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A method for modeling realistic laser beams smoothed by kinoform phase plates is presented. The ray-based
paraxial complex geometrical optics (PCGO) model with Gaussian thick rays allows one to create intensity
variations, or pseudospeckles, that reproduce the beam envelope, contrast, and high-intensity statistics predicted
by paraxial laser propagation codes. A steady-state cross-beam energy-transfer (CBET) model is implemented
in a large-scale radiative hydrocode based on the PCGO model. It is used in conjunction with the realistic beam
modeling technique to study the effects of CBET between coplanar laser beams on the target implosion. The
pseudospeckle pattern imposed by PCGO produces modulations in the irradiation field and the shell implosion
pressure. Cross-beam energy transfer between beams at 20◦ and 40◦ significantly degrades the irradiation
symmetry by amplifying low-frequency modes and reducing the laser-capsule coupling efficiency, ultimately
leading to large modulations of the shell areal density and lower convergence ratios. These results highlight the
role of laser-plasma interaction and its influence on the implosion dynamics.
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I. INTRODUCTION

Laser-plasma interaction (LPI) is a fundamental component
of inertial confinement fusion (ICF) [1–3], which involves a
large variety of temporal and spatial scales. Laser-plasma in-
teraction is commonly studied at microscopic and mesoscopic
scales, using particle-in-cell and paraxial electromagnetic
codes, respectively. These models allow us to study in detail
nonlinear phenomena such as stimulated Raman and Brillouin
scattering, filamentation, and cross-beam energy transfer
(CBET), but do not allow for simulations on the long temporal
and large spatial scales relevant to a whole capsule implosion.
Conversely, these effects are often omitted in large-scale
radiative hydrocodes, the most commonly described LPIs
being refraction and inverse bremsstrahlung power deposition.
The importance of taking into account more LPI effects in
large-scale codes has been highlighted by theoretical and
numerical works, as well as recent experiments on the NIF
and OMEGA laser facilities [4–11].

Most large-scale codes rely on ray-tracing (RT) mod-
els [12] to describe the laser-beam propagation and inverse
bremsstrahlung power deposition in the plasma. Modeling
nonlinear LPI requires knowledge of the laser-beam intensity
in the plasma. Although this quantity is not directly described
by the needlelike rays of the RT model, it is possible to estimate
the intensity field in the plasma by considering the neighboring
ray trajectories [7,8] or from the collisional absorption [13].
These methods for modeling nonlinear LPI based on RT
models suffer from a dependence of the reconstructed intensity
upon the mesh resolution and the number of rays per cell. The
reliance on collisional absorption or ray refraction decreases
their accuracy in low-density plasmas and can produce
divergent behaviors near caustics. Furthermore, the lack of
consistent diffraction modeling can lead to overestimation of
focusing processes and eventually artificial filamentation [13].
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Inline RT-based CBET models have been successfully de-
veloped based on intensity estimations [7,8,14], although
they have proven to be difficult to implement. Modeling
CBET requires knowledge of the interaction of at least two
electromagnetic waves and their ponderomotive excitation
of an ion-acoustic wave in an a priori inhomogeneous and
expanding plasma. This is a complex nonlinear and nonsta-
tionary process that can be studied in detail by using paraxial
electromagnetic codes, which resolve the laser wavelength
scales. In hydrocodes, which consider scales larger by at least
an order of magnitude, the beam wave fields and plasma waves
are not readily described. Development of CBET models in this
framework is challenging and should be implemented step by
step, using necessary simplifying assumptions. However, even
simplified CBET models require, in addition to the intensity
field, additional quantities that are not readily described
by RT models, such as the beams propagation directions,
Doppler-shifted frequencies, and downstream updates of the
intensity field after energy transfer. The ray-based paraxial
complex geometrical optics (PCGO) is an alternative method
for describing laser beams in plasmas that presents advantages
in terms of nonlinear LPI modeling in large-scale hydrocodes
when compared to the RT model [13]. The PCGO model
relies on a central needlelike ray that follows the standard
geometrical optics laws (as in RT models) on which the wave’s
electric-field amplitude is reconstructed, with the restriction of
Gaussian intensity profiles [15] (see [16] for a review). The
PCGO method possesses the advantage of naturally modeling
diffraction processes and intensity profiles, which makes it
more adapted to describing nonlinear LPI. Since PCGO is
limited to Gaussian rays, it must be adapted in order to
be applied to ICF problems, where beams commonly have
super-Gaussian envelopes and a complicated phase structure.
We present in this paper a technique for modeling realistic ICF
beams using PCGO Gaussian rays. Taking advantage of the
PCGO formalism, a steady-state model of CBET is developed.
It is applied to the case of a direct-drive capsule implosion in
the framework of the OMEGA beam configuration [17], in
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two-dimensional (2D) planar geometry, and using the phase
plates. Although the PCGO-based CBET model presented here
has been applied to the specific case of the OMEGA facility, its
formulation is sufficiently generic that it can be applied to other
beam facilities setups, as well as indirect-drive configurations
or planar experiments.

Similarly to the way beams are split in numerous needlelike
rays in the RT model, a non-Gaussian beam profile can be
approximated by a sum of Gaussian modes in the PCGO
model. This splitting method presents numerous degrees of
freedom and provides an opportunity to introduce variations in
the 2D intensity field produced by the overlap of the Gaussian
thick rays. We present in Sec. II the principles of a realistic
ICF beam modeling using PCGO. Assuming a speckle pattern
shaped by a kinoform phase plate (KPP), we describe a method
for splitting a super-Gaussian beam in Gaussian beamlets
randomly focused in a specific region around the focal spot.
The resulting intensity field created by the beamlets overlap
is validated against the laser propagation code MIRO [18–20]
in the case of the OMEGA beam configuration. This approach
presents an improvement upon the RT method as it allows
for more realistic modeling of laser intensity modulations in a
consistent way. A direct application of being able to accurately
describe beam propagation in a large-scale hydrocode is that
of CBET modeling. The theoretical description of CBET
between two Gaussian rays is straightforward in a steady-state
configuration. We present in Sec. III a PCGO-based CBET
model describing consistent 2×2 beamlet interactions. The
resulting model is used along with the realistic beam modeling
method in six simulations with and without CBET enabled,
with different ablators. The laser power deposition profiles
and implosion symmetry in the OMEGA beam configuration
are studied. Results in Sec. IV show significant low-mode am-
plification through two interaction geometries and decreased
convergence ratios. A summary and outlook are presented
in Sec. V.

