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Pseudoatom molecular dynamics
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An approach to simulating warm and hot dense matter that combines density-functional-theory-based
calculations of the electronic structure to classical molecular dynamics simulations with pair interaction potentials
is presented. The method, which we call pseudoatom molecular dynamics, can be applied to single-component or
multicomponent plasmas. It gives equation of state and self-diffusion coefficients with an accuracy comparable
to orbital-free molecular dynamics simulations but is computationally much more efficient.
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I. INTRODUCTION

The challenge of accurately modeling dense plasmas over a
wide range of conditions represents an unsolved problem lying
at the heart of many important phenomena such as inertial
confinement fusion [1], exoplanets, and white dwarfs [2,3].
The production of large scale and accurate tabulations of data
such as equation of state and transport coefficients as a function
of density and temperature is a formidable task, requiring a
consistent quantum mechanical treatment of the many-electron
problem together with a classical treatment of the nuclear
motion. The atoms in the plasma may have bound states or
be fully ionized, the electrons may be fully degenerate or
approaching their classical limit. The nuclear fluid can range
from weakly to strongly coupled. A consistent, reliable, and
accurate treatment across all these physical regimes with an
approach that remains computationally tractable remains as an
open problem.

Plasmas of interest are typically one to thousands of times
solid density, and have temperatures from about 1 eV (∼10 kK)
to thousands of eV. The difficulty of creating and controlling
such plasmas in the laboratory explains the lack of experi-
mental data to guide theoretical development, though ongoing
campaigns at National Ignition Facility [4] and elsewhere (e.g.,
Ref. [5]), and recent advances in x-ray scattering techniques [6]
are beginning to shed light on this problem.

From a simulations perspective, powerful and complex
tools exist that can provide benchmark calculations. In the
lower temperature regime (a few eV) one such tool is Kohn-
Sham (KS) density functional theory molecular dynamics
(DFT-MD) (e.g., [7]). Electrons are treated quantum mechan-
ically through KS-DFT and ions are propagated with classical
MD. The simulations are very computationally expensive
and this cost scales poorly with temperature, limiting the
method to lower temperatures. In practice KS-DFT-MD also
relies on a pseudopotential approximation, which reduces the
computational overhead by limiting the number of actively
modeled electrons, through an ad hoc modification of the
electron-nucleus interaction. Orbital-free (OF) DFT-MD1 [8]
does not suffer from the poor temperature scaling of KS-
DFT-MD, and it has been applied to a wide range of
plasma conditions (e.g., [9,10]). This benefit comes at the
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1Hereafter referred to as OFMD.

cost of physical accuracy, though there has been significant
recent progress in improving OFMD towards a KS-DFT-MD
level of accuracy (e.g., [11,12]). However, OFMD remains
computationally expensive, with typical simulations being
limited to a few hundred particles and short times. It too
relies on the pseudopotential approximation, so it is not an
all-electron calculation.

Because of this high computational cost, wide ranging
equation of state and transport properties tend to rely on
much more approximate methods. Commonly used techniques
include DFT-based average atom models [13–15], in which
one attempts to solve for the properties of one atom in the
plasma. While such models can capture the electronic structure
associated with that atom reasonably well, a consistent
treatment of ionic structure resulting in equation of state and
transport properties of comparable accuracy to DFT-MD has
never been successfully included, despite significant progress
towards that goal [16–20]. The result is that ionic properties,
including transport coefficients, are usually calculated more or
less independently.

In this paper we report on a method for generating
accurate and wide ranging equation of state and transport
properties of dense plasmas, in a single, unified, and internally
consistent model. The method, which we call pseudoatom
molecular dynamics (PAMD), retains the computationally
efficient average atom approach to the electronic structure of
one pseudoatom, but couples this with consistent classical
MD simulations for the ionic structure, using ab initio pair
interaction potentials. The vastly reduced computational cost
of such calculations relative to DFT-MD allows for much larger
scale simulations. In short PAMD represents a solution to the
problem of consistently including ionic structure and dynamics
into the average atom methodology.

