Three-dimensional simulations

Large-scale 3D simulations were performed with the
PIC code ALADYN [20] in the ultrarelativistic regime, for
parameters close to those of Ref. [13] and of relevance for
radiation pressure acceleration with the ultrahigh-intensity
laser facilities under development. To save computational
resources we employed a nonuniform grid in the transverse
direction, i.e., a constant cell spacing is maintained in a region
around the axis and then gradually stretched towards the
edge. This allows us to keep a high resolution in the center
and contain the expanding plasma with a feasible number of
grid points. The simulation box is 93λ wide along x (the
laser-propagation direction) and 120λ along y and z. In the
central region (93 × 60 × 60 λ) the cell size is �x = λ/44,
�y = �z = λ/22. The grid size is 4096 × 1792 × 1792 cells
and 64 macroparticles per cell per species are used, yielding a
total number of �2 × 1010. The simulations were run on 16384
BlueGene/Q cores on FERMI at CINECA (Bologna, Italy).
The target is composed of a first layer of ions with charge-to-
mass ratio Z/A = 1/2 (e.g., C6+), �t = λ, and ne = 64nc (so
that ζ = 201), and a second layer of protons, having thickness
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FIG. 5. (Color online) A 3D snapshot image of the density of
both proton (dark green tones) and carbon (light blue tones) densities
at t = 30T . In order to make the carbon ion density visible, the proton
density is shown only on the left part (y � 0) of the image.

�r = λ/22 and density ne = 8nc. The laser pulse has amplitude
a0 = 198, a transverse Gaussian profile with waist diameter
w = 6λ, and a longitudinal cos2-like profile with a full width
at half maximum (FWHM) duration τp = 9λ/c, all referred
to the profile of the fields. Simulations have been performed
using both circular (CP) and linear (LP) polarization.

Figure 5 shows a 3D ion density snapshot at an intermediate
stage of the acceleration process for a simulation with optimal
amplitude a0 = 198 and CP. A transverse, netlike structuring
of the ion density is apparent and particularly evident in the
protons. In the LP case (not shown) in which a0 = 198

√
2

there is a tendency of the structures to lengthen along the
polarization direction.

The difference in the transverse structures between CP
and LP is particularly evident for plane wave 3D simulations
(performed with PICCANTE) shown in Fig. 6, where we took a
uniform intensity profile and 5λ as the grid length in y and z. In
the CP case we observe a pattern of hexagonal-like structures,
which indeed corresponds closely to a theoretical prediction,
based on symmetry arguments, for a stable structure of the
flow in the nonlinear 3D development of the RTI [21]. It is
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FIG. 6. (Color online) Areal density of carbon ions at t = 15T in
3D simulations with the same parameters as in Fig. 5 but for a plane
wave, for circular (CP) and linear (LP) polarization.
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noticeable that this structure provides an example of sponta-
neous symmetry breaking in a classical system [22], where the
continuous symmetry group of rotations and translations of
the initial pulse-target system is reduced to the discrete “wall-
paper” group p6mm [23]. For LP, the structures are strongly
elongated along the polarization direction, which confirms that
the laser electric field “sweeps out” the modulations. For both
LP and CP, the transverse structures are visible also in the
electron density (not shown) and already at t � 10T (a faster
growth being apparent for LP).

IV. DISCUSSION AND CONCLUSIONS

The field modulation and local enhancement due to
subwavelength surface rippling may play a role in other
phenomena related to intense laser interaction with an over-
dense plasma. As an example we mention the generation of
current filaments from the interaction surface, which in several
simulations is correlated with a local rippling [24,25]. The
transverse modulation of the field may lead to a modulation of
the energies for the electrons there accelerated by the v × B
force, providing a seed for the filamentation instability [26, and
references therein] and explaining why the laser wavelength is
the preferred scale for the filaments [24,27]. We also notice that
the local transverse flow of momentum (Py) at a rippled surface
may lead to the generation of patterns of steady electric and
magnetic fields with the ripple periodicity, which could also
affect the formation of filaments.

In the context of the present work, the RTI may pose an issue
for the efficiency of the light sail scheme, which is of direct

interest for the development of laser-plasma ion accelerators.
The early growth of the RTI does not prevent reaching high
energy of ions in the radiation-pressure-dominated regime as
shown in our simulation campaign [14,15], since subwave-
length structures do not allow the laser pulse to be transmitted
through the foil target. However, the ion beam becomes
strongly modulated and nonuniform as a consequence of the
RTI, and beam modulations are probably the most direct
evidence of the RTI growth [10].

In conclusion, we showed that self-consistent modulation
of radiation pressure and plasmonic enhancement at a rippled
surface strongly affect the laser-driven Rayleigh-Taylor insta-
bility, setting a dominant scale close to the laser wavelength
as observed in simulations. Three-dimensional simulations
show the formation of netlike structures with approximate
hexagonal wallpaper symmetry, in agreement with theoretical
predictions.
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