II. REALISTIC BEAM MODELING

Laser beams used in direct-drive ICF are large, i.e., of the
order of the capsule diameter, of top-hat envelope profile, and
contain rapidly varying intensity fluctuations (speckles). In
standard RT-based approaches, the envelope of these beams
is modeled by bundles of needlelike rays, arranged in a way
so as to reproduce the caustic of the beam by a spread in
the rays’ initial k vectors. In the framework of the PCGO
approach, each ray has a Gaussian intensity profile and its
thickness must be larger than a few wavelengths and smaller
than characteristic plasma inhomogeneities [13,15]. Similarly
to the RT approach, a large ICF beam intensity envelope can be
modeled by a sum of smaller thick rays called beamlets so as to
ensure the validity of the aforementioned assumptions on the
Gaussian ray thickness. Compared to the RT method, splitting
a beam using thick rays leads to additional degrees of freedom:
The beamlets can be focused at different locations to create
perturbed intensity fields. We describe in this section a method
to split realistic ICF beams in bundles of thick rays in order
to reproduce global beam characteristics and overall intensity
fluctuation statistics (see Fig. 1 for a general illustration of the
method).

A. Virtual circle

The Rayleigh range of a Gaussian beam with a wavelength
λ and a radius at the focal spot w0 is zR = πw2

0/λ. The
smaller beamlets that constitute a split beam have significantly
shorter Rayleigh ranges than the main beam. Such beamlets
will rapidly focus and diverge, thus limiting the applicability of
PCGO-based beam splitting to relatively small regions. To that
extent, a beam is subdivided in beamlets only in the near-field
region, where by near field we mean close to the target
plasma, i.e., close to the region considered in hydrodynamical
simulations. We define a virtual circle in two dimensions and
a sphere in three dimensions that encircle the plasma at all
times, large enough to account for plasma expansion. A circle
of radius 0.8 cm centered on the capsule is large enough
to contain the plasma expansion of a standard direct drive
implosion. Beamlets are initialized at the virtual circle by
splitting an intensity profile computed from a given focal spot
profile. At each hydrodynamical time step, the beamlets are
propagated in vacuum from the virtual circle to the edge of
the hydrodynamical mesh. The propagation and interaction in
the plasma are then resolved as in standard hydrocode-based
PCGO [13].

We consider an ICF beam modulated by a KPP. The beam is
characterized at the focal spot by a width r0 and a correlation
radius ρ0 = λ0F/φ (i.e., the mean radius of the speckles),
where F is the focal length of the final focusing lens and φ

its diameter. The super-Gaussian beam envelope intensity I (r)
reads

I (r) = I0 exp(−|r/r0|n), (1)

with I0 the central intensity at focal spot, r the transverse
coordinate, and n the order of the Gaussian beam. The
overall beam envelope intensity of a partially coherent order-n
Gaussian beam can be computed at a distance z using [21]

I (z,r) = [I0e
−|r/r0|n] ∗

[
π−3

(
z

z0

)−2

χB(0,πz/z0)

(
r

r0

)]
, (2)

where z = 0 at the focal plane, z0 = k0ρ0r0 (with k0 the
vacuum wave number), χB(a,b)(r) represents a Heaviside
distribution centered on a and of radius b, and the asterisk is
a convolution product. Equation (2) is computed numerically
using a fast Fourier transform from the known distribution at
the focal spot to the intensity distribution at the virtual circle.

B. Beam splitting

From the beam envelope intensity at the virtual circle I FFT
v ,

the beam must be divided in such a way that the sum of the
beamlet intensities reproduces that of the whole beam. The
splitting problem is simplified by fitting an order-n super-
Gaussian distribution function to I FFT

v , e.g., using a nonlinear
least-squares method. The resulting fitted intensity profile is
characterized by a central intensity I0v , thickness rv , and order
nv , defined at the virtual circle. Although I FFT

v is not exactly
of super-Gaussian shape, we note little difference between the
fit (about 2%) and the requested profile. Moreover, energy
conservation is ensured by renormalization. The splitting of
a super-Gaussian distribution into a finite sum of Gaussian
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FIG. 1. (Color online) Diagram of the virtual circle defined for an ICF direct drive configuration. The capsule is represented as a gray-filled
circle. Beam parameters are computed at a virtual circle (black circle) of 8 mm radius from the focal spot intensity profile represented in
red (grey), the KPP, and the focusing lens parameters. The overall intensity profile at the virtual circle is combined from Gaussian beamlets,
represented in green (light grey), individually focused pseudorandomly in a region around the focal spot in which the speckle radius is stable
(black dotted box). Here x and y denote the local coordinate system in the direction of propagation and transverse to the beam, respectively.

distributions can be expressed as

I0v exp

(
−

∣∣∣∣ r

rv

∣∣∣∣
nv

)
=

N∑
k=1

I k
0v exp

[
− 2

(
r − μk

v

wk
v

)2]
, (3)

where N is the number of beamlets, k is the beamlet
index, and I k

0v , wk
v , and μk

v are the central beamlet intensity,
beamlet thickness, and offset from the main beam centroid,
respectively. The curvature radius and propagation vector of
each beamlet were left out of this expression as these are
set so as to control the beamlet focal points (see Sec. II C).
For N beamlets, there are 3N degrees of freedom in Eq. (3).
Although a nonlinear least-squares fit could provide these
3N parameters, this procedure is delicate, especially for large
values of N . The problem is simplified by assuming that the
beamlets defined at the virtual circle have the same width ŵv

and are equally spaced in μk . The values of I k
0v are computed

using an analytical formula described in Appendix A and by
ensuring energy conservation. These values are functions of
two parameters only: R = ŵ0

v/ρ0 and N , where ρ0 is the cor-
relation radius of a real speckle pattern and ŵ0

v is the beamlet
radius at its focal spot. Both parameters control the pseu-
dospeckle pattern, as described in the next section.

C. Beamlet focusing and pseudospeckle radius

The longitudinal large-scale variation of a speckle pattern
defined by a beam envelope radius r0 and a correlation radius
ρ0 is characterized by the length scale z0 = k0ρ0r0 [21]. The
speckle radius of such a beam is stable along the distance
ζ0 = z0/π from the focal plane. The transverse scale of the
beam at the focal plane is determined by the radius r0, often
available from experimental data. The distances ζ0 and r0

define a box around the focal spot where the speckle pattern
varies slowly. The N beamlets defined at the virtual circle are
randomly focused in this box by setting accordingly their radii
of curvature and k vectors. The focal spots of the beamlets are
scattered by assuming a binormal distribution centered on the
focal spot (xF,yF) of the beam. The corresponding probability
density function F reads

F = 1

2πσ1σ2
exp

(
− (x − xF)2

2σ 2
1

− (y − yF)2

2σ 2
2

)
, (4)

where we have chosen a diagonal covariance matrix and σ1

and σ2 are the standard deviations along the x and y directions,
where the x coordinate is along the beam direction and the y

coordinate is in the focal plane (see Fig. 1). We define σ1 so
that 99,7% of the focal points are located in the [−ζ0/2,ζ0/2]
interval and 68% are located in the [−ζ0/6,ζ0/6] interval, i.e.,
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σ1 = ζ0/6. The choice of σ2 is less sensitive as any random
focal point outside the beam caustic is repicked. We define
σ2 = 2r0. We note that because points outside the beam
caustic are redrawn, the 2D distribution of focal points is not
strictly binormal.