Another way to look at PAMD is that it is an approximate
version of DFT-MD. The essential approximation is that the
plasma can be thought of as an ensemble of pseudoatoms—this
is known as the superposition approximation. Therefore,
PAMD cannot, for example, accurately model molecules.
However, this limitation is not important for most of the
temperature-density regime discussed above. The important
physics of bound and valence states, ion dynamics, as well
as ion-ion, ion-electron, and electron-electron correlations are
all included consistently. Finally, another important advantage
of PAMD over DFT-MD simulations is that it does not rely
on an ad hoc pseudopotential. Not only does this reduce
computational complexity, but it removes uncertainty over
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FIG. 1. (Color online) 4πr2 times electron density for aluminum
at 8.1g/cm3 and 1 eV. Shown are nf ull

e (r) (upper dashed line),
next

e (r) (lower dashed line), and nPA
e (r), as described in the text.

Also shown is the bound state (or ion) contribution [nion
e (r)] to

nPA
e (r) and the valence electron contribution nscr

e (r) [where nPA
e (r) =

nion
e (r) + nscr

e (r)]. The double peak in nion
e (r) reflects the bound-state

shell structure in the aluminum ion, while the oscillations in the
valence contribution nscr

e (r) are the well-known Friedel oscillations,
which are damped as temperature increases. All curves are from the
Kohn-Sham version of PAMD.

possible pseudopotential artifacts. Unless otherwise stated,
atomic units, in which � = me = kB = e = aB = 1, where the
symbols have their usual meaning, are used throughout.

II. THEORY

The key concept of this method is that of the pseudoatom; it
is a fictitious, charge neutral object that physically represents
a nucleus and its associated electron density, including bound
electrons and its contribution to the valence electrons. It has
been previously introduced as a statistical averaged quan-
tity for investigation of thermodynamical properties [17,21].
Though its definition is to a certain extent arbitrary, it was
recently shown [22,23] that a satisfactory definition does
exist and that the pseudoatom electron density nPA

e (r) can
be calculated efficiently in a DFT formalism, using either the
orbital-free or Kohn-Sham methods. In what follows we will
show results from both. The core idea for calculating nPA

e (r)
is to first calculate an electron density n

f ull
e (r) in a system

with a nucleus at the origin, surrounded by a spherically
averaged ionic configuration described by the ion-ion pair
distribution function gII (r). One then calculates the electron
density next

e (r) in the same system but with the central nucleus
removed. nPA

e (r) is defined as the difference n
f ull
e (r) − next

e (r)
(see Fig. 1). The physical motivation behind this is to isolate the
influence of one nucleus on the electron density. Furthermore,
in Ref. [23] it was demonstrated numerically that nPA

e (r) is
insensitive to gII (r) for a wide range of materials, temperatures
and densities and that in the linear response regime nPA

e (r)
is independent of gII (r). Given this observation, one can
immediately see that it should be possible to accurately

reconstruct the total electron density ne(r) of the plasma as a
superposition of pseudoatom electron densities, each centered
at a nuclear site

ne(r) =
∑

i

nPA
e (|Ri − r|), (1)

where Ri is the position vector of nucleus i, and the sum runs
over all nuclear sites.

To generate the nuclear configurations {Ri} we use classical
MD with pair interaction potentials in a cubic simulation cell
with periodic boundary conditions, carried out in the micro-
canonical ensemble. An effective pair interaction potential
between pseudoatoms VII (r) was derived in Refs. [22,23].
In Fourier space it is given by2

VII (k) = 4πZ̄2

k2
+ nscr

e (k)2

χe(k)
, (2)

where Z̄ = ∫
d r nscr

e (r) and χe is the electron response
function [23]. The screening density nscr

e (r) is the contribution
to the valence electrons from the pseudoatom. It is defined by
first defining the bound (or ion) states, and calculating their
electron density nion

e (r), so that

nscr
e (r) = nPA

e (r) − nion
e (r). (3)

PAMD has no adjustable parameters: the inputs are the
nuclear charges, atomic masses, the plasma temperature and
mass density, and a choice of exchange and correlation
functional.3 In Fig. 2 we show a two-dimensional (2D) slice
of the electron density for a Kohn-Sham PAMD simulation
with 5000 nuclei, for aluminum at 1eV and 8.1g/cm3. Each
circular object is a slice through a pseudoatom intersecting that
plane. For those pseudoatoms whose nuclei lie closer to the
plane in Fig. 2 the strong localized deformation of the electron
density due to the bound electrons is visible. A simulation
of this size would be very challenging for KS-DFT-MD due
to computational cost, and will remain so for the foreseeable
future.