The remaining degrees of freedom N and R are set
by comparing the vacuum intensity map produced by the
beamlets to the laser propagation code MIRO [18–20] that
solves the paraxial equation for the laser electric field. As
a rule of thumb, N can be taken as the ratio of the radius
of the whole beam at focal spot to the speckle radius.
For the super-Gaussian beam of the order 4 (SG4) at the
wavelength of 351 nm equipped with a KPP, ρ0 � 2.33 μm
and r0 = 352 μm, giving N = 151. In practice, the resolution
of the hydrodynamical grid is much larger than the speckle
width, which spatially smoothes the intensity field and its
interaction with the hydrodynamics. Consequently, instead of
reproducing the exact beam speckle pattern at the focal spot,
we model large pseudospeckles, typically 3–10 times larger
in radius than the real speckles. This is set through the R
parameter, which controls the beamlet radius at the virtual
circle. Because the pseudospeckles are large, the number of
beamlets N can be chosen smaller, typically by a factor of
2. The parameters N and R indirectly control the contrast of
the beam and the 2D pseudospeckle pattern. It is important
to set these two parameters by comparing the generated 2D
intensity field to a paraxial solution. It has been found that
the pseudospeckle width remains small enough compared to
the typical hydrodynamic mesh resolution employed in ICF
implosions. Thus, the choice of the pseudospeckle width is
not critical to the hydrodynamics response, especially when
considering the effects of electron thermal conduction. The
aim here is to focus on intensity statistics to model the beam
energy exchange and other nonlinear LPI processes rather
than to study the direct influence of the speckle distribution
on the small-scale hydrodynamics through the linear inverse
bremsstrahlung absorption.

D. Comparisons to MIRO

We consider a setup similar to the OMEGA facility [22],
where the laser beams at a wavelength of 351 nm are equipped
with the KPPs and have at the focal spot a super-Gaussian
distribution (1) with nSG4 = 4.1 and rSG4

0 = 352 μm. The lens
diameter is φSG4 = 0.27 m and focal length is F SG4 = 1.80 m.
Results for the 2D intensity field as computed by MIRO using
the same SG4 KPP data are shown in the top panel of Fig. 2.
In order to compare MIRO to PCGO in the hydrocode CHIC in
the same conditions, the results from MIRO are convolved with
the hydrodynamical mesh resolution used for the simulations
(see Fig. 2, middle). The bottom panel of Fig. 2 shows the
2D intensity field obtained using the splitting algorithm for
N = 100 and R = 7, in a simulation domain of 180×180 grid
points in a box of 4×1.2 mm2.

Although the realizations presented in Fig. 2 look dif-
ferently, the splitting algorithm described here reproduces
accurately the intensity statistics for normalized intensities
I/〈I 〉 > 0.09 (see Fig. 3, top), where 〈I 〉 is the mean intensity.
The statistics for lower-intensity values is less accurately re-
produced, owing to the large thickness of the pseudospeckles.

FIG. 2. (Color online) Plot of the 2D intensity field as computed
by MIRO for the OMEGA beam configuration with an SG4 KPP, with
(middle) and without (top) 2D convolution to the mesh resolution used
for the comparison with PCGO, i.e., dx = 22 μm and dy = 6.7 μm.
The bottom shows the corresponding results using the splitting
algorithm and PCGO, projected onto the hydrodynamical mesh.
Intensity is normalized to the average intensity of the unconvolved
MIRO data 〈I 〉 = 1.87×1011 W/cm.
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FIG. 3. (Color online) Shown on the top is a histogram of the 2D
intensity field illustrated in Fig. 2 for the convolved MIRO data in green
(lighter gray) and for PCGO in blue (darker gray). The middle shows
an intensity profile at the focal spot from convolved MIRO data in
red (gray) and PCGO in black. Intensity is normalized to the average
intensity of the convolved MIRO data 〈I 〉 = 2.00×1011 W/cm. The
bottom shows the fractional encircled energy as a function of radius,
in the focal plane, for the convolved MIRO data in red (gray) and
PCGO in black.

This is acceptable when studying nonlinear LPI, where it
is the higher intensities that are of interest. Decreasing N

at constant R would effectively reduce this discrepancy but
would degrade the contrast away from the beam’s focal spot.
Similarly, decreasing R at constant N would also increase
the low-intensity statistics. However, low values of R lead
to shorter Rayleigh ranges for the beamlets, which limit the
applicability of the splitting method. Comparing intensity
slices at the focal spot shows overall agreement (see Fig. 3,
middle). The fractional encircled energy of the PCGO beam is
rather close to the convolved MIRO data (Fig. 3, bottom), with a
slightly steeper cutoff in the wings of the beam. This difference
is acceptable in the case of direct-drive configurations where
there is no laser entrance hole to fit in and the wing intensity
information will be lost as many beams overlap over the target
in 2D or 3D configuration. Both profiles have similar contrasts,
with CPCGO � CMIRO = 0.66, where the contrast is defined as

C = 〈I 2〉 − 〈I 〉2

〈I 〉2
. (5)

We note that the contrast of the unconvolved MIRO data is
C = 1, which is consistent with a pure speckle pattern.

III. CROSS-BEAM ENERGY TRANSFER

The CBET model presented here is based on the thick-
ray description of laser beams using PCGO. The intensity
of each thick ray is well described and can be used in
the computation of nonlinear laser-plasma interactions. We
consider two Gaussian beamlets crossing at an angle θ . The
steady-state power transfer T between the higher-frequency
beam 1 and lower-frequency beam 2 reads [23]

T = hI 1
0

2β
ln{exp(−ŵ2) + exp(ŵ1)[1 − exp(−ŵ2)]}, (6)

where ŵ1 and ŵ2 are normalized beam widths at the exit of
the interaction region, I 1

0 is the pump beam’s on-axis intensity,
β is the imaginary part of the ion-acoustic response to the
ponderomotive force, and h is a unit height. The downstream
powers of the pump and probe beamlets P ′

1 and P ′
2 read

P ′
2 = P2 + T , P ′

1 = P1 − T , (7)

where P1 and P2 are the upstream powers of the pump and
probe beams, respectively. Here β is the nonlinear coupling
coefficient [24]

β = ω2
eω

2
s νsω

ω2ν2
[(

ω2
s − ω2

)2 + 4ν2
s ω

2
] , (8)

where ωe is the electron plasma frequency, ω = ω1 − ω2 is
the difference in beam frequencies, ωs = cs |k2 − k1| is the
ion-acoustic frequency at the beat wave number with cs the
ion-acoustic velocity, ν2 is the group velocity of the lower-
frequency beam, and νs is the damping rate of the ion-
acoustic waves. Variables related to plasma parameters are
computed and interpolated at the CBET coordinates from the
hydrodynamical grid. The Doppler shift of beam frequencies
due to the plasma flow is taken into account in the computation
of β through the frequency shift term ω.
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For a Gaussian beam, it can be shown that the normalized
width at the exit of the interaction region ŵk reads

ŵk = |a0|2r1k

√
2πβwk

0

| sin θ | , (9)

where wk
0 is the beam width at the start of the interaction region,

r1k = I k
0 /I 1

0 is the intensity ratio of the beams (r11 = 1),
and a2

0 = (vosc/cs)2(me/mi) is the squared electromagnetic
potential at the maximum of beam 1, where vosc is the quiver
velocity of the electrons and me/mi is the ratio of the electron
to ion mass. Equation (9) diverges for sin θ = 0. In that
configuration, the two beams share one centroid, thus creating
an infinite interaction region, leading to maximum gain, i.e.,
pump depletion. In practice, intersection of beamlet centroids
at θ = 0◦ or 180◦ are never observed in our simulations.