In finite temperature DFT [27] the grand potential is in
principle determined exactly for a given external potential
once the electron density that minimizes it has been found.
Thus, assuming that Eq. (1) is an accurate approximation to
the equilibrium electron density for a given ionic configuration
{Ri}, one can determine the thermodynamic properties by
using expressions based on the exact electron density. For
example, in the Thomas-Fermi approximation the pressure P

for a plasma of volume V with N ions and at temperature
kBT (= 1/β), can be calculated using the virial formula
(e.g., [28,29])

P V = N kBT + 2
3KT F

e [ne(r)] + 1
3Fel[ne(r)] + Cxc[ne(r)],

(4)
where KT F

e is the Thomas-Fermi approximation to the electron
kinetic energy, Fel is the electrostatic free energy, and Cxc is

2Here we write the expression for plasmas with one nuclear species,
the expression for mixtures is given in Ref. [24].

3For all PAMD and OFMD calculations carried out for this paper
we have used the Dirac exchange functional [25] (see also Ref. [23]).
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FIG. 2. (Color online) Two-dimensional (2D) slice of electron
density in the Kohn-Sham version of the model for aluminum at
8.1g/cm3 and 1 eV. The plot shows log10 of the electron density.
For reference log10 of the average total electron density is −0.46 and
log10 of average screening (valence) electron density is −0.99. The
ion positions were generated in a molecular dynamics simulation with
5000 nuclei using periodic boundary conditions.

the contribution from exchange and correlations. KT F
e is given

by

KT F
e = 1

β

∫
V

d3r cT F I3/2[η(r)], (5)

where Ij is the Fermi integral of order j and cT F ≡√
2π−2β−3/2. The electron density in this approximation is

ne(r) = cT F I1/2[η(r)]. (6)

Thus KT F
e can be calculated by inverting Eq. (6) for η(r) and

evaluating Eq. (5). Cxc and Fel are also straightforward to
calculate given ne(r) from Eq. (1).

III. RESULTS

In Figs. 3 and 4 pressures calculated from PAMD using
Eq. (4) are compared to OFMD simulations in the Thomas-
Fermi approximation. In Fig. 3, for a pure aluminum plasma,
agreement is excellent throughout the range of temperatures
and for both densities. In Fig. 4 we compare pressures for an
iron-helium mixture as a function of the fraction of iron in the
plasma. Agreement is excellent for all iron fractions.

The advantage of using PAMD here is twofold: first, no
pseudopotential is needed. Second, the calculation proceeds
much more quickly. The calculation of the pseudoatom
electron density and pair interaction potential takes a few
minutes on a single processor. The cost of the classical MD
simulations and calculation of the equation of state depends
on the number of particles and the number of time steps.
As an example, for the results presented in Fig. 3 we used
5000 particles and 40000 time steps; the simulations took
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FIG. 3. (Color online) Comparison of pressure for an aluminum
plasma between PAMD and OFMD in the Thomas-Fermi approxima-
tion. We show total pressure divided by the pressure of a fully ionized
aluminum plasma of non-interacting classical ions and quantum
electrons. Excellent agreement is found for both densities across this
wide temperature range.

∼2.5 hours per point on a compute node with two 2.3 GHz
AMD Opteron 6176 processors (24 total cores) and 64 GB of
random access memory. Similarly sized OFMD simulations
would be extremely expensive.

Equation (4) is also valid for Kohn-Sham calculations if
KT F

e is replaced by the corresponding KS quantity KKS
e .

However, one cannot evaluate KKS
e with knowledge of ne(r)

alone as in the orbital free case. Instead KKS
e depends on the

Kohn-Sham wave functions (orbitals), which are not provided
by PAMD. Approximate methods to determine KKS

e in PAMD
could be developed but we do not attempt that here.