The spatial configuration of the CBET causes the two beams
to have different intensity distributions after the transfer, i.e.,
they do not remain Gaussian [24]. In general, the output
intensity profile can exhibit more than one intensity peak and
be highly skewed. In order to work within the limitations
of the thick-ray model, we assume the intensity distribution
of a beam after an energy transfer remains Gaussian, with
the same width as before the energy exchange: The amount
of power transferred between beams is only impacted on
their intensity. This assumption is reasonable as for these
deformations to be significant in terms of influence on the
small-scale hydrodynamics, a very high mesh resolution would
be required. Furthermore, we neglect changes in centroids
directions of the crossed beams. This phase distortion due
to CBET is theoretically zero when the energy exchange is
maximum (i.e., when β is maximum). Although the PCGO
model is well suited to take into account this second-order
effect, it is not accounted for in the present version. We make
the further approximation that the energy-transfer region is
pointlike, i.e., we do not project intensity variations inside
the transfer region onto the hydrodynamical mesh and beam
parameters are modified at the point where the centroids cross
each other. Finally, because the transfer regions are modeled as
being pointlike, we consider intersections between two thick
rays at a time only, i.e., overlapping energy-transfer regions
are treated separately and in a chronological order. Once the
energy transfer between two beams has been computed and
their intensities updated, their phases are recomputed from
the point of crossing along the central rays by reintegrating
the Riccati equations (see [13,15]). Resolving the stack of
CBET intersections in a chronological and consistent order
requires specific algorithms of intersection sorting, ordering,
and identification of loops, which are detailed in Appendix B.
Simplification of this stack can be achieved by neglecting
CBET interactions for which β < 5×10−4βmax. The cutoff
value for β has been chosen so as to consider the maximum
number of beamlet intersections as possible. Lower cutoff
values do not yield different results.

The PCGO-based CBET code has been validated by
conducting simulations of the interaction of two frequency-
shifted Gaussian beamlets at resonance and off resonance,
comparing the steady-state probe amplification for two pump
intensities of 1015 and 1016 W/cm2 and for probe to pump
intensity ratios ranging from 10−4 to 10. Simulation results

FIG. 4. (Color online) Diagram of the capsule and beam configu-
ration: 18 beams separated by intervals of 20◦, focused on the exterior
surface of the ablator and following the SG4 phase plate configuration
of nSG4 = 4.1, rSG4

0 = 352 μm, λ = 0.354 μm, φSG4 = 0.27 m, and
F SG4 = 1.80 m. Beam centroids are represented as numbered lines
(beamlets are not shown). Dashed gray lines represent beams that
do not interact through CBET. Red (dark gray) solid lines represent
beams that can interact with each other by groups of 4, as detailed
in Table I.

were found to be in agreement with the theoretical results
presented in Ref. [25]. Further validation was conducted for
the energy exchange between two Gaussian beams consisting
of 100 beamlets each. The total energy exchange downstream
of the intersection region (i.e., of the 104 intersections) was
compared to the theoretical energy exchange for two beams
with Gaussian envelopes. The relative error was found to be
less than 1% for a wide range of ŵk and probe to pump
intensity ratios. The error was found to peak locally at 6%
around ŵk ∼ 1.

With the power exchange being known analytically and all
intersections being solved in chronological order, the energy
is naturally conserved in the present CBET model. It is also
worth mentioning that the beamlet-related quantities required
to compute an energy transfer (i.e., width and intensity) are
always well defined by PCGO, even for normally incident
beamlets on the critical density and at turning points. This
property that the intensity and width of PCGO beamlets do not
diverge near or at the critical density (see [13,16]) is a strong
motivation for its use for CBET computations and nonlinear
LPI in general.

IV. APPLICATION TO DIRECT-DRIVE IMPLOSION

A. Simulation setup

The OMEGA laser facility at the Laboratory for Laser
Energetics, Rochester University, can use up to eight rings of
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beams arranged at constant latitudes, for a total of 60 beams. At
a given longitude (or azimuth), beams are coplanar by bundles
of 4, with two beams separated by angles of at least 20◦ or 40◦
and the other two beams in symmetrical positions with respect
to the capsule (see Appendix C for detailed OMEGA beam
angular configurations).

We consider a direct-drive capsule implosion in a 2D planar
geometry. In order to reflect the 20◦ angular separation of the
OMEGA beams in a given constant azimuth plane, the capsule
is compressed using equally spaced beams separated by 20◦,
i.e., 18 beams (see Fig. 4). Each beam is split in beamlets with
R = 10 and N = 60, focused randomly so as to reproduce a
pseudospeckle pattern consistent with the intensity statistics
of the SG4 KPP near the focal plane, smoothed with the
hydrodynamical mesh resolution. Each beam has a different
set of random generator seeds, so each of them produces
a different pseudospeckle pattern with a similar statistics,
leading to a asymmetrical laser irradiation. Consequently, the
simulation domain englobes the 360◦ of the cylinder, without

TABLE I. Three simulated cases summarizing the interacting
beam numbers and CBET angles of the beams centroids. Each case
is conducted twice, with a deuterium-tritium (DT) and a CH ablator.

Case Interacting beams CBET main angles

reference case none none
A 2, 3, 11, 12 20◦, 160◦, 180◦

B 2, 4, 11, 13 40◦, 140◦, 180◦

assuming any hydrodynamical symmetries. Although it is
numerically costly, this approach of a full cylinder modeling
possesses the advantage of not cutting out any modes in the
irradiation profile. An additional simulation without CBET
is conducted, hereafter referred to as the reference case, in
order to provide a baseline for the capsule compression, as
the modeling of the pseudospeckles alone is expected to
yield some degree of capsule deformation. The interaction
conditions are shown in Table I.

FIG. 5. (Color online) Volumic power absorbed in plasma by the inverse bremsstrahlung at about half of the laser pulse duration, i.e., after
600 ps of simulation, on a logarithmic scale. Volumic values are computed assuming a unit height of 1 cm. The top figures are from case A and
the bottom figures from case B. The figures on the left present results using a CH ablator and those on the right with a DT ablator. Beamlet
centroids for beams 2 and 11 are shown as solid black lines for all cases. Beamlets centroids for beams 3 and 12 for the top figures and 4 and
13 for the bottom figures are shown as dashed black lines (see Fig. 4 for beam numbering). Valid ray intersections for which CBET has been
computed are indicated with gray-shaded dots, ranging from a probe gain of 1.5 in white to a probe gain of 1.01 in black.
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We consider two CBET cases where the energy transfer is
allowed only between four sets of beams, in order to model
coplanar intersections of the real 3D OMEGA configuration
(see Table I). The remaining beams that do not interact via
CBET provide the global irradiation symmetry needed to
implode the target. For simplicity, beamlets from the same
beams are not allowed to interact with each other: Their
intersection angle is narrow enough that the probe gains are
small. Cross-beam energy-transfer computations are enabled
after 100 ps of simulation so that a coronal plasma in which
the beams interact is properly formed. All cases are conducted
with the same random seeds so that the set of 18 random
pseudospeckle patterns is the same from one simulation to the
other.

The beam splitting parameters N = 60 and R = 10 are set
by comparing the near-field intensity constructed by PCGO
to MIRO outputs using the OMEGA SG4 KPP data. We use a
typical OMEGA 1-ns square pulse profile with 200 ps of rise
time and a peak power around 25 TW, comprising a total energy
of ESG4

tot = 25.7 kJ. The total energy used in our 2D planar
cases is scaled by κ in order to match the drive intensity of the
3D spherical case. The ratio κ of the average on-target intensity
on the 2D cylinder 〈I 2D〉 to that of the average intensity on the
3D spherical capsule 〈I 3D〉 is

κ = 〈I 2D〉
〈I 3D〉 = h/2ra, (10)

where h = 1 cm and ra is the capsule outer radius. For the
capsule configuration presented in Fig. 4, κ = 11.481. The
target is composed of a 66-μm-thick cryogenic DT shell and is
filled with DT gas at 6.5×10−4 g/cm3. Two sets of simulations
are conducted with different ablators, using a 10-μm-thick
plastic (CH) ablator or a 10-μm-thick cryogenic DT ablator.
The Lagrangian mesh is initially cylindrical, organized with
140 cells in the radial direction and 200 in the angular direction,
with a radial refinement in the ablator and shell regions. The
intensity gradients imposed by the pseudospeckle patterns
make necessary the use of arbitrary Lagrangian-Eulerian
rezoning and remapping at each hydrodynamical time step.

B. Results and analysis

1. Absorption pattern

Figure 5 illustrates the volumic power absorbed in plasma
by the inverse bremsstrahlung for cases A and B and different
ablators. The absorption is naturally higher in targets with a
CH ablator, owing to a higher ionization Z of the species.

We distinguish three main regions of beamlet overlap in
configurations A and B (see Table I and Fig. 5). The first
region covers adjacent interacting beams (for example, beams
11 and 12) and can extend from the median angle between
them up to slightly beyond the edge of each beam. The second
region is formed by the overlap of nearly opposed beams
(for example, 2 and 11). The latter interaction regions are not
visible in Fig. 5 and only occur late in the capsule implosion,
when the plasma is sufficiently expanded to facilitate the
intersection of beamlets from opposed beams. These regions
are far from the critical density and between beamlets leaving
the plasma, at similar angles with respect to the plasma flow,
so there is little difference in the beams’ Doppler shifts. In the

geometry considered here, these intersections have negligible
coupling efficiency β and have little or no influence on the
laser irradiation symmetry.

In the setup presented in Fig. 5, beamlet intersections occur
up to the critical density in extended regions where the plasma
velocity extends from Mach 4.5 down to Mach 1 in the DT
ablator case and Mach 0.5 in the CH ablator case. For a plasma
flow at a velocity V, the CBET phase-matching condition for
beams of the same frequency reads

|k2 − k1|cs + (k2 − k1) · V = 0. (11)

Depending on the spatial configuration and propagation of
the rays in plasma, there are many possible couples of
Doppler-shifted k vectors and plasma velocities that yield
non-negligible CBET gains. In general, the larger the angle
is between the plasma flow and the vector k2 − k1, the higher
the plasma flow velocity must be in order to satisfy the phase
matching. This condition on the Mach number is relaxed since
energy transfers between nonzero values of the frequency
detuning parameter δ = ω − ωs [see Eq. (8)] are taken into
account. The spread in plasma flow velocities that can yield
significant CBET is only limited by the spatial configurations
of the beamlet k vectors. We identify several patterns to the
energy exchanges that we refer to as the edge transfer and the
core transfer (see Fig. 6). In both cases, we consider a given
couple of adjacent interacting beams, i.e., separated by 20◦ for
case A or 40◦ for case B.

The core transfer refers to the CBETs taking place near
and in between the beams’ centroids, as illustrated in Fig. 6.
These exchanges occur between beamlets that are approaching
the capsule at angles with the plasma flow that are slightly
different. In that region, (k2 − k1) · V is small, so the small
frequency detuning can only occur for large values of the

FIG. 6. (Color online) Schematic illustration of the core and edge
transfers for case B. Beams 11 and 13 are shown as green (gray) and
red (dark gray) lines, respectively. Increased absorption regions are
shown in light red (large light gray zones) and decreased absorption
regions in light blue (small light gray zones).
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Mach number, i.e., away from the critical density. However,
the CBET gain decreases for lower values of the plasma density
and electron temperature. Consequently, there is an optimum
spatial location, the so-called high-gain core region, in which
the density, temperature, and Mach number are not too low
for higher CBETs to occur. This region is identified by larger
probe gains in Fig. 5 at about 500 and 300 μm from the critical
density for cases A and B, respectively. Cross-beam energy
transfer in this region is numerous and peaks at probe gains
of 1.2, without a privileged direction, thus creating a noisy
absorption pattern of one to two shadow regions organized
around the median angle between the adjacent beams.

In the edge transfer, the left edge of the leftmost beam is
intercepted by the left edge of the rightmost beam. Conversely,
the right edge of the rightmost beam is intercepted by the
right edge of the leftmost beam. We distinguish two types
of energy exchanges: intersections between ingoing beamlets
and intersections between outgoing and ingoing beamlets. The
Doppler shift dictates the energy-exchange configuration. In
the first case, the energy transfer occurs from the beamlet
with a narrower angle to the beamlet with a broader angle
(with respect to the plasma flow). In the second case, the

outgoing beamlet is always amplified by the ingoing beamlet.
Most power transfers observed in cases A and B completely
deplete the pump beamlets. This is a consequence of the
probe beamlets being amplified along their path prior to
these CBETs. Most probe gain values in the edge transfer
are less than 1.5 (see Fig. 5). Amplified probe beamlets create
large-scale modulations in the absorption field, thus decreasing
the irradiation symmetry. Moreover, interactions between
outgoing and ingoing beamlets lead to a direct decrease
of the coupling between the laser beam and the capsule.
Laser-plasma coupling losses are a geometrical feature that
are more prominent for higher convergence ratios and in the
40◦ cases, as is illustrated in Fig. 8. Although the net loss
in total absorption induced by CBET appears moderate, edge
transfer also displaces absorbed power away from the critical
density, thus reducing the laser-capsule coupling further.