Dynamical ion quantities such as the self-diffusion co-
efficient D, can be calculated with Kohn-Sham or orbital-
free PAMD, since the MD simulations require only the
pair interaction potential. D is calculated using the Kubo
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FIG. 4. (Color online) Excess pressure for a mixture of iron and
helium at 10g/cm3 and 50 eV from PAMD and OFMD [26] in the
Thomas-Fermi approximation. Excess pressure is defined as the total
pressure minus the ideal ion contribution (see Ref. [26]). We find
excellent agreement for all mixing ratios.
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TABLE I. Self-diffusion coefficients D in cm2/s for various
elements and a range of temperatures (T ) and densities (ρ). The
PAMD result agrees very well with the OFMD calculations, providing
a very sensitive test of the PAMD pair interaction potential.

Element ρ T OFMD OFMD PAMD
(g/cm3) (eV) [9,30] (this work)

D 1.5 2.5 0.0159 0.0146 0.0154
B 1 5 0.0162 0.0156 0.0155
B 10 5 0.00240 0.00214 0.00232
Fe 22.5 10 0.0011 0.00093 0.00105
Cu 67.4 100 0.00407 0.0039 0.00385

relation [31]

D = 1

3

∫ ∞

0
〈v(t) · v(0)〉 dt, (7)

where v(t) is the velocity of a given ion in the MD simulation
at time t . In Table I we compare self-diffusion coefficients for
a range of materials, for various densities and temperatures, to
published OFMD results [9,30], which use the Thomas-Fermi
functional and a range of exchange and correlation functionals.
We have also repeated these OFMD calculations using the
Dirac exchange functional, and these results are also shown
in Table I. The PAMD results agree very well with the
OFMD calculations for all the cases. As a further test, in
Fig. 5 we compare the self-diffusion coefficients for aluminum
from PAMD and OFMD in the Thomas-Fermi approximation.
Agreement is very good for both densities and all temperatures.
These comparisons on self-diffusion coefficients represent a
very sensitive test of the quality of the pair interaction potential.
Such a level of agreement with an ion dynamical property is
quite remarkable, given the very different approaches to the
calculation of ionic forces in PAMD and OFMD. We also
show for comparison in Fig. 5, the self-diffusion coefficient
as calculated in PAMD using the Kohn-Sham functional.
At the highest temperatures (>100 eV) there is excellent
agreement between the KS and TF diffusion coefficients. We
see significant deviations from the TF result below ∼50 eV
for the higher density but at the lower density agreement
between the KS and TF results is reasonable above ∼10 eV.
It is expected that the Thomas-Fermi approximation will be
inaccurate for the lower temperatures due to its ignorance
of important quantum effects, which are captured in the
Kohn-Sham calculations. The ability of Kohn-Sham based
PAMD to quickly evaluate self-diffusion coefficients across
temperature regimes is a significant capability, given the
extreme computational cost that corresponding KS-DFT-MD
simulations would entail.
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FIG. 5. (Color online) Comparison of the self-diffusion coeffi-
cient D for aluminum between PAMD and OFMD in the Thomas-
Fermi approximation. Also shown is the PAMD calculation using the
Kohn-Sham functional from 1–200 eV. Such a calculation would be
a formidable task for the ab initio KS-DFT-MD method. Note that
we plot D divided by temperature in eV.

IV. CONCLUSION

In conclusion we have introduced a method to simulate
warm and hot dense matter that we call pseudoatom molecular
dynamics. The method has proved accurate for equation of
state and self-diffusion coefficients compared to orbital free
molecular dynamics in the Thomas-Fermi approximation,
validating the underlying physical assumption that the plasma
can be considered to be an ensemble of identical pseudoatoms
(at least in the TF approximation). The Kohn-Sham version of
the model can be applied at high temperatures and calculations
of self-diffusion coefficients for aluminum up to 200 eV have
been presented. The low relative cost of PAMD permits wider
ranging and larger scale investigations of the properties of
warm and hot dense matter than have hitherto been possible.
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