We note that the relatively low values of probe gains
observed here, even in the edge transfer, are reasonable
and adapted to the lack of a gain cutoff value. A proper
implementation of a gain cutoff model is ultimately neces-
sary, but would require significant data on dedicated CBET
experiments, which is not currently available.

FIG. 7. (Color online) Closeup of the density field near stagnation, represented in the r-θ plane, with θ = 0◦ for beam 1 (see Fig. 4). The
top figures are from the reference case and correspond to deformation purely arising from the pseudospeckle pattern of the lasers. The middle
figures are from case A and the bottom are from case B. The figures on the left are obtained using a CH ablator and those on the right using a
DT ablator. Note that for a given ablator, the y axis and color scales are the same.
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TABLE II. Convergence ratios at stagnation for all cases simu-
lated, taking the initial outer-shell radius as a reference.

Compression ratios CH ablator DT ablator

reference case 3.54 5.57
A 3.17 4.55
B 3.04 4.2

2. Implosion symmetry

The laser pulse driving the cylindrical capsule ends at t =
1.28 ns. Stagnation of the capsule occurs around t = 1.31 ns
for the CH ablator case and around t = 1.33 ns for the DT
ablator. At that point, modulations in the capsule density
profile constitute a time- and space-integrated proxy of the
laser illumination modulations arising from the pseudospeckle
pattern and CBET. Simulations are analyzed at stagnation, i.e.,
around t = 1.31 ns.

Figure 7 shows the shell density profile in the r-θ plane
for the reference case (top), case A (middle), and case
B (bottom). The DT ablator targets (right) achieve higher
convergence ratios than the CH ablator ones (left), a direct
consequence of them being lighter and subject to the same
laser intensity. Two-dimensional convergence ratios computed
from the target’s initial radius of the outer shell, i.e., rs =
425 μm, are shown in Table II. Cross-beam energy transfer
decreases the convergence ratio with respect to the reference
case, by up to 14% for the CH ablator target and 25% for
the DT ablator target. As demonstrated in Sec. IV B 1, the
edge transfers between outgoing and ingoing portions of the
beams take energy away from the capsule, thus decreasing
the laser-capsule coupling efficiency and consequently the
convergence ratio. This is consistent with the decrease in
integrated absorption noted in Fig. 8.

In order to conduct a Fourier decomposition of the shell
modes, we identify the internal (external) interfaces at a given
θ as the positive (negative) maximum of the derivative of the
density in the r direction. Assuming that at least 6 points in θ

are needed in order to correctly describe a Fourier mode, the
higher mode that can be characterized in our simulations with
200 angular points is mode 33. Internal and external interface
profiles are smoothed using a Hann window of 6 points in
length and fitted using least squares to Fourier modes up to
order 33. The resulting internal interface mode amplitudes
with respect to the reference are shown in Fig. 9 (mode 0 is
not shown).

The CH ablator target in the reference case (Fig. 7,
top left) presents small-scale modulations on the external
interface, corresponding to lumps of high-density regions
resembling fingers. Because the simulations are 2D planar
and the convergence ratios rather low, the high amplitude of
the deformations and the lumps of matter do not lead to the
shell breakdown. High-frequency modulations are smoothed
out when reaching the internal interface, greatly reducing the
power density of Fourier modes higher than 5. Significant
long-wavelength deformations are present at the internal
interface, corresponding to modes 1, 3, and 4. The highest
deformation present in the internal interface is of about 10%
relative amplitude, measured as a half peak-to-peak amplitude

FIG. 8. (Color online) Power absorbed by the plasma by inverse
bremsstrahlung as a function of time shown as blue (gray) lines for
the reference case, green (light gray) lines for case A, and red (lighter
gray) lines for case B. Results are shown as solid lines for CH ablator
simulations and dashed lines for DT ablator simulations. The drive
pulse is shown as a black solid line. The 2D power is scaled by κ

(see Sec. IV A).

(see Fig. 10, top). These modulations can be seen as the
imprint of the beam configuration, including the effect of the
pseudospeckle pattern. In order to dissociate the effects of
CBET to that of the pseudospeckle pattern, the Fourier modes
are compared to the reference case.

The Fourier analysis of the internal interface shows that
CBET amplifies low modes 2 and 8 (the CH ablator case).
This can be seen in Fig. 10 (top) as an oblate deformation of
the inner interface of the shell, reaching a relative amplitude
of about 13.5% for case A and 15% for case B. The dominant
presence of mode 2 is a consequence of the higher-absorption
regions from the amplified edges of the beams, regions that are
nearly symmetrical with respect to those of the opposed beams.
Although these could also lead to mode 4 deformations, the
use of noninteracting beams to provide the cylindrical ablation
pressure effectively smoothes those modes (e.g., beams 6, 7,
16, and 17), which would not be the case in a 3D configuration.

The DT ablator targets (Fig. 7, right) also feature patterns of
lumps of density arranged in fingers, but to a point where there
is almost no more shell mass between those and the capsule
can be considered as punctured or broken. Cases A and B show
a significant shell deformation of low modes 2 and 8. Since this
case is more sensitive to energy exchanges due to a lower Z

of the plasma, the effects of CBET are exacerbated and mode
2 is very prominent. The inner interface of the target reaches
a maximum deformation of a relative amplitude of 24% in the
reference case, 34% in case A, and 31% in case B. Modes 6
and 8 present in DT and CH ablator cases are created by the
six or eight shadow regions from the edge and core transfer,
this number depending on the CBET geometries created by
the core transfer.

The OMEGA chamber beam port configuration can be de-
composed in eight adjacent constant azimuth planes, between
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FIG. 9. (Color online) Relative power density histograms of the
inner-shell interface Fourier modes, for the CH ablator case (top)
and the DT ablator case (bottom), near stagnation. Relative power
densities p̂ are computed as p̂ = (pref − p)/pref , where pref and p

are mode power densities of the reference case and the corresponding
case, respectively. Case A is shown in light green (light gray) and
case B in dark green (dark gray). Mode 0 is not shown.

which the coplanar interacting beams’ median angle is offset
by an elevation of 20◦−80◦ depending on the azimuthal angle.
It is thus expected that the mode 2 deformation imposed by
CBET in the planar configuration creates higher-order modes
in a full 3D configuration. This can be estimated by making
a linear combination of planar simulation results so as to
reproduce the 3D OMEGA sphere configuration. Simulation
results for the internal shell interface at stagnation are com-
bined using one set of results per discrete azimuthal increment
(see the OMEGA beam configuration in Appendix C), which
corresponds to either the 20◦ or 40◦ CBET case, shifted by
the corresponding elevation angle value. The combined data
set reproduces a spherical capsule from a linear combination
of 2D planar simulations. We decompose this shell in the
spherical harmonics Ym

l up to l = 14 for all values of m. This
is done using the simulation results with and without CBET.

FIG. 10. (Color online) Internal interface of the capsule near
stagnation for the CH ablator case (top) and the DT ablator case
(bottom). Reference simulations are shown as blue lines (gray), case
A simulations as green lines (light gray), and case B simulations as
red lines (lighter gray).

The difference in mode amplitudes is shown in Fig. 11, along
with the combined data set for the CBET case and its spherical
harmonics fit. This linear analysis shows that CBET amplifies
the spherical mode l = 2 similarly to the planar case because
of a combination of Y−2

2 and Y 0
2 . Although even and odd modes

are equally present in the intensity distribution on the capsule,
only even modes are amplified by CBET, while the odd modes
remain unchanged. Mode l = 4, which was not excited by
CBET in the 2D simulations, contributes more significantly
to the overall 3D shell deformation, mainly through Y 3

4 .
We retrieve excitation of modes l = 6 and 8, as well as
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FIG. 11. (Color online) Shown on the top is the 3D internal shell
surface perturbation near stagnation for the CBET case, constructed
as a linear combination of several 2D planar simulations. Simulation
results are shown as blue (light gray) dots and the corresponding
spherical harmonics fit is superimposed as a colored (grayscale)
surface. The bottom shows the relative mode amplitude difference
âl = |aref

l − al |/aref
l , where aref

l and al are l-mode amplitudes for the
reference case and the CBET case, respectively. The al modes are
computed by taking the L2 norm over the corresponding m modes.
Mode 0 is not represented.

higher-order even modes. Although this linear combination
of results does not include any interaction between azimuthal
planes, it provides a rough estimate of potentially excited
modes by CBET, arising only from the beam port configu-
ration.

V. CONCLUSION

We presented a method to model realistic ICF beams using
paraxial complex geometrical optics in the framework of
a large-scale radiative hydrocode. Beam splitting in small

beamlets and pseudorandom focusing was used in order to
reproduce the main features of the intensity field of a large
beam transformed by a KPP. Comparisons were conducted
with the laser propagation code MIRO in the case of the
OMEGA SG4 beam configuration. The splitting algorithm
produces a pattern of large speckles (or pseudospeckles) that
exhibits intensity distributions and laser contrast similar to the
results from MIRO convolved with the hydrodynamical mesh
resolution.

Paraxial complex geometrical optics allows access to key
quantities in the plasma, such as the beamlet intensity profile,
curvature radius, and width. Cross-beam energy transfer based
on PCGO is implemented in the hydrocode CHIC. The CBET
model takes into account energy exchanges between pairs
of beamlets and consistently resolves power transfers. The
pairwise CBET interactions were resolved chronologically
by coupling consequent energy exchanges with updates of
the downstream beamlet parameters through reintegration of
the Riccati equations along the beamlets trajectories. Power
transfers were computed in the steady-state approximation and
interacting beams were supposed to preserve a Gaussian shape
with a constant width across the pointlike interaction region.

We applied both PCGO-based models of realistic beam
modeling and CBET to the OMEGA beam configuration with
the SG4 KPP in a 2D planar geometry. We conducted full
360◦ simulations of a capsule implosion in which certain
beams were allowed to interact through CBET, following the
relevant coplanar beam angles of 20◦, 40◦, 140◦, and 160◦. The
influence of the ablator material was assessed by repeating
these simulations in the CH and DT ablator cases. The
influence of modeling a pseudospeckle pattern on the power
deposition field and capsule implosion symmetry was studied
as a reference case for comparisons with simulations with the
same pseudospeckle patterns but with CBET enabled. In the
reference case without CBET, the power deposition profile
exhibits a pseudospeckle pattern that is relatively smoothed
out by the overlap of the beams. The internal shell interface is
deformed by low-amplitude long-wavelength Fourier modes
1–4. A variety of high-frequency modes up to mode 33 were
observed and greatly smoothed out when reaching the internal
shell interface. Simulations with main CBET angles at 20◦
and 40◦ show that in those configurations CBET tends to
create a pattern of high- and low-absorption regions through
specific regimes of core and edge power transfers, significantly
amplifying modes 2, 6, and 8 of the internal shell interface. A
reconstruction of the shell based on a linear combination of
planar results suggests that mode 4 is also likely to be excited
by CBET in a full 3D configuration. The choice of the ablator
material is seen to be critical in terms of CBET, with lower-Z
materials presenting more efficient energy exchanges and thus
higher-shell deformations. We observe relative deformations
of the inner-shell interface at stagnation of up to 15% in the
CH ablator case and 34% in the DT ablator case. Cross-beam
energy transfer is also seen to have an effect on the global
laser-plasma coupling, by reducing the total amount of energy
transferred to the plasma. two-dimensional convergence ratios
are lower when enabling CBET by up to 14% for the CH
ablator case and 25% for the DT ablator case.

Such results highlight the importance of modeling nonlinear
LPI in large-scale hydrocodes for the design of direct-drive ICF
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targets and laser configurations. In particular, shock ignition
involves high laser intensities at the late stages of the capsule
implosion, the time at which the beam configuration may lead
to numerous CBETs and reduce the efficiency of the ignition
method.
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APPENDIX A: SUPER-GAUSSIAN SPLITTING

The intensity distribution computed at the virtual circle I FFT
v

(see Sec. II B) is approximated by a super-Gaussian intensity
distribution Iv through a nonlinear least-squares fit. The latter
intensity distribution reads

Iv = I0v exp

(
−

∣∣∣∣ y

rv

∣∣∣∣
nv

)
. (A1)

We assume that the Gaussian distributions (beamlets) have
identical widths r̂v and are equally spaced in the [−rv,rv]
interval. The splitting problem then reads

Iv =
N∑

k=1

I k
0v exp

[
− 2

(
y − rv[2(k − 1)/(N − 1) − 1]

wk
v

)2 ]
.

(A2)

We define an analytical expression for I k
0v ,

I k
0v = 3R̂I0v

N − 1
CR̂ exp

(
−2

∣∣∣∣2 k − 1

N − 1
− 1

∣∣∣∣
nv

)
,

CR̂ = 0.532 19 − 3.801 67×10−3

R̂
+ 1.8226×10−1

R̂2
,

(A3)

where R̂ is the ratio of the beamlet radius at a virtual circle to
the beam radius at a virtual circle. Here R̂ is computed from
R using the beamlet’s Rayleigh range. The coefficients in CR̂
were obtained numerically by a least-squares fit. Defining I div

v

as the intensity obtained by summing the beamlet intensity
profiles at the splitting coordinates, we write the mean-square
error (MSE) of the decomposition as

MSE = 1

10rv

∫ 5rv

−5rv

[
I div
v (r) − Iv(r)

]2
dr. (A4)

The MSE is found to decrease with increasing R̂, with small
values from R̂ = 3. The error is small and rather independent
of nv for values higher than 5, with the minimum being
below 5. The number of beamlets used to compute the error
is N = 3R̂ and constitutes an indication of the minimum of
beamlets to use. In practice, one will use many more beamlets
in order to obtain a correct beam contrast in the near field (∼5N

minimum; see Sec. II C). The value of R̂ that can be chosen has
an upper limit determined by the size of the pseudospeckles at

the focal plane, which must be larger than a few wavelengths
in order to satisfy the validity domain of PCGO.

APPENDIX B: CROSS-BEAM ENERGY-TRANSFER
IMPLEMENTATION

1. Intersection identification

We simplify the problem of thick-ray CBET by considering
only intersections between beamlets whose central rays cross.
By doing so, we neglect partial power transfers between
beamlet envelopes. This approach is reasonable in a 2D
configuration because the thick rays’ centroids intersect often.
However, it would not be viable in a 3D code. The central ray
trajectories in the plasma are computed using the RT model,
which PCGO is based on [12,13]. In a typical direct-drive ICF
configuration, the mesh refinement in the ablator or capsule
outer shell is very high and cells are very thin. The intersection
found in that region is prone to numerical errors if there is a
lack of precision in the ray trajectories. Ray-tracing models are
often based on fourth-order Runge-Kutta algorithms, whose
accuracy greatly falls off in regions of thin cells and a low
optical index. This problem has been treated by modifying the
RT model in our hydrodynamic code CHIC to include adaptive
error control and step corrections using analytical solutions
for ray trajectories in triangles of a constant density gradient.
In order to find an intersection between rays, we identify cells
in which at least two rays are propagating. In a given triangle,
the (x,y) coordinates of central rays 1 and 2 are given by the
parametric equations [13]

x1(t) = ax1t
2 + vx01t + x01,

y1(t) = ay1t
2 + vy01t + y01,

x2(s) = ax2s
2 + vx02s + x02,

y2(s) = ay2s
2 + vy02s + y02, (B1)

where s ∈ [0,sf ] and t ∈ [0,tf ] with sf and tf the rays’
parametric coordinates at the exit of the triangle. For two
beamlets with the same frequency, ax1 = ax2 and ay1 = ay2.
We assume that the frequency difference between two beamlets
is small enough in general so that we can define ax =
(ax1 + ax2)/2 and ay = (ay1 + ay2)/2. In the particular cases
presented in this paper, all beams have the same frequency and
CBET is only induced by the Doppler shift, which does not
affect beam trajectories. The intersection between the two rays
can be found by solving Eq. (B1) for si and ti such as

axt
2
i + vx01ti + x01 = axs

2
i + vx02si + x02,

ayt
2
i + vy01ti + y01 = ays

2
i + vy02si + y02, (B2)

si ∈ [0,sf ], ti ∈ [0,tf ] (B3)

Two sets of analytical solutions (si1,ti2) and (si2,ti2) can
be found for Eqs. (B2). These solutions may be out of the
interval (B3) so that rays may not intersect. These solutions
should be computed in extended quadruple precision in order
to limit numerical errors, erroneous intersection coordinates,
and false duplicates.

Once a set (si,ti) has been found, the intersection coordi-
nates (xc,yc) can be computed. These coordinates are used for
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FIG. 12. Beamlets incident on a linear density ramp from ne/nc = 0 to ne/nc = 1 with an angle of 10◦. All beamlets have the same
wavelength and a Mach M = 0.9 flow is imposed at 45◦. The six intersections on the left have a significant and non-negligible coupling
coefficient β. One can identify one 4-loop {1,2,4,6}, two 5-loops {1,2,3,4,6} and {1,2,4,5,6}, and one 6-loop {1,2,3,4,5,6}. The loops are
analyzed in increasing degrees of complexity and the lower β node is removed. The CBET in the simplified diagram on the right can now be
computed by solving node 2 first and nodes 3 and 5 in any order. In that configuration, rays with upshifted frequencies in nodes 3 and 5 lose
all their energy in the CBET.

the interpolation of plasma quantities in the computation of
Doppler frequency shift, plasma parameters, and CBET gain.

2. Intersection ordering

At each hydrodynamical time step, the intersections be-
tween central rays of the PCGO model are identified. The
resulting set of intersections is potentially large and usually
reaches up to 10 000 intersections in direct-drive target
configurations. For the CBET model to be consistent, these
energy transfers must be resolved in chronological order with
respect to each ray’s propagation. For an energy transfer to
be computed at a given intersection, the two rays involved
must not be involved in a previous intersection, or only in
previous intersections where energy transfer has already been
taken into account. Once an intersection has been computed,
the beamlets’ energies are updated (through their intensity)
and are propagated once again from the intersection to the
next one by solving the Riccati equations [13] in the plasma.

Considering CBET between two rays at a time, a given
intersection i depends on at most two direct downstream
intersections (children) and two direct upstream intersections
(parents). The ordering of the intersections (nodes) starts by
finding the nodes that have no parents. We define those as
being level 0. We consider a node to be ordered if all of its
parents are ordered. By definition, level 0 nodes are ordered.
During the solution process, we keep track of nodes for which
one of two parents is ordered. Those nodes are referred to as
the temporary set.

From a given level i of nodes (starting from 0), we form
a set from the union of the children of level i nodes and the
temporary set. Across the nodes of this newly constructed set,
we look for ordered nodes to construct the level i + 1. Nodes
in i + 1 that were in the temporary set are removed. Children
of nodes in i that have not been resolved are added to the

temporary set. The operation is then repeated from level i + 1
until the whole intersection tree has been ordered.

3. Finding and resolving loops in the intersection tree

Before applying the above algorithm to a set of nodes, one
must ensure that the set can be ordered. In particular, loops in
the intersection topology must be simplified for intersections
to be treated in a logical order. Identifying loops is simple in
principle but can be computationally challenging depending on
the size of the loops and the total number of intersections. We
define an intersection i as being in a loop of order n if i is in the
nth generations of its own children (see Fig. 12 for an example).

Loops are identified in ascending loop length order from
2 to 20. For each loop identified, the intersection for which
the CBET coupling coefficient is the lowest is removed.
The intersection tree is simplified before further loop finding
is applied by computing the energy exchange between the
beamlets and eventually eliminating intersections containing
at least one depleted beamlet.

APPENDIX C: ANGULAR CONFIGURATION
OF OMEGA BEAMS

Since the PCGO model implemented in the hydrocode CHIC

is two dimensional [13], we look for configurations where
beams are coplanar in a plane passing by the capsule center.
The latter planes can be visualized in an azimuthal-elevation
diagram, where these angles are defined on the left-hand side
of Fig. 13. The right-hand side of Fig. 13 illustrates the beam
positions with respect to their azimuthal angle and elevation
angle. At a given azimuthal angle, beams are coplanar and the
corresponding plane passes through the capsule center. These
planes can be used as a 2D simulation configuration for the
PCGO model.
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FIG. 13. (Color online) Shown on the left is the definition of the azimuthal angle γ and elevation angle ψ . The entire sphere can be
characterized with γ ∈ [0,180]◦ and ψ ∈ [0,360]◦. In this example, beams 1 and 2 are on the same azimuthal plane and at different elevation
angles ψ1 and ψ2. The configuration on the right is of the 60 OMEGA beam ports in azimuthal-elevation angular coordinates. At a fixed γ ,
adjacent beams are separated by 20◦ or 40◦. By considering adjacent γ planes, we could consider 2D interactions between beams with higher
angular separations.